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Separation principles in the hierarchies of classical and
effective descriptive set theory

by
J. W. Addison () (Warszawa)

The so-called first and second separation principles have long played
a principal role in the theories of the Borel and Projective hierarchies
of classical deseriptive set theory. More recently they have been con-
sidered in the hyperarithmetical and analytical hierarchies () studied in
recursive function theory. Here the discovery (ef. [7] and [6]) of their
fundamental relationship with questions of the essential undecidability
of formal systems is an indication of a possibly still more important
role for them in the future.

The status of the principles in the Borel hierarchy and at the first
two levels of the projective hierarchy was known already by 1935. But
despite intensive efforts by Luzin and his school the statns of the prin-
ciples at the third and higher levels of the projective hierarchy has re-
mained largely unknown (3). '

Various results concerning the status of the first separation principle
in the hyperarithmetical hierarchy can be found, for example, in Klee-
ne’s [7], in Mostowski’s [15], and in our [1] (cf. also [2]). In [3] we an-
nounced its status at the first level of the analytical hierarchy., The status
of either principle at the second and higher levels of this hierarchy has
remained unknown. '

We present here a treatment of the second separation principle in
the arithmetical (i. e. finite hyperarithmetical) hierarchy, together with
the solution of both separation problems for both the first and second

(*) United States National Science Foundation Postdoctoral Fellow, I wish to
thank Prof. Andrzej Mostowski for advice and encouragement in the preparation of
this paper.

(*) Cf. [11] for a good introduction to these hierarchies.

(*) Cf. [17], p. 24. P. 8. Novikov stated in 1951 (cf. [16]) that it is consistent
with the axioms of set theory to assume that for some natural number % the separa-
tion principles at the kth and higher levels of the projective hierarchy behave the way
they do at the second level, However, at present writing his promised proof of this
asgertion has not yet appeared.
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levels of the analytical hierarchy. We present further, under t}_:‘le assump-
tion of the axiom of constructibility (which was shown. by Godel [5] to
be consistent with the axioms of set theory), the solutions of thei sePa_
ration problems for the third and higher levels of both the projective
ical hierarchies.

e zléa‘gg?ame time, relying heavily on the work of Luzin, Sierpinski,
Novikov and Kuratowski (), we have summa.rized_ he?e the.proof§ of
the known separation results for the finite Borel, pro;eetlvei, arlthmemcayl,
and analytical (3) hierarchies. The proofs are presentfad‘wmh th end in
mind of (1) emphasizing the simple fundamental unifying p.rmelple un-
derlying all the proofs, and (2) illustrating the very essential analogies
between the Borel and hyperarithmetical hierarchlgs and between 1'3he
projective and analytical hierarchies. This forrmx_lamon of the analogies,
and its preferability to others discussed in the literature, was presented
in [1], 2], and [3]. o

Actually our treatment handles the separa.thn pmnmples for a whole
spectrum of hierarchies of which the elassical (i. e. the Bor‘el a,nd' pro-
jective) and effective (i. e. the hyperarithmetical and anal;lrtlcal) hierar-
chies are the particnlar examples comprising the opposite extremes.
And as a byproduct of this treatment we obtain newistrong forms. of
the negations of the separation principles for the effectl.ve aJn.d claggical
hierarchies by wusing the classical hierarchies in the discussion of the
effective ones and vice versa.

1. The spaces ™. We denote by N the set. of natural nu.mbers
0,1,2,.. and by NV the set of functions from ¥ into . The .dlscrete
topology is assigned to N and then N, considered as the Cartesian pro-
duct of w copies of N, is assigned the induced product topology. We use
lower case Roman letters other than “s” as variables over N, lower case
Greek letters other than “»” as variables over N7, and ‘“»" as a vamiab.le
over Q (the set of countable ordinal numbers). Our considerations Wlll
be carried out in spaces 90" which are the Cartesian products of n copies
of ¥ and f copies of N", where n-+f > 0 (%). As a variable over such

(*) For specific historical references the reader is referred to g13] m.ld [17].

