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--New Trends--
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Department of Mathematical Sciences, Tokyo University, Tokyo 

and 

Steklov Mathematical Institute, St. Petersburg 

The review is based on the author's papers since 1985 in which a new approach to the 

separation of variables (SoV) has being developed. It is argued that SoV, understood 

generally enough, could be the most universal tool to solve integrable models of the classical 

and quantum mechanics. It is shown that the standard construction of the action-angle 

variables from the poles of the Baker-Akhiezer function can be interpreted as a variant of 

SoV, and moreover, for many particular models it has a direct quantum counterpart. The 

list of the models discussed includes XXX and XYZ magnets, Gaudin model, Nonlinear 

Schrodinger equation, SL(3)-invariant magnetic chain. New results for the 3-particle quan

tum Calogero-Moser system are reported. 

§ 1. Introduction 

35 

The separation of variables (So V), at least, in its most elementary forms such as 

So V in cartesian, spherical or ellipsoidal coordinates, is an indispensable part of the 

basic mathematical/physical curriculum. Briefly, So V can be characterized as a 

reduction of a multidimensional problem to a set of one-dimensional ones. Originat

ed from the works of D'Alembert and Fourier (wave theory) and Jacobi (Hamiltonian 

mechanics), the So V for the long time was the only known method of "exact" solution 

of problems of mathematical physics. However, in the last decades the new tech

niques, including Inverse Scattering Method (ISM) as well as its quantum version 

(QISM) together with Bethe Ansatz, seemed to oust the SoV out of fashion. 

The aim of the present review is to draw attention to the recent progress in 

understanding So V and its relations to ISM and QISM. I am going to argue that So V 

is far yet from being outdated and, even more, has good chances to remain as the most 

universal method of solving completely integrable (classical and quantum) models. 

There are two basic observations which give support to that claim. First: for the 

classical integrable systems subject to ISM the standard construction of the action

angle variables using the poles of the Baker-Akhiezer function is in fact equivalent to 

a separation of variables. And second: in many cases it is possible to find the precise 

quantum analog of this construction. 

This point of view has being gradually clarified since my first publications0 •2> of 

1985 which were deeply influenced by I. V. Komarov (St. Petersburg State University) 
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36 E. K. Sklyanin 

who used to insist that So V and ISM are closely related and to underline that the 

notion of So V should not be restricted to the purely coordinate change of variables as 

it was frequently done. Generally speaking, SoV can be produced by a complicated 

canonical transformation involving both coordinates and momenta. In the quantum 

case the canonical transformation should be replaced with a unitary operator. The 

papers of Gutzwiller on 3, 4-particle Toda lattice3' and of Komarov on Goryachev

Chaplygin top4' had provided the first examples of how such a unitary operator could 

be guessed using known classical SoV. In Refs. 1) and 2) the results of Komarov and 

Gutzwiller were reproduced using the machinery of QISM.5' The algebraic tech

niques of QISM (R-matrix method) opened the way to methodical construction of 

quantum So V for the whole classes of integrable models generated by different 

R-matrices (solutions to the Yang-Baxter equation). Though the realization of this 

program is far yet from completion, the list of the models, to which the new approach 

has been applied successfully, grows steadily and presently includes: 

• XXX magnetic chain6
''

7
' 

eXXX Gaudin model,8' see also Refs. 9)~16). 

• XYZ magnetic chain (classical case)l7' 

• Goryachev-Chaplygin top,4''1' see also Ref. 18). 

• Toda lattice,2' including relativistic case19' and boundary conditions;20' see also 

Ref. 21). 

• Nonlinear Schrodinger equation (infinite volume)22' 

•sinh-Gordon model (infinite volume)23' 

• SL(3) magnetic chain24''25' 

• 3-particle Calogero-Moser model, see § 7 of the present paper. 

The early stages of the work were summarized in the reviews,6''7' where the term 

"Functional Bethe Ansatz" was used instead SoV, the latter one seeming now to be the 

more accurate. I tried to avoid in the present review the detailed discussions of 

particular models which one can find in Refs. 6) and 7) but, instead, to summarize the 

development of the field using the unifying concept of the Baker-Akhiezer function. 

The importance of choosing a proper normalization of B-A function is stressed. 

More attention is paid to the particular models which were not discussed in the 

previous reviews (Nonlinear Schrodinger equation in the infinite volume, classical 

XYZ magnet). New results are reported concerning SoV in the quantum 3-particle 

Calogero-Moser model (elliptic and trigonometric). 

§ 2. So V: general notions 

2.1. Basic definitions 

Let us start with the classical case. Consider a Hamiltonian mechanical system 

having a finite number D of degrees of freedom and integrable in Liouville's sense. It 

means26' that one is given a 2D-dimensional symplectic manifold (phase space) and D 

independent hamiltonians HJ commuting with respect to the Poisson bracket 

j,k=1,···,D. (2·1) 
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Separation of Variables 37 

A system of canonical variables (p, x) 

(2·2) 

will be called separated if there exist D relations of the form 

(J)ixj, Pi. Hr, Hz,···, Hn)=O, j=1, 2, ···, D (2·3) 

binding together each pair (Ph xj) and the hamiltonians Hn. Note that fixing the 

values of hamiltonians Hn=hn one obtains from (2·3) an explicit factorization of the 

Liouville tori into the one-dimensional ovals given by equations 

j=1, 2, --·,D. (2·4) 

The action function S(h, x) is definedz6> as the generating function of the canoni

cal transformation from (p, x) to the action-angle variables (I, cp) that is 

h=h(I)' 
aS(h(I), x) 

axj 

and satisfies the Hamilton-Jacobi equation 

aS(h(I), x) 
a1j 

(2·5) 

(2·6) 

for each Hj considered as a function of (p, x). The relations (2·4) allow immediately 

to split the complete solution to partial differential equation (2·6) into the sum of terms 

S(h, XI,--·, Xn)=Sr(h, Xr)+--·+Sn(h, Xn) (2·7) 

satisfying each the ordinary differential equation 

(2·8) 

(we consider h in Sixj)=Sih, xJ as fixed parameters). 

The last result justifies apparently the term "separation of variables". It is 

important to warn the reader that many authors restrict the notion of So V only with 

the situations when the separated variables (p, x) are obtained from some original 

canonical variables, say (P, Q), by purely coordinate transform 

(2·9) 

That condition, though reasonable for a certain class of problems, would be, 

however, too restrictive for our purposes excluding almost all the examples we are 

going to consider. 

Let us examine now the quantum case. The condition (2 ·1) is replaced by the 

commutativity of quantum operators 

j, k=1, --·,D 

the relations (2·3) retaining the same form 

(J)ixJ, Pj, Hr, Hz,--·, Hn)=O 

(2 ·10) 

(2·11) 
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38 E. K. Sklyanin 

with the only difference that now we have to fix some ordering of the noncommutative 

operators Xj, Pi> Hn. Let us assume that the operators in (2 ·11) are ordered exactly 

as they are enlisted that is x always precedes p and p precedes H (the relative 

ordering of Hn is of no importance since they are commutative (2·10)). 

It is convenient to work in the x-representation that is to realize the quantum 

states as the functions lfl(x) from some Hilbert space &. The canonical operators 

Xi and Pi 

(2 ·12) 

can be realized respectively as the multiplication and differentiation pj=- tnaxJ 
operators. 