(5) 'We restrict ourselves here to the finite hierarchies to awvoid mvol\.nng ox‘ert?Ives
in definitions and techmical problems not connected with the separation principles
themselves. However the results do carry over to the extended hierarchies‘. For 'the
Borel hierarchy this is well-known and for one formulation of the hy-peranthmemcal
hierarchy these results are illustrated in [1]. Furthermore one can de‘aﬁne “hyperpro-
jective” (cf. [13], p. 360, Footnote 1) and “hyperanalytical” hierarchies to which the
separation results extend. .

(®) To avoid a cumbersome notation we write, for example, 97** for both
NxN¥xN and NxN xNY, leaving it always to the reader to decide from the con-
text the order of the factors in our produet spaces.
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a space 9™ we use “a™’. The superscripts will sometimes be omitted
when they are arbitrary or it is clear from the context what they
should be.

The spaces (™ have been traditionally used in classical descriptive
set theory, where they are usually visualized as Cartesian products of f
eopies of the set of irrational numbers with the Baire topology assigned,
because the results take on a particularly simple form there. Several
discussions (cf. e. g. [14], p. 23 and P. 344) of this simplicity have been
given — we mention here only that in these spaces dimension is unimpor-
tant because the spaces of all dimensions are homeomorphie.

The hierarchies of recursive function theory were first considered
on the spaces N™° but were later generalized (*) to include all 9™,
Here in considering N¥ the functions were envisaged as logical entities
with no particular geometric interpretation in mind; this was natural
because in recursive funetion theory one dealt in a logical rather than
in a geometric context. It is thus very interesting that although the
classical and effective hierarchies were approached from two rather
different points of view, they were considered on what is abstractly the
same space.

We would note that although copies of N are included in our spaces
principally because there is a rich theory here (even when f = 0) in the
case of the effective hierarchies, there is also a notational convenience
in including them in the study of the classical hierarchies. Thus, for
example, the F,-subsets of N can be defined as the sets of the form

‘&(Em) (¥)P(p,2,y), where P is an open and closed predicate on
.NN XN X N. Because of the discreteness of the topology on N the con-

sideration of P on N¥x ¥ x XN, rather than simply on ¥”, adds noth-
ing significant topologically, but simply becomes a convenient way of
discussing countability.

As a second illustration of this notational convenience twe consider
the analytic sets. For any « we denote by @ the course-of-values function
corresponding to a, i. e,

a(w)= [ [ 5,

i<z

where p; is the (¢4 1)-st prime number. Then the analytic subsets of b ad
can be defined as the sets of the form ¢(Ha)(2)P(p,a(x)), where P is

() This generalization, implicitly known since Kleene's fundamental definition
of recursive functional in 1950 (cf. [8]), is first given explicitly in [9] in Theorem V*
(Part II), as a part of Theorem X (p. 292), when read in light of the parenthetical
sentence about uniformity just preceding Theorem X. (Cf. also Theorem XI* for fur.
ther hierarchy properties.)

9%
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an open and closed predicate on N¥ x N. For this form simply prescribes
that the set is obtained by applying the operation (A) to open and
closed sets. ‘

2. The analogies. Now as was intimated in the preceding section
the finite Borel (the projective) hierarchy is obtained by applying quan-
tifiers over N (over N”) to open and closed predicates on 9, the arithmet-
ical (the analytical) hierarchy by applying qua,ptiﬁers over N (over NV)
to recursive predicates on 97. Thus without any further analysis we
would already expect some analogy between the finite Borel and arithmet-
jeal hierarchies and between the projective and analytical hierarchies.
But the analogy is even closer because of the following easily proved
relationship between the open and closed predicates on 9 and the re-
cursive predicates on 9L:

PRINCIPLE. A predicate P on Y is open and closed if and only if there
exists an o such that P is mcursive\'in a.

Generalizing from this principle, we consider for every subset ¢
of &% the class of predicates recursive in some function in ¢. Each such ¢
yields a class of predicates which, when gquantified over N (over N,
yields hierarchies similar to the finite Borel and arithmetical (to the
projective and analytical) hierarchies. (Different ¢ may, of course, lead
to the same hierarchy, however.) We call such a hierarchy the hierarchy
arithmetical in functions of C (analytical in funetions of C) or, more
briefty, the C-arithmetical (C-analytical) hierarchy. The finite Borel,
projective, arithmetical, and analytical hierarchies are thus, respectively,
the N7 -arithmetical, N7 -analytical, @-arithmetical, and @ -analytical
hierarchies.

In what follows it will be useful to have the concept of a linked
subset of NV. A subset € of NV is linked Jif and only if

(1) (@)@ 0 € 0~ (Br) [v € C & g, 0 are recursive in z]].

For example, @, NV, and all singletons are linked.

It seems particularly desirable at this time to introduce simple,
uniform, and easy-to-remember notations for the classes of the various
hierarchies. Mostowski has used Py, 01, P,, ... for the hyperarithmetical
hierarchy; no notation seems to have been introduced for the analytiecal
hierarchy; for the Borel hierarchy, in addition to the inner-quantifier
notation Fy, Gy, Fy, ... (cf. [13], p. 251-252), a variety of outer-quantifier
notations seem to have been used, including Lebesgue’s O of class 0,
F of class @, O of class 1, ... and Hausdorff’s P2, @1, P2, ...; and for the
projective hierarchy both 4., 04, 4,,.. and P, ¢y, Py, ... (cf. [17])
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seem 1o be in use. Mostowski has decided to abandon his Py, Ql, Py, ...,
however, because the Py conflicts with the Py, of the projective hierarchy.

After lengthy discussions here in Warszawa it has been decided to
propose  ZFO IR (i 14 for the hierarchies built on the class of
predicates recursive in functions in ¢ by quantification over ¥ (over N7).
The superscripts 0" and ‘{@]” are to be omitted, except for emphasis, as
an abbreviation and th‘[NN]’ II;‘;[NN] are abbreviated as ¥, Hf. The «z»
classes are of course those with an outer X or existential quantifier and
the “II” classes those with an outer I7 or universal quantifier. Thus the
Borel, projective, hyperarithmetical, and analytical hierarchies are re-
spectively denoted by ¥,, I, %,, ..., by ¥}, I}, 5%, ..., by %, IT,, Ty ey
and by X3, I3, 33, ...

Among the advantages of this notation over other possible choices
we cite: (I} by its uniformity it points up both the classical vs. effective
and the number-quantifier vs. function-quantifier analogies; (II) it is
easy-to-remember, suggesting divectly the definitions through a quantifier
notation with deep roots in the history of modern logie; (ITI) it is easily
extended to hierarchies defined by quantification of variables of higher
type now under investigation by Kleene (cf. [10], p. 312 and [11], p. 212)
and others; (IV) it is an outer-quantifier, rather than an inner-quantifier,
notation, and our knowledge of the hierarchies (including preliminary
knowledge of hierarchies based on gquantification of higher types) indicates
that this will be more useful —cf. e. g. the separation principles; (V) it
is easily and uniformly pronounced (as opposed, for example, to nota-
tion based on H, V or v, A); (VI) it does not permanently “tie up’’ Roman
letters, a large stock of which are convenient for temporary notations;
and (VII) it is not subject to confusion with any of the earlier notations
which seem to have beéen used for any of the hierarchies.