Let lJl be a common eigenfunction 

(2·13) 

of the commuting hamiltonians. Then, under assumptions made about the operator 

ordering and the realization of (p, x) it follows from (2·11) that lfl(x) satisfies the 

equations 

which suggests immediately the factorization of lJl 

into functions <Pj(x;) of one variable only satisfying the equation 

(J);(xi> -inaxJ> h1, h2, ···, hn)¢;(xj)=O. 

(2·14) 

(2·15) 

(2·16) 

In complete analogy with the classical case, the original multidimensional spec

tral problem (2 ·13) is reduced to the set of the one-dimensional multi parameter 

spectral problems (2·16). For determining the admissible values of D spectral 

parameters hi one has thus the system of D equations (2 ·16) supplememented with 

appropriate boundary conditions determined by the Hilbert space&. The function 

(J)j in (2·14) can be thought of as a symbol of a pseudodifferential operator. In 

particular, (2·16) becomes an ordinary differential equation if (J)j is a polynomial in p 

or a finite-difference equation if (J)j is a trigonometric polynomial in P. 

Semi classically, 

lfl(x)=e<i11tlS<xl, 

which provides the correspondence of the formulas (2·7) and (2·15). 

2.2. Magic recipe 

Let us return now to the classical case and discuss the question how to find a So V 

for a given integrable system. In the XIXth and the beginning of the present century 

for a number of models of classical mechanics, such as Neumann model or various 

cases of the rigid body motion, the So V was found by guess or some more or less ad 

hoc methods. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

1
8
.3

5
/1

8
3
7
1
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Separation of Variables 39 

Here we shall discuss the latest and seemingly the most powerful method based 

on the Baker-Akhiezer function. Suppose, as it is always done in the Inverse Scatter

ing Method (ISM), that our commutative hamiltonians Hi can be obtained as the 

spectral invariants of some matrix L(u) of dimensions NxN, called L or Lax 
operator, whose elements are functions on the phase space and depend also on an 

additional parameter u called spectral parameter. It means that Hi can be expressed 

in terms of the coefficients tn(u) of the characteristic polynomial W(z, u) of the matrix 
L(u) 

N 

W(z, u)=det(z- L(u))= ~ ( -1)ntn(u)zN-n, 
n=O 

n 

to(u)=1, tn(u)=tr/\L(u), tN(u)=detL(u). (2 ·17) 

The characteristic equation 

W(z, u)=O (2 ·18) 

defines the eigenvalue z(u) of L(u) as a function on the corresponding N-sheeted 

Riemannian surface of parameter u. The Baker-Akhiezer function Q(u) is defined 

then as the eigenvector of L( u) 

L(u)Q(u)=z(u)Q(u) (2·19) 

corresponding to the eigenvalue z(u). 

Since an eigenvector is defined up to a scalar factor, to exclude the ambiguity in 

the definition of Q(u) one has to fix a normalization of Q(u) imposing a linear 

constraint 

N 

~ an(u)Qn(u)=1, 
n=l 

(2·20) 

where an(u) may, generally speaking, depend also on the dynamical variables. A 

normalization being fixed, Q(u) becomes a meromorphic function on the Riemannian 

surface (2 ·18). 

The poles xJ of the Baker-Akhiezer function play an important role in ISM.27l In 

particular, the time evolution of Xi for the hamiltonian flow with any of the commut

ing hamiltonians Hn can be expressed explicitly in terms of the Riemannian theta

functions corresponding to the spectral curve (2 ·18). Moreover, it was observed that 

for many models the variables Xi Poisson commute and, together with the correspond

ing eigenvalues zj==z(xi) of L(xJ, or some functions Pi of z;, provide a set of separat

ed canonical variables for the Hamiltonians Hn. It should be mentioned that, though 

the seminal papers28> contain all the necessary results, the possibility of their interpre

tation in terms of So V was not recognized at that time. 

One of the reasons why the poles of Q(u) could provide a SoV is easy to 

understand. Since zi=z(xi) is an eigenvalue of L(xj) the pair (z;, xi) should lie on the 

spectral curve (2 ·18) 

(2. 21) 
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40 E. K. Sklyanin 

It remains to observe that, if Zj is a function of Pit Eq. (2 • 21) fits exactly the form 

(2 · 3) since the coefficients tn(xj) of the characteristic polynomial (2 ·17) contain 

nothing except Xi and the hamiltonians Hk. 

However, the relations (2·3) alone are not enough to produce SoV. It is neces

sary that, in addition, the number of the poles Xj be exactly the number of degrees of 

freedom D and that the variables (p/zj), xj) be canonical (2·2). Those properties are 

by no means obvious and the last one is rather difficult to verify. To perform the 

calculation, it is necessary to transform the above definitions of (zit xj) into a more 

convenient form. Let QU>=resu;xJ'Q(u). From (2·19) and (2·20) there follow, 

respectively, the eigenvalue equation and the normalization condition for QU> 

(2. 22) 

Let a(u) denote the one-row matrix (ai(u), ···, aN(u)). The existence of a non

zero solution QU> to the problem (2 · 22) is equivalent to the condition 

(2·23) 

which, in turn, can be expressed generically as vanishing of any of two minors of 

order N, for instance 

a1(x) a2(x) as(x) aN(x) 

L21(x) L22(x)-z L2s(x) L2N(x) 

Lsi(x) Ls2(x) Lss(x)-z LsN(x) =0, (2·24a) 

LN1(x) LN2(x) LNs(x) LNN(x)-z 

a1(x) a2(x) as(x) aN(x) 

Lu(x)-z L1lx) L1lx) LIN(x) 

Ls1(x) Ls2(x) Lss(x)-z LsN(x) =0. (2·24b) 

LN1(x) LN2(x) LNs(x) LNN(x)-z 

The pairs (z;, x3 ) are obtained then as the roots of the system of Eqs. (2 · 24) which 

allows, in principle, to count them and to calculate the Poisson brackets between 

them. 

In the sections devoted to the nonlinear Schrodinger equation and XYZ model we 

shall need the formulas for the N=2 case. Equations (2·24) become then quite 

simple: 

I a1(x) a2(x) I=O 
L21(x) Ldx)-z ' 

I a1(x) a2(x) I=O 
Lu(x)-z L1lx) · 

(2·25) 

Eliminating z one obtains the equation for Xi 

(2·26) 
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Separation of Variables 41 

The eigenvalue Zi is obtained then from 

Zi=(Lu-i!!._L12) =(L22-~L21) 
~ U=~ ~ U=~ 

(2·27) 

(for the sake of brevity we have omitted the argument u in L(u) and a(u) in the last 

two formulas). 

Generally speaking, there is no guarantee that one obtains from (2 · 24) the 

canonical P.b. (2·2) for some p;(zj). Amazingly, it turns out to be true for a fairly 

large class of integrable models, though the fundamental reasons responsible for such 

effectiveness of the magic recipe: "Take the poles of the properly normalized Baker

Akhiezer function and the corresponding eigenvalues of the Lax operator and you 

obtain a So V", are still unclear. The key words in the above recipe are "the properly 

normalized". The choice of the proper normalization a(u) of Q(u) can be quite 

nontrivial (see below the discussion of the XYZ magnet) and for some integrable 

models the problem remains unsolved.29> 

2.3. r-matrix formalism 

Given a particular L operator and a normalization of Q, one is able, in principle, 

to calculate from (2·24) the Poisson brackets for (z;, xi) though it could be a formi

dable task. There are, however, techniques which simplify the calculation and allow 

to verify So V for whole families of L operators instead of handling them individually. 