3. The separation prineciples. Our approach to the first and
second separation principles will be, like that of Kuratowski [12], through
the reduction principle. To say that these prineiples are true of a class O
of subsets of an arbitrary space we write, respectively, “Sepy(Q)”,
“Sepm(Q)”, and “Red(Q)”. The predicates 8epy, Sepn, and Red are
defined as follows:

(2)  BepdQ) =(X)(X)[X, T Q& XnY = B~ (BX)[X,, X, Q
&X,DX&EX, A Y =0]|;

(3)  Sepu(Q) = (XNX)[X, ¥ « Q—(BX,)(BY,)[X,, T, ¢ 0
&X,DX-Y& Y, 2 Y-X& X, A Y, =0]|;
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(4)  Red(Q) =(X)(X)[X, Y e Q—~(BX,)(EY,)[X,, Y, Q& X,C X
&Y, CY&XuY,=XuY&X Y, =0].

It is easily shown that:
(5) Red(Q)— Sepi(cQ) & Sepn(eQ),

where e() denotes the clags of complements of sets in Q. To separate
the required sets one has only to reduce their complements. The reader
should observe in checking the proof that Red(Q) implies a very strong
form of Sepn(c@). And indeed nothing more can be said in general about
Red (D), Sepr{cQ), and Sepn(cQ), for one ean show that:

(6) (EQ,){Sepx(c0y) & Sepr(cQ)],
(7) (BQ,)[Sepr{cQs) & Sepn(eQs)],
8) (BQs)[Sepr(cQs) & Sepr(eQs) & Red(Qy)] -

It suffices to take for ¢, the class of Z; subsets of N containing 0, for
e, the class of closed subsets of the real line, and for ¢@Q; the class of
closed subsets of the real line containing 0 (examples of Sierpinski, Ku-
ratowski).

In view of (5) we can concentrate our attention on the reduction
prineiple.

4. The fundamental reduction technique. Let X and Y be
two sets from class Q. To “reduce’ these to disjoint sets X, and Y, of
class () with the same union it is of course clear that the points of X—Y
must go into X, and those of ¥—X into ¥,. All that is needed is a cri-
terion by which to decide for each point of X ~Y whether it should go
into X, or into ¥;—and the critérion must be sufficiently “orderly”
that X; and Y,, like X and ¥, are in (.

In case the sets of Q are obtained by unions over an index set I’
of “simpler” sets one criterion promptly suggests itself. It is to well-
order I' and to put a point of X AY into X, if and only if the index of
the first set of the union forming X in which it appears is less than the
index of the first set of the union forming ¥ in which it appears. The
success of this criterion rests of course only on whether it is orderly
enough to place X, and ¥, in Q.

It turns out that this criterion can indeed be used to establish the
reduction principle, assuming in some cases the axiom of constructibility,
on one side of each of the levels of the (-arithmetical and C-analytical
hierarchies for any linked (. The constructions in all of our proofs that
the reduction yprinciple holds for a class thus rest on a uniform under-
lying principle.
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At all levels of the C-arithmetical hierarchies one can use as the
unions those induced by the outer existential quantifier, so that '= N
and we have Red(Z}") for any k (k>>1) and any linked C. For the
C-analytical hierarchies it immediately suggests itself to use as the
unions those induced by the outer existential quantifier so that we would
have I"= N". But unlike the situation for N for which there is a simple
(viz. Z;nII) well-ordering, there is no simple well-ordering of N%. In
fact it is known from elassical results of deseriptive set theory that there
can be no ¥} or M} (and a fortiori no X% or I7%) well-ordering of ¥%, for

"otherwise there would be XI or H} non-measurable sets.

On the other hand, following ideas of Gédel (cf. [5], Note 1, p. 67),
we have recently shown (cf. [4]) that, under the assnumption of the axiom
of construetibility, there is a X3~ I3 well-ordering of ¥ (which. we will
denote by “<). This well-ordering turns out to be sufficiently nice to
enable one to use as the unions those induced by the outer existential
quantifier (so that I'= ¥%) to prove Red (=¥ for any k (k> 2) and
any linked C, under the assumption of the axiom of constructibility.