According to a remarkable theorem proved by Babelon and Viallet,30> the com

mutativity of the spectral invariants tn(u) (2·17) of the matrix L(u) 

{tm(u), tn(v)}=O (2·28) 

is equivalent to the existence of a matrix r12(u, v) of order N 2XN2 such that the 

Poisson brackets between the components of L are represented in the commutator 

form 

1 2 1 2 

{L(u), L(v)}=[r12(u, v), L(u)]-[r21(v, u), L(v)], (2·29) 

where the standard notation is introduced:7> V=L®l, V=l®L, r21(u, v) 

=Pr12(u, v)P, and pis the permutation operator: Px®y=y®x, v X, yE eN. 
Generally speaking, the matrix r12(u, v) is a function of dynamical variables. So 

far, very little is known of such r-matrices, apart of few particular examples.31H 4> 

The best studied one is the case of purely numeric (c-number) r-matrices satisfying 

the classical Yang-Baxter equation 

[r12(u1, U2), r1s(u1, us)+r2s(U2, Us)]-[r1s(U1, Us), rs2(Us, U2)]=0, (2·30) 

which ensures the Jacobi identity for the Poisson bracket (2·29), and especially, the 

case of unitary numeric r-matrices, satisfying, in addition, the relation 

r12(u1, U2)=- r21(u2, U1) (2·31) 

and depending on the difference u1- U2. For such r-matrices the relation (2·29) takes 

the form 
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42 E. K. Sklyanin 

1 2 1 2 

{L(u), L(v)}=[r12(u- v), L(u)+ L(v)] (2·32) 

and (2·30), respectively, 

[r1iu), r1s(u + v )] +[r12(u), r2s(v )] + [r1s(u + v ), r2s(v )]=0. (2·33) 

To a unitary numeric r-matrix one can associate not only the Poisson algebra 

(2·32) whose right-hand side is linear in L but also the algebra 

1 2 1 2 

{L(u), L(v)}=[n2(u- v ), L(u)L(v )] (2·34) 

with the quadratic r.h.s. Formally, (2·34) can be put into the form (2·29) with the 

dynamic r-matrix i'12(u, v)=(l/2)(r12(u-v)_L(v)+ _L(v)r12(u-v)), r21(u, v) 

= -(1/2)(r12(u- v) l<u)+ l(u)r12(u- v)), but the very special structure of i'12 allows 

to consider the formula (2·34) rather as a modification of (2·32). Obviously, (2·32) 

can be obtained from (2·34) if one substitutes L:=l + .:L+ 0(.:2), r:=.sr and let .s--+0. 

Another example of the quadratic P.b. algebra associated to a unitary numeric 

r-matrix is the algebra35> 

1 2 1 2 

{L(u), L(v)}=[r12(u-v), L(u)L(v)] 

1 2 2 1 

+ L(u)r12(u+ v)L(v)- L(v)r12(u + v)L(u). (2·35) 

There exists a profound algebraic theory of the unitary numeric r-matrices36> 

which allows to classify r-matrices in families labelled by Lie algebras. A particu

larly important example is given for any semisimple Lie algebra g by the formula 

(2·36) 

where pis a numeric constant and IaE g is an orthonormal basis with respect to the 

Killing form. The result does not depend on the choice of the basis. Taking then 

various finite-dimensional representations of g for the generators Ia one can obtain 

from (2·36) the family of r-matrices related to g. 

In particular, for g =gl(N) and the fundamental vector representation, one has 

(2·37) 

The last example deserves special attention since, so far, it is the only series of 

r-matrices for which a general So V construction is obtained. 

§ 3. GL(N)-type models 

3.1. Classical case 

It turns out that in case of the GL(N)-invariant r-matrix (2·37) the normalization 

of the Baker-Akhiezer function Q(u) corresponding to any constant numeric vector a 

in (2·20) produces SoV. The simplest choice of a is 
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Separation of Variables 43 

(3·1) 

The corresponding separated coordinates Xj are defined as the poles of Q(u), and 

the canonically conjugated momenta (2·12) are Pj=- p-1zj for the linear P.b. (2·32) 

and Pj=- p-1lnzj for the quadratic P.b. (2·34). For the linear P.b. case the above 

results were obtained in Ref. 37). The quadratic P.b. case was studied in Refs. 1) and 

24) for N=2, 3 and generalized to arbitrary N in Ref. 38). 

In case of the normalization (3 ·1), Eqs. (2 · 24) for (z, x) simplify a bit 

L21(x) L22(x)-z L2a(x) ... L2,N-1(x) 

La1(x) La2(x) Laa(x)-z··· La,N-l(x) 

=0, (3·2a) 

LN-1,1Cx) LN-1,2Cx) LN-I,a(x) ··· LN-l,N-l(x)-z 

LN1(x) LN2(x) LNa(x) ... LN,N-l(x) 

Ln(x)-z L12(x) L1a(x) ... L1,N-1(x) 

Lal(x) La2(x) Laa(x)-z··· La,N-l(x) 

=0. (3·2b) 

LN-1,1(x) LN-1,2(x) LN-l,a(x) ··· LN-l,N-l(x)-z 

LN1(x) LNlx) LNa(x) ... LN,N-l(x) 

Equations (3·2) themselves can be used already for calculation of P.b. between x, 

and zj, see Refs. 37) and 38). However, they are not convenient for quantization 

because of the operator ordering problem. So, we take one more step and eliminate 

Zj from (3·2). The result is one equation 

(3·3) 

for xj where B(u) is a certain polynomial of degree N(N -1)/2 in components of 

L(u). The corresponding eigenvalue Zj is obtained then as the value 

zj=A(xj) (3·4) 

of certain function A(u) expressed rationally in components of L(u). 

For instance, for N=2 

B(u)=L21(u), A(u)=Ln(u). (3·5) 

Note that for u=xj the matrix L(u) becomes triangular 

(3·6) 

which explains why its eigenvalue Zj is given by A(xj). 

For N =3 one obtains 

I
Ln L121 IL21 L221 

B(u)=Lal(u) Lal La2 (u)+ La2(u) Lal La2 (u). (3·7) 

There are two possible ways to choose A(u) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

1
8
.3

5
/1

8
3
7
1
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



44 E. K. Sklyanin 

I
L21 L22 (u) 

A 2(u)= _ La1 La2 
La1(u) 

which are equivalent modulo B(xj)=O ~ A1(xj)=&(xJ) 

ZJ=A1(xJ)=A2(xJ). 

(3·8) 

(3·9) 

The expressions for A(u) and B(u) for the general N are given in Ref. 38). We 

have to warn the reader that due to a different choice of normalization of .Q(u) the 

formulas (3 · 5), (3 · 7), (3 · 8) differ from those in Refs. 7), 25) and 38). 

Equations (3·3) and (3·4), like (3·2), can also be used for calculating the P.b. 

between XJ and ZJ. Their advantage for the sake of quantization is that B(u) Poisson 

commute 

{B(u), B(v)}=O, (3·10) 

which entrains immediately the commutativity of XJ (see the next subsection). 

The correct P.b. between XJ and ZJ are not enough to establish SoV. The last 

condition (usually, easy to verify) is the correct number of variables xj which should 

be equal to the number D of degrees of freedom. In some degenerate cases, the 

number of XJ could be less than D and some additional variables should be added (see 

example of Calogero-Moser model in § 7). 