This leaves unsettled only the first level of the (-analytical hier-
archies, and here an independent approach is needed. Such an approach,
which still falls under the general scheme outlined above, is provided
by an ingenious device (discovered by Luzin and Sierpinski in 1918 for
the case of the N -analytical hierarchy, and rediscovered independently
35 years later by Kleene, in what was seemingly an entirely different
field, for the @-analytical hierarchy) which expresses in a simple way
the I7;'”' sets as unions with I' = Q and enables one to prove Red(I11%)
for any linked C.

This same device can be extended, as Novikov first observed (for
the case of the ¥~ - analytical hierarchy), to the second level of the (-ana-
Iytical hierarchies. This enables one to conclude Red(Z}?) for any linked C
without using the axiom of constructibility. Whether similarly ingenious
devices will someday enable man to prove Red(Z3”) in case k > 3 and
C is linked without using the axiom of constructibility or whether these
principles will turn out to be independent of the accepted axioms of set
theory remains a rather fascinating open question.

5. The detailed proofs. We proceed now to a detailed conside-
ration of the proofs, which we consider in four cases. In each case we
let X and Y be the two sets to be reduced, and construct reduced sets
X, and ¥,. Since we have outlined above how the constructions are to
proceed our major tagk remaining is to show that X, and ¥, are in the
same class as X and Y. ¥; is always defined by interchanging “R®”
and “8°” and replacing “<" by <’ — hence the proof that it is of
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the proper class is in each case 5o similar to that for X, that we omit ig
Throughout this section we assume € is an arbitrary linked subset of N™.
OasE I. X, Y e Z¥9 (k> 1). To illustrate we fix % = 2. Then for

some g, ¢ in ¢ and R% §° recursive in g, o, respectively,

X = &(Bx)(y)Ra, @, 9), Y =0(Ea2)(y)8%a,,9).
So L

X, =8(Ez)[(y)Ra, 2, ) & (Ewl)mﬁx(?])’sp(a; 2y, Y)]

= @ (Ex) [(y)RQ(CH z,y) & (Ey) (ml)x1<z§o(ﬂ, L1y (?/)a:l)] -

Now bringing quantifiers to the front and contracting like quantifiers (8)
we have the desired prefix. And since Ayx(y): (which maps (y, ) into
the greatest z such that y/ps e N) and Av» @, <2 are in Z{~IIY, the
resulting matrix will be recursive in g, ¢, and hence by (1), in some z
in €. So X, XM

* The device of interchanging quantifiers of opposite kind used in
the above proof breaks down in case k= 1. But there it may be replaced
by a simple application of E of p. 228 of [9] and of Post’s theorem
{cf. p. 293 of [9]). This latber argument works equally well for all % (k > 1),
but we have presented the first argument here to set the stage for the
analogous device to he used in Case IV.

CasE IT. X, Y « I7{. Then for some g, ¢ in ¢ and R°, §° recursive

in g, g, respectively,

X =d(a)(B2)B*(0,a(z)), ¥ =d(a)(Bx)8(a,a().

Now by the device of Luzin and Sierpinski and Kleene mentioned above
R®% 8° are easily chosen so that

X=&(Ev)[§17_°(a,s)]=v, Y = a(®)|$8%a, )| =,
where ““s¥ is a variable over the set of sequence numbers (numbers of
the form @(z) for some « and ) and |F|, for a set ' of sequence numbers,
is the order type of ¥ under the ordering < (which orders the sequence
numbers according to the backwards lexicographical ordering using the
alphabet ...,2,1, 0 of the sequences they represent). So

Ly = a(B)[[$B%a, 8)| = » & (Br)hc[85°(a, )] = ]
= [by the rules of the predicate calculus with equality],

a[(Bv)|3Ra, 8)| = » & (Br)[|85%(a, 8)| = », & [88°(a, 8)| < |$B%a, 5)|]]
= i[(a) (Hz) B*(a,a(2)) & (By)[y is a — -isomorphism

of 48°(a, s) into a proper segment of §B%a, 5)]] -
() CL e. g. (1)-(6) of [10], p. 315.

R Im.
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" Now the scope of (By) is easily shown to be arithmetical in @, 0, 50 bring-

ing quantifiers to the front, absorbing quantifiers over N into those
over NV (]), and contracting like quantifiers (®), we have the desired
prefix. The resulting matrix will be recursive in ¢, o, and hence by (1),
in some 7 in C. 8o X, eI7HC),
CaSE ITI. X, ¥ ¢ 23, Then for some ¢, o in C and R?, §8° recursive

in g, o, respectively,

X = a(Eﬂ)(E”)MRg(ay 8, 8)[ =V,

Y= &(Eﬂ)(Ev)Mg“(a, B, 8)] =v.

The possibility of representation in this form follows from the discussion
in Case II, of course. Now like quantifiers over any ranges commute so

I

X = a(Bv)(Bp)|$B%a, B, 8)| =,
Y=a(B)(Bp)|eS(a, B, 8) = ».
Hence
X, = &(E”)[(Eﬂ)léﬂe(a: 8, .S‘)] =v& m)n<u(Eﬂ)]§§0(a, B, 3” = 9]
= [by the rules of the predicate calculus with equality] ,
(BB [(Bw)|8R(a, B, 8)| = » & (B) (Bw)[[88°(a, By, 8)] =,
& [ésﬁ(a’ Bus 8)] < ]éEg(ay 8, 8)[]] .
Now the argument conclnding Case IT is repeated exactly to give
X, e Z¥A
Case IV. X, Y ¢ 29 (k > 3). To illustrate we fix % — 3. Then for
some ¢, ¢ in € and E°, §° recursive in ¢, o, respectively,
X = &(Ey)(ﬁ)(Ea)(m)B"(a, vy Bya,x),
Y = a(By)(B)(Ba)(2)8(a, v, B, a, ).

X = a(Ey) [(B)(Fa) (z)R¥a, y, B, a, o)

&(Eyl)yl<r(ﬂ) (Ea) (m)Sa(a7 Y1y ﬁy a, 2)]

= a(By)[(B)(Ea)(m)R(a, v, B, a, x)
& () (y1)y, < H0) (a) (Bw) §(a, 1, 2B (D), @, 2)] .
Now writing » <y as (Ex) (%) (EY) T (7, ¥s %1, %2y y) for some re-
cursive 7' (possible since by [4] < is in X}~ IT}), bringing quantifiers
to the front, absorbing quantifiers over N into thoge over N7 (3), and
contracting like quantifiers (), we have the desired prefix. The resulting
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matrix will be recursive in p, o, and hence by (1) in some 7 in (. So
X, e ) )

Note that the device of interchanging quantifiers of opposite kind
used in Case IV, which is a generalization of the device employed in
Case I, succeeds because “the Godel well-ordering < is an Ql-well-ordgring
(and would have failed if, for example, < had been an £2,-well-ordering).

Just as the device for interchanging quantifiers of opposite kind
used in Case I fails to handle the case of k¥ = 1, so here the generali-
zation of this deviee fails to handle the case of k= 2. And just as in
Case I a more complicated argument can be used to handle the case of
k=1, so here 3 more complicated argument can be used to push through
the case of k=2 for X,, ¥, defined in exact analogy with those in Case IV.
(Of course we have seen in Case ILI that the case of k= 2 can be handled
using different X,, ¥, even without the use of the axiom of constructi-
bility; yet it is still of considerable interest to see that the same kind of
X,, ¥, which work for % >3 also works for k= 2). We will present
this argument, together with other applications of the same argument,
elsewhere (%).

6. The negations of the separation principles. A subset
anIEF U (ant,ano) of Q™YY g called wniversal for a class (O of
subsets of 9™ if and only if

X e Q= (B )X = a1U (a7, a"7")].