To conclude this subsection, let us stress that so far no generalization is known 

of the above results to the r-matrices corresponding to the Lie algebras other than the 

An series. The difficulty is that the simplest normalization (3 ·1) does not work more: 

the function B(u) has too many zeroes (more than the number D of degrees of 

freedom) and they do not commute.29> Hopefully, some other normalization (2·20) 

will work which remains a challenging problem. 

3.2. Quantization 

In the quantum case the components Lmn of the NXN matrix L(u) become 

quantum operators, and the Poisson brackets should be replaced by some commuta

tion relations satisfying the correspondence principle [ , ]=-in{ , }. A nice fea

ture of the Poisson algebras (2 · 32) and (2 · 34) is that (in contrast with the general case 

(2·29) of dynamical r-matrices) it is well known how to quantize them. 

In the linear case (2·32) the quantization is straightforward 

1 2 1 2 

[L(u), L(v)]=[t12(u- v), L(u)+ L(v)], r(u)=- inr(u), (3·11) 

in the quadratic case (2·34) it is more tricky. The algebra (2·34) is replaced by 

1 2 2 1 

R12(u- v)L(u)L(v)=L(v)L(u)R12(u- v), 

where R(u) satisfies the quantum Yang-Baxter equation 

R12(u)R1a(u + v )R2a(v )= R2a(v )R1a(u + v )R12(u) 

and is related to r(u) through the semiclassical expansion 

(3·12) 

(3·13) 
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Separation of Variables 45 

R(u)=1 + inr(u)+ O(n2). (3·14) 

In the GL(N) case (2 · 37) the quantum r and R matrices are 

r(u)=-r;Jt, R(u)=1+r;Jt, r;=inp. 
u u 

(3·15) 

The relations (3·12) define the associative algebra Qj[gl(N)] called yangian of 
gl(N). 

The quantum integrals of motions tn(u) for the yangian are obtained by appropri

ate deformation of the classical formulas (2 ·17) 

tn(u)=tr L(u) 1\L(u + r;) 1\ ···/\ L(u +(n-1)r;), 

[tm(u), tn(u)]=O. 

(3·16) 

(3·17) 

The quantity tN(u) (the quantum determinant of L(u)) produces central elements 

[tN(u), L(v)]=O (3·18) 

of the yangian. Naturally, on the irreducible representations tN(u) is a number

valued function. 

The quantum analog of the construction of the SoV based on Eqs. (3·3) and (3·4) 

is found presently only for N=2 and N=3. The formulas given below are taken 

from Refs. 7), 25) up to small variations due to the different choice of normalization 

of .Q(u). In the GL(2) case the operator-valued functions A(u) and B(u) are defined 

by the same formulas (3·5) as in the classical case. By virtue of (3·12) the operator 

family B(u) turns out to be commutative 

[B(u), B(v)]=O, (3 ·19) 

which allows to define the operators Xn as the commuting "operator roots" of Eq. (3·3) 

(for the mathematical details see Ref. 7)). To give a sense to the formula (3·4) in the 

quantum case, it is necessary to fix the operator ordering. Assume that the x's in 

(3·4) are ordered to the left that is 

for (3. 20) 

Then, using the commutation relations (3·12) it is possible to verify the relations 

(3·21) 

which suggest the realization of the operators Zj as the shift operators in an appropri

ate Hilbert space .9C31Jf(x) of functions on the common spectrum of the operators xj: 

(3·22) 

The choice of the function S'(x) in (3·22) is dictated by the properties of the 

Hilbert space .9C depending on the concrete model (see examples below). Note that 

there is certain liberty in choosing S'(xj) due to the canonical transformations 

(3. 23) 
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46 E. K. Sklyanin 

The So V follows then from the relations 

z/-zjii(xj)+tz(xj)=O, (3·24) 

which generalize the classical characteristic equation (2 ·17) and fit the form (2 ·11) 

required for the quantum SoV (note the operator ordering!). Denoting by tn(u) the 

eigenvalues of the commuting operators tn(u) one obtains for the corresponding 

separated equation (2 ·16) the finite-difference equation of order 2: 

or in more symmetric form 

(3·25) 

where 

In the GL(3) case the quantum B(u) and A(u) are obtained as deformations of the 

classical formulas (3·7) and (3·8): 

B(u)= L31(u -7J)[L32(u)Lu(u -7))- L31(u)L12(u -7J)] 

+ L32(u-7J)[L32(u)L21(u-7))- L31(u)L22(u-r;)], 

AI(u)=L3i(u)[L32(u)Lu(u -7))- L31(u)L12Cu -r; ))] , 

A2(u)=- L3l(u)[L32(u)L21Cu -7J)- L31(u)L22Cu -r;))], 

Zi=AI(Xi)=&(xi). 

(3·26) 

(3·27) 

(3·28) 

The rest is similar to GL(2) case. The quantum characteristic equation is 

(3·29) 

and the separated equation is now a third-order finite-difference equation.25> 

There is little doubt that the above constructions can be generalized to the 

arbitrary values of N, though the complicated structure of B(u)38> prevents rapid 

progress. 

The analogous results for the linear commutation relations (3·11) can be obtained 

from the formulas for the quadratic relations (3·12) in the limit L:=1+.:L+0(.:2), 

7J :=.:r;, .:--+0. However, though it is clear enough that the expansion in .: of the 

formulas (3·16) for the quantum integrals of motion for the yangian should produce, 

in principle, some commuting hamiltonians for the algebra (3 ·11), obtaining explicit 

formulas for them when N is arbitrary remains still unsolved problem, to say nothing 

about expressions for A(u) and B(u). In case of the t-matrix of the form (2·36) 

Feigin and Frenkel39> has proved for any Lie algebra Q that the quantum commuting 

operators do exist which are deformations of the spectral invariants of the classical 

L matrix though their method of proof does not produce any effective formulas. 

Nevertheless, the simplest integrals of motion are easy to produce. Note that t1(u) 

=trL(u) is a trivial central element of the algebra (3·11), so it can be safely put to 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

1
8
.3

5
/1

8
3
7
1
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Separation of Variables 47 

be 0, which corresponds to considering sl(N) instead of gl(N). The first nontrivial 

invariant is quadratic in L(u) and coincides with the classical expression 

tz(u)= ~ trV(u), [tz(u), tz(v)]=O (3·30) 

(for the general simple Lie algebra g one should use the corresponding Killing form). 

The above quadratic invariant is enough to serve the sl(2) case. The definitions 

(3·5) of A(u) and B(u) and, respectively, (3·3) and (3·4) of xJ and Zi remain the same 

as in the quadratic case. The commutation relations (3·21) and the quantum charac

teristic equation (3·24) are replaced, respectively, by 

and 

z/-tz(xi)=O 

(here we put 7J=1 for simplicity). Using then the realization 

zi=ox1 + S'(xi) 

(3·31) 

(3·32) 

(3·33) 

for Zj one obtains for the separated spectral problem the second order differential 

equation8> 

(3·34) 

It is easy to anticipate that for GL(N) the separated equation should become an 

N-th order differential equation, though the calculation still waits to be done. 

For discussion of SoV for the quadratic algebra (2·35) in the sl(2) case (open 

Toda chain with boundary conditions) see Ref. 20). 

The above scheme of quantum So V is general enough to serve the variety of 

quantum integrable models obtained by taking concrete representations of the yan

gian (3 ·12) or the algebra (3 ·11). Below we shall illustrate on few examples of 

GL(2)-type models the diversity of possibilities arising. The main problem of adjust

ing the general scheme to a concrete model is to find the spectrum of the commuting 

operators B(u) and, consequently, of Xi and to describe the functional space in which 

the one-dimensional spectral problem (3·25) or (3·34) has to be solved. 

§ 4. XXX magnetic chain 

The general finite-dimensional irreducible representation of the yangian Q}"[sl(2)] 

is realized in the tensor product of D finite-dimensional irreducible representations of 

the Lie algebra sl(2) (classically, D is the number of degrees of freedom) 

[S~, S~]= ±S~Bmn, [S;);, S;]=2S~Bmn, m, n=1, ···, D 

(4·1) 

and can be written in the factorized form (monodromy matrix) 
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48 E. K. Sklyanin 

(4·2) 

where 

( s~ s;; ) 
Sn= S;i -S~ , (4·3) 

and K is a constant numeric matrix. It is customary to use the notation T(u) instead 

of L(u) like e.g. in Ref. 7), but here we had to sacrifice it to preserve the coherence of 

notation. The representation given by (4·2) has dimension Il~=I(2ln+1) and is 

parametrized by: 2 X 2 matrix K, number D of degrees of freedom, spins ln and shifts 

8n. The Casimir operator (quantum determinant (3·16)) Mu) takes the value 

D 

tz(u)=detKII (u- 8n-lnTJ)(u- 8n + lnTJ + TJ). 
n=l 

(4·4) 

The corresponding quantum integrable model is called inhomogeneous XXX 

magnet. 

The parameters of the representation being in the generic position, the represen

tation (4 · 2) of the yangian turns out to be irreducible, and the spectrum of the 

operators xj defined from (3·3) for B(u) given by (3·5) turns out to be the finite sef' 

(4·5) 

For the separated finite-difference equations (3·25) to be well defined on the finite 

set Ah the coefficients Ll±(X) must satisfy the boundary conditions 

The most convenient choice of Ll±(u) is 

D 

Ll±(u)= K± II (u- 8n+ lnTJ), 
n=l 

K+K-=detK. (4·6) 

The sl(2) Gaudin model is the degenerate case of XXX magnet obtained in the 

limit 7J--+ 0. The corresponding L operator is produced renormalizing L operator 

(4·2), putting K:=1+TJJC, trJC=O, and expanding in 7}: 

Lxxx(u) 
Il(u-8n) 
n 

The L operator 

(4·7) 

satisfies the linear commutation relations (3·11) with the t matrix (3·15) for 7J=l. 

The spectral invariant b(u) (3·30) produces the commuting hamiltonians which are 

quadratic in spin operators 

(4·8) 
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Separation of Variables 49 

(4·9) 

The normalization (4·6) of Ll±(u) in (3·25) corresponds to the normalization 

_ D ln 
s(u)-c- ~1 u-8n ' c2=-detJC (4·10) 

of s(u) in (3·33), (3·34). 

In the limit 7J ~ 0 the 2lj + 1 points of the spectrum Aj of the operator Xj merge into 

one point Xj = 8j of multiplicity 2lj + 1. The space of functions on Aj is understood, 

respectively, as the ring of polynomials in Xj factorized over the ideal (xj- 8j)211+1=0. 

The spectrum of the hamiltonians (4·9) is given then by the values of Hn in (4·8) for 

which the differential equation (3·34) with s(u) given by (4·10) in each of the points 

x=8jlf=l has a regular solution ¢ix)=1 + ~k=l(x-8j)k¢P>, see Ref. 8). 

If one realizes the spin operators S~ (4 ·1) as the differential operators 

(4·11) 

then the equation B(xj)=Lzl(xj)=O defines a "purely coordinate", in the sense (2·9), 

change of variables {yn}~{xJ. The separated coordinates Xj can be described as 

generalized ellipsoidal coordinates, see Ref. 9). In fact, all the models allowing So V 

in generalized ellipsoidal coordinates, such as Neumann model11> and its generaliza

tions15>'14> or Euler-Manakov top/3> can be considered as degenerate cases of Gaudin 

model.10> For the generalization of Gaudin model to osp(112) Lie superalgebra see 

Ref. 16). An application of Gaudin model with L(u) having a second order pole to 

the atomic physics (Coulomb three-body problem) is considered in Ref. 12). 

The particular simplicity of the Gaudin model makes it attractive for rigorous 

mathematical analysis. Much attention was devoted last years to the study of the 

connection between Gaudin model and Knizhnik-Zamolodchikov (KZ) equations for 

the correlators in conformal field theory. The fact that the eigenvalue problem for 

the Gaudin hamiltonians (4 · 9) coincides with the KZ equations on the critical level can 

be exploited both to produce integral representations for the solutions to KZ equa

tions40> and a new derivation of the formula for the norm of the Gaudin eigenfunc

tions.41> In the recent paper42> the representation theory for the affine Lie algebras is 

applied to derive, in particular, Bethe equations for the Gaudin model corresponding 

to arbitrary simple Lie algebra and to reveal thus the algebraic meaning of Bethe 

ansatz. Hopefully, the methods developed in Ref. 42) will be useful also in under

standing the algebraic roots of So V. 

The XXX model, as well as the s/(2) Gaudin model, presents a convenient 

possibility to compare the results of So V method with those obtained by the Algebraic 

Bethe Ansatz (ABA).5> Since the subject is discussed in detail in Refs. 6)~8) we 

present here only the summary of the analysis. The So V and ABA methods lead to 

the same equation (3·25), resp. (3·34), though its interpretations differ. In SoV 

method the equation is solved on the finite set A=UAj whereas in ABA ¢(u) is 

supposed to be a polynomial whose zeroes Vm parametrize the Bethe vector 1J! v 
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50 E. K. Sklyanin 

M 

Wv= II L21Cvm)l O>, 
m=l 

(4 ·12) 

In the So V approach there is one-to-one correspondence between the solutions of 

the problem (3 · 25) on A and the eigenvectors of the commuting quantum hamiltonians 

which is not the case in the ABA approach where the so-called "completeness 

problem" arises. The So V method provides the basis for the rigorous analysis of the 

completeness problem and allows to formulate the criterion of completeness. In case 

of the Gaudin model the criterion sounds as follows. 8> Let Q(u) be a polynomial 

solution to the differential equation (3·34). If Q(8i)*O, V j=1, ... , D then the corre

sponding Bethe vector (4·12) is nonzero. If, however, Q(8i)=O for some j then the 

corresponding Bethe vector is zero, and the set of Bethe eigenvectors is incomplete. 

Moreover, the nonzero eigenvector corresponding to such Q(u) exists if and only if 

the linearly independent solution of the differential equation is regular in the same 

point x=8j. 

The power of So V is revealed most obviously in the cases when the representa

tion of the yangian does not possess the highest vector I O> such that L12l 0)=0 and 

hence ABA cannot be applied. These cases correspond to the infinite dimensional 

representations of s/(2) for the operators S~ (4·3). The corresponding separated 

wave functions ¢(xi) are not more polynomials, and the separated equations (3·25), 

(3·34) should be accompanied with some square integrability conditions. Depending 

on the real form of sl(2) in question there is plently of analytical possibilities. 

For the Goryachev-Chaplygin top the spectrum of Xi is real and discrete, and the 

shift r; in (3·25) is real, see Refs. 4), 1) and also Ref. 18) for generalizations. 

In case of the Toda lattice the spectrum of Xi is real and the shifts r; in (3·25) are 

imaginary.2> See also Ref. 19) for the relativistic version and Ref. 20) for the lattice 

with boundary conditions. 

A version of noncompact XXX magnet applied recently43> to describe the QCD in 

the asymptotic high energy regime also does not have the highest weight vector, so the 

So V is the natural approach to try. 

For the analogous effects in the Neumann model, see Ref. 11). 

§ 5. Infinite volume limit 

So far, we discussed only the integrable models with a finite number D of degrees 

of freedom. The passage to D=oo can be made in two ways: either by taking the 

continuum limit or the infinite volume limit. In the continuum limit the representa

tion (4·2) of the monodromy matrix L(u) as a product of local..£ operators ..I:n(u) is 

replaced by the representation in the form of the ordered exponential5>'44> 

-+ ("+ 
Lt(u)=:exp 1~- B(u, ~)d~:. (5·1) 

For example, for the nonlinear Schrodinger equation, described in terms of the 

canonical fields W(~), 7[!*(~) 

[ 7[!(~), 7[!(~')]=[ 7[!*(~), 7[!*(~')]=0' [we~), W*Ce)J=8C~-e) (5·2) 
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Separation of Variables 51 

acting in the Fock space W(~)l 0)=0, the infinitesimal L operator B(u, ~)is given by 

( )=( -iu/2 /CW*(~)) 
B u, X r: . 

v c W(~) iu/2 
(5·3) 

The corresponding quantum monodromy matrix Lt(u) given by (5·1), where:: 

stands for the normal ordering, satisfies the commutation relations (3·12) with the R 

matrix of XXX type (3·15) and r;=- ic. The quantum determinant tz(u) of L$~(u) is 

equal to e-cV/2, and the trace t1(u) of L$~(u) generates the commuting hamiltonians, 

in particular 

(5·4) 

We assume that the fields W(~), W*(~) are periodic in ~ with the period V 
=~+-~-and the coupling constant cis positive c>O (repulsive case). 

It is convenient to choose the following normalization a(u) of the Baker·Akhiezer 

function (2·20) 

a1(u)=l, 

The reason for such a choice is that the corresponding operator family B(u) 

(2·26) 

B(u)=- iLu(u)+ L12(u)+ L21(u)+ iL22(u) (5·5) 

has the symmetry B(u)*=B(u) and its zeroes Xj are self-adjoint operators. 

It is easy to find that the separated equation (3·25) takes the form 

n(x)¢(x)=e-ixvt2</J(x+ ic)+ e;xv12</J(x- ic). (5·6) 

Since B(u), like L~~(u), is not a polynomial but a holomorphic function of uE C, 

it has an infinite discrete set of zeroes Xj having asymptotics xj=2rcj/V + O(j-1) as 

j-HXJ. The necessity to handle the functions of infinite number of variables compli

cates greatly the justification of the standard So V construction even in the classical 

case. 

The situation, however, simplifies drastically in the infinite volume limit (we 

consider the zero density case described again by the Fock representation for W(~), 

W*(~)). The definition of the monodromy matrix L(u) for V=oo needs some cau

tion. If one tries to pass to the limit~±----) ±oo directly in the expression (5·1) one finds 

immediately that, in order to get a finite expression, it is necessary to cancel the 

asymptotic behaviour of L~~(u) introducing the exponential factors 

L"!:_':,(u)= lim eiuaae+t2Lt(u)e-iuaae-t2, 
e±-+±oo 

(5·7) 

which, however, destroy completely the nice commutation relations (3 ·12). The 

solution of the problem is to factorize first the finite-volume monodromy matrix 

L~~(u)=L~~(u)L~~(u) and to permute the factors: L$~(u)=L~~(u)L~~(u). This opera

tion does not change the quantity ti(u)=trL(u) generating the integrals of motion. 
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52 E. K. Sklyanin 

The matrix L$~(u), however, behaves in the limit .;±~ ±oo much better: 

L lo(u)=L'o e-iuYlfsi2L+oo~e'fiUV/2Lto p L+oo to -oo lo -00 ± eo ' 

where 

P-=(~ ~)' 
and the upper (lower) sign corresponds, respectively, to Im u >O ( <0). 

The scalar factor e=t:iuvt2 can be cancelled out of L$~(u) since it does not affect the 

relation (3 ·12). Hence, we can take for the monodromy matrix in the infinite volume 

the matrix 

(5·8) 

The matrix L(u) is analytical in the complex plane of u except the cut along the 

real axis. Its quantum determinant Mu) is zero. 

It is interesting to compare the above results with those of Kyoto group on the 

XXZ magnetic chain.45' In both cases the infinite volume case is considered, and a 

sort of monodromy matrix L(u) satisfying (3·12) is constructed. In the XXZ case, 

however, all components of L(u) are integrals of motion whereas in the nonlinear 

Schr6dinger case only trL(u) is one. Moreover, in the XXZ case L(u) is analytic in 

C whereas in the NLS case L(u) has a cut along the real axis. The above distinc

tions are probably due to the different nature of the vacuum state: antiferromagnetic 

for XXZ and ferromagnetic for NLS which in the last case requires introducing the 
asymptotic exponents e±iulfse±t2. 

Let us consider now how the whole So V construction is modified in the infinite 

volume limit. As.;±~ ±oo the zeroes Xj of B(u) accumulate to a continuous distribu

tion 

with the density q(v). The Hilbert space .9C of quantum states is realized then as the 

space of the linear functionals W[q(v)] of q(v), vER which are square integrable 

with respect to the measure om which, fortunately, happens to be Gaussian and is 

characterized uniquely by the correlator (covariance kernel) 

<q(p)q(v)>v= 4;2 ln( 1 + (p:_
2
v)2). 

The representation of B(u) as an infinite product B(u)~ IL(u-xj) is replaced by 

the Cauchy integral 

i { l+oo dv } B(u)=+2exp - -oo u-vq(v) , (5·9) 
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Separation of Variables 53 

where the upper (lower) sign corresponds, respectively, to Im u >O ( < 0). 

Though the quantity t1(u) is represented in $C as a complicated variational 

operator, its eigenfunctions nevertheless can be found exactly and have rather simple 

structure which is natural to consider as a continual analog of So V. The separated 

equation (5 · 6) is replaced respectively by a boundary problem for analytical functions 

having a cut along the real axis. Unfortunately, the complications due to the cut 

make a brief explanation impossible and for the details we refer the reader to the 

original papers.22' 

For the nonlinear Schrodinger equation the above So V procedure can be justified 

rigorously by comparison with the results known from the algebraic Bethe Ansatz.22' 

The analogous construction for the relativistic sinh-Gordon model, though not so 

rigorous, can also be performed23' and leads to quite reasonable results concerning the 

spectrum of the model. It would be interesting to generalize the results of Ref. 23) to 

the relativistic Toda field theories. 

§ 6. Classical XYZ magnet 

The XYZ magnet provides an example of quite nontrivial normalization of the 

Baker-Akhiezer function .Q(u) necessary to produce SoV. The construction present

ed below is taken from Ref. 17). The model is described in terms of the 2 X 2 matrix 

L(u) satisfying the relation (2·32) with the r-matrix 

3 1 2 

r(u)= :l: Wa(u)6a6a, 
a=1 

(6·1) 

where 6a are standard Pauli matrices 

(0 1) (0 -i) (1 61 = 1 0 ' 62 = i 0 ' (Jg = 0 (6·2) 

and wa(u) are certain elliptic functions whose exact expression is not important for 

the moment. It suffices to remark that r(u) is a meromorphic function on C having 

simple poles on the periodic lattice T={uE Clu=m+ rn; m, nEZ; lmr>O} and 

possessing the periodicity properties 

1 1 2 2 

r(u + 1)= Oir(u)Oi = a1r(u)a1, 

1 1 2 2 

r(u + r)= osr(u)os= osr(u)os. (6·3) 

The L operator L(u), in turn, is a holomorphic function characterized by the 

quasiperiodicity properties 

L(u+ 1)=( -1)va1L(u)a1, (6·4) 

where D is a positive integer. The conditions (6·4) determine L(u) up to 4D free 

parameters46' which can be considered as the dynamical variables with the Poisson 

structure defined by (3·11). Since, however, the determinant det L(u) generating the 

center of the Poisson algebra contains 2D parameters (Casimir functions), their values 
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54 E. K. Sklyanin 

can be fixed which leaves 2D-dimensional phase space, the constant D being thus the 

number of degrees of freedom. 

In contrast with the XXX magnet, the normalization a(u)=const of .Q(u) does 

not produce So V for the XYZ magnet for any a. The reason is that the correspond

ing function B(u) has no definite quasiperiodicity for the period lattice rand can be 

characterized only by the periodicity properties in 2F 

B(u+2)=B(u), B(u+2r)=e-i1rD(2u+sr>B(u) 

from which it follows that B(u) has 4D zeroes in the fundamental region C/2F 

whereas one needs only D separated coordinates xj. 

The correct normalization17> is given by the holomorphic functions a(u) having 

the periodicity properties 

(6·5) 

where y is a parameter. The explicit expressions for an(u) can be given in terms of 

theta-functions for the lattice of periods r.17) The function B(u) corresponding to 

the normalization vector (6·5) is given by the formula (2·26) and has good periodicity 

properties on the lattice r 
B(u+ 1)=( -1)D+1B(u), B(u+ r)=( -1)D+le-in(D+1Hu+r>e-i""B(u). (6·6) 

Consequently, B(u) is a theta-function of order D+ 1 and has D+ 1 zeroes in the 

fundamental region C/F. It remains to require one superficial zero of B(u) to be a 

constant (c-number) 

B(~)=O, (6·7) 

which can be considered as the equation determining the parameter y as a function on 

the phase space. The remaining D zeroes of B(u) are candidates for the separated 

coordinates xj. A direct, though cumbersome, calculation of the Poisson brackets17> 

validates successfully the conjecture. 

An open question is the quantization of the above construction. The difficulty is 

the ordering problem in the expression (2·26) since the quantities an(u) contain 

dynamical variables through their dependence on y. 

The example of XYZ model raises the question if the correct normalization 

producing So V could be found for other integrable models where the simplest choice 

a(u)=const is known to fail. 29> 

§ 7. 3-particle Calogero-Moser model 

In this section we present new results for the classical and quantum 3-particle 

elliptic Calogero-Moser model. The model is interesting as an example of So V in 

case of a dynamical r-matrix. 

In the classical case the model has 3 degrees of freedom and is described in terms 

of the canonical variables (7rn, Qn) 
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Separation of Variables 

m,n=l,2,3. 

The commuting hamiltonians are47> 

Hz= 7f!7rz + 'lr1'lr3 + 7rz7r3- g2(ff(qlz) +ff(ql3) +ff(qzg)) , 

H3= 7rl7rz7rg- g2(7rlff(qzg) + 7rzff(ql3) + 7rgff(qlz)) , 

55 

(7·1) 

(7·2) 

where qmn = qm- qn, ff is Weierstrass elliptic function, and g is the coupling constant. 

The corresponding L operator is 

where 

O"(u+qmn) 
O"(u)O"(qmn) ' 

- igQlz( u) - igQ13( U )) 

7rz - igQzg(U) , 

- igQgz( U) 'lr3 

and o-(u) is Weierstrass sigma function. 

(7·3) 

(7·4) 

The hamiltonians (7 · 2) can be obtained from the spectral invariants of the L 

operator 

det(z- L(u))=z3-z2 fi(u)+ztz(u)- ts(u), 

fi(u)=H1, 

tz(u)=Hz+3g2ff(u), 

ts(u)=Hg+ g2 ff(u)Hl- ig3!f'(u). 

(7·5) 

(7·6) 

The L operator (7·3) satisfies the identity (2·29) with rather complicated r

matrix depending on q.31> In the absence of general theory of dynamical r-matrices 

the only available strategy is to try one-by-one possible ansatze for the normalization 

a(u) of the Baker-Akhiezer function .Q(u). Fortunately, the very first attempt 

succeeds: the simplest normalization (3 ·1) which was applied to the GL(N)-magnet 

does also produce SoV for the Calogero-Moser model. 

For our purposes it is convenient to write down the set of equations for the pair 

(x, z) as (3·9) where the functions A1,z(u) are given by the formulas (3·8) and, in our 

case, are 

A1(u)=;r1 + ig[ S'(u)- S'(u -qzg) + s(qlz)- s(ql3)], 

Az(u)= 7rz+ ig[ S'(u)- S'(u- q13)- S'(qlz)- S'(qzg)], 

where s(u) is Weierstrass zeta function. 

(7·7) 

Since the r-matrix for the CM model is different from (2·37) we cannot rely on 

the results obtained for the GL(N) magnet and have to calculate the Poisson brackets 

between z and x directly. It turns out that Eqs. (3·9) have only two solutions: (z1, x1) 

and (zz, xz). For the third pair of variables one has to take (P, Q) 
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56 E. K. Sklyanin 

P=Jrt+7r2+7rs, Q=qs. (7·8) 

The calculation shows that the variables (P, Z1, z2; Q, x1, x2) are canonical and 

satisfy the relations 

P-Ht=O, 

z/- z/H1 + Zj(H2+3g2'f(xj))-(Hs+g2'f(xj)Ht- ig3'f'(xJ)=O, 

which fit the form (2·3) and provide thus a SoV. 

(7·9) 

In the quantum case the momenta Jrj are realized as the differentiations Jrj=- ioq1• 

The hamiltonians (7 · 2), respectively, are replaced by the differential operators 

Ht=-i(oq.+oq.+oq.), 

H2=- o~.q.- o~.q.- o~.q.- u(u-1)['f(qt2)+'f(qts)+'f(q2s)] , 

Hs= iog.qzqa + ig(g-1)['f(q2s)oq. +'f(qts)oq. +'f(qt2)oq.], 

which do commute,47l as their classical counterparts. 

(7·10) 

Since it is still unknown how to quantize the relation (2·29) in case of the 

dynamical r-matrices, we again have to rely on good luck trying to find a quantum 

So V. An additional obstacle is provided by the fact that in our case, even classically, 

{B(u), B(v)}=I=O. Therefore, there is little hope to construct quantum Xj as zeroes of 

a commuting family of operators B(u) like in case of the GL(N) magnet. Instead, we 

shall rather look for the kernel K(xt, X2, Qlqt, Q2, qs) of the integral operator (classical

ly, canonical transformation) intertwining the xQ and q representations. 

The first of the classical separated equations (7 · 9) is easy to quantize. It expres

ses the conservation of the total momentum and allows to eliminate one pair of 

variables from K: 

{
P=-i(oq.+oq.+oq.)=-ioQ, ==? {<oq.+oq.+oq.+oQ)K=O, 

Q=qs, (Q-qs)K=O, 

(Q-qs)K=O ==? K=8(Q-qs)K(xt, x2IQ1, Q2, qs), 

(oq.+oq.+oq,+oQ)K=O ==? (oq.+oq.+oq,)K=O, 

==? K=K(xt, x2IQ1s, Q2s). 

To determine the kernel K, let us try to quantize Eqs. (7 · 7). Making the substitu

tions 

g --------+ g-1 

(the last one is a quantum correction found experimentally) one obtains from (7·7) the 

system of 4 first order differential equations for K 

(ox. +oq.,)K +(u-1)[S'(xt)- S'(xt-q2s)- S'(qts)+ S'(qts-q2s)]K=O, 

(ox.+oq •• )K +(u-1)[S'(x2)- S'(x2-q2s)- S'(qts)+ s(qts-q2s)]K=O, 

(ox.+ oq •• )K +(u-1)[S'(xt)- S'(xt-Qts)- s(q2s)- s(qts-q2s)]K=O, 
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Separation of Variables 57 

(7·11) 

which are easily solved producing the result which most conveniently can be written 

using the variables x±=x1±x2 and ~±=q1a±q2a: 

(7·12) 

The above argument, of course, has only heuristic value and provides no guar

antee that the kernel K thus constructed would produce SoV. What is necessary to 

verify is that the integral operator with the kernel K transforms an eigenfunction 

lJI(ql, q2, qa) of the hamiltonians Hn (7 · 2) satisfying (2 ·13) into the function W(x1, X2, Q) 

satisfying separated equations of the type (2 ·14). 

The observation which is crucial for establishing So V is that the kernel K 

satisfies the differential equations 

[ -iaQ- H1*]K=O, (7·13a) 

[ial~+ H1*ai~- i(H2*+3g(g-l)~(xj))ax, 

(7·13b) 

where Hi: is the Lagrange adjoint of Hn 

jrp(q)(H,P)(q)dq= j(H*rp)(q)¢(q)dq. 

Equations (7 ·13) can be interpreted as the quantum analog of Eqs. (7 · 9) (note the 

quantum corrections in g!). Consider now the integral transform 

lfr(x1, X2, Q)= jjjdq1dq2dqaK(x1, X2, Qlql, q2, qa) lJ!(ql, q2, qa). 

Acting on ffr with the differential operators 

Q=-iaQ-hl, 

fJJ j= ial~+ h1ai~- i(h2+3g(g-1)~(xj))axj 

(7·14) 

(7·15a) 

(7·15b) 

and supposing that lJ!(q) is an eigenfunction of Hn, perform the integration by parts 

using the relations (7 ·13). The resulting bulk part of the integral is zero. It remains 

only to find such the limits of integration which would not contribute to the result. 

Omitting the details of the guesswork we report only the final result. 

The function ffr(x+, X-, Q) obtained from an eigenfunction lJ!(~+. ~-. qa) of Hn via 

the integral transform 

(7·16) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.1

1
8
.3

5
/1

8
3
7
1
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



58 E. K. Sklyanin 

satisfies the differential equations 

Q W=O, 9Jjifr=O 

which imply the So V 

ifr(xi, Xz, Q)=eih'0<P(xi)</l(xz), 

where <P(x) satisfies a third-order analog of the Lame differential equation 

i<P"' + hi<P"- i(hz+3g(g-1)~(x))<P' 

-(h3+g(g-1W(x)hi- ig(g-1)(u-2W'(x))<P=O. (7 ·17) 

The question of the correct boundary conditions for the separated equation (7 ·17) 

is presently under study. 

For the degenerate case of trigonometric potential which corresponds to replac· 

ing ~(q) by 1/sin2q in (7·2) and a(u) by sinu in (7·4) the spectrum and eigenfunctions 

of Hn have been well known quite a while ago.47> The eigenfunctions are labelled by 

triplets y=(vi, !lz, !13) of integers !lj such that !liS !lzS !13. The corresponding 

eigenvalues of Hn are given by 

{
hi =2(f.l.I + f.l.z+ f.1.3), 

hz=4(f.l.If.1.2+ f.l.If.1.3+ f.1.2f.1.3), 

h3=8f.1.If.1.2f.1.3' 

{
f.J.I=!II-g, 

f.J.z= !lz, 

f.1.3=v3+g. (7·18) 

The eigenfunctions 1[1" ~ have the structure 1[1" ~(q)= 1lfooo(q)(])~(q) where 7lfooo(q) 

=sin9Qiz sin9QI3 sin9Qz3 is the vacuum eigenfunction corresponding to y=(O, 0, 0) and 

tP~(q) are symmetric Laurent polynomials in variables tj=euq, known as jack 

polynomials. 48> 

The So V is produced by the same integral kernel K up to replacing a with sin in 

(7 ·12). The separated eigenfunctions </J(y) satisfy the differential equation 

i-1·"' + h ,,,,- i(h +3 g(f!-1) )-'·' 
~ I~ 2 Sln2X ~ 

-(h3+ g(f!-; 1) hi +2ig(g-1)(g-2) c~x )<P=O 
sm x sm x 

(7 ·19) 

and can be factorized <P~(x)=<Pooo(x)cp~(x) into the product of the vacuum factor 

<Pooo(x)=sin29x and a Laurent polynomial cp~ in variable t=e2;x. Despite the huge 

body of facts known about the Jack polynomials, the last factorization property seems 

to be a new result. 

A more detailed exposition of the above results will be published elsewhere. 

§ 8. Discussion 

The above examples show the diversity of models allowing So V and give a 

support to the opinion that the domain of SoV method might be very large, even 

including all the models subject to the classical Inverse Scattering Method and their 
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Separation of Variables 59 

quantum counterparts. 

Let us enlist, in conclusion, some problems whose solution could strengthen the 

positions of So V. The most obvious object of study is provided by the class of 

integrable models described by numeric unitary R-matrices, and in the first turn, 

s/(N)-invariant magnets. The s/(2) case being well enough studied, the sl(N) case 

seems to present only calculational difficulties. The case of trigonometric R

matrices should not differ considerably from the rational (sl(N)-invariant) case. For 

instance, it would be interesting to generalize the results of§ 5 to the relativistic Toda 

field theories. In the case of elliptic R-matrices discussed in § 6 the problem of 

nontrivial normalization of the Baker-Akhiezer function arises which leads to the 

complications with the quantization. However, the success with the classical XYZ 

magnet allows to hope that the quantization problem would be solved. A similar, but 

more difficult problem of choosing the correct normalization of B-A function arises in 

case of R-matrices corresponding to the simple Lie algebras other than SL(N). The 

problem is not yet solved even in the classical case. The most difficult problems arise 

in case of dynamical r-matrices where neither general theory exists, no quantization 

rules are known. 

The problem which may be more important than studying all the particular 

examples is to understand the algebraic structures underlying the So V and to explain 

why the "magic recipe" of taking the poles of B-A function does work. The recent 

paper42> might be the first step in that direction. 
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