A pair (Gwa7r T (amd,avr’), @I a7 Y (@, o)) of subsets of Gr™+™*Y
is called doubly universal for a class Q of subsets of 9™ if and only if

X, ¥ eQ = (Ba™)[X = anIT (an, av') & T = g1V (anl, avt')].

The variable ¢/’ is referred to as the parameter of universality (or of
double universality). In our considerations it will be sufficient always
to assume that #' = 0, f'=1 or that »' =1, /' = 0. It is important to
note that the definitions imply that Q must have the cardinality of
the range of the parameter of universality (or of double universality).

It is easy to see that if there is a pair (U, V) of sets from O doubly
universal for (, whereas there is no set in () ~ ¢() universal for G n~eQ,
then Red(Q)—Sepy(Q). For it U,V were reduced to Us,V, (according

(*) There does not appear to be any difficulty in generalizing the results of this
section from the case of two sets to the case of a countable infinity of sets, if the in-
dices (defined in a natural manner) of the infinity of sets are enumerable by a function
recursive in some function in ¢, or alternatively, if the infinity of sets is represented
by one predicate with a parameter ranging over N which is of the class in question
as a predicate of all its variables, including the parameter.
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to Red(Q), and these were separated by U, (according to Sepy(()),
U, would be a Q ~cQ set universal for G ~eQ.
It is also easily seen that for an arbitrary class Q of sets

(9) Red(Q)—[Sepr(Q) = Sepn(Q)].

We now consider the (-arithmetical and C-analytical hierarchies
in the light of these remarks, breaking our discussion up into two cases
according to the type of our space ™.

Case L f>0. It is well known that for any ¢,k (t = 0,1; 2> 1)
there is a E}c set universal for E,‘, and a Il,ﬁ set universal for II,',. Using
simple pairing functions one can then use these to obtain pairs of X%
sets doubly universal for ¥}, and pairs of M} sets doubly universal for 1.
On the other hand for no ¢,k (t=0,1; k> 1) is there a 3t~ I, set
universal for XL~ I, as the standard diagonal argument shows. Thus
the argument outlined above applies, and we can conclude form the
results of section 4 that Sepy(Q), and by (9) and (5) also Sepp(Q) and
m(GQ), for Q = S:, Hi’ E}c-l-l (k = 1)-

But actually we can strengthen our argument a little and conclude
much more. Consider, for example, the ¥, or open sets. It is easy to
show that there is even a X, subset of 97»/+1 universal for ¥, subsets
of N™. (For example, ;... ds& - Gup(Bay) ... (Bay) (Bb) [pP. ..
-pf’("f)-pf_}_l-...vp;";_,‘:y)(b)] is such a set.) Similarly there is a pair
of X, sets doubly universal for ¥; sets. Now this pair can be reduced,
a8 argued above, to yield two disjoint X, sets which are not separable
even by a X~ M, set. The same argument can be applied to actually
name two disjoint Xz, sets (/7 sets, Zi; sets) not separable by .My
sets (by 2~ M sets, by 3.y~ Hi, sets), for k > 1. Similar strong forms
of the negation of the second separation principle can likewise be obtained
at all levels.

Now for any subsets Cy, 0, of N¥, if 0,CC,, then XiCIC yica
and IT{CITI?. Thus the above results yield, by weakening them in
two directions, that for any € Sep(Z{”), Sepi(ITY”), in case t= 0,
kz1lort=1, k> 2. And these results yield a simple proof, incidentally,
that for any ¢ the C-arithmetical and C-analytieal hierarchies are true
hierarchies.

CasE II f= 0. Here there is much degeneracy and many € do not
yield true hierarchies. This is true, for example, when ¢ = N¥, and for
this case the argument given above does not work. For although there
exists a pair of ¥, sets doubly universal for ¥,, there also exists a ¥, I,
set universal for ¥, ~M,. The diagonal argument which would usnally
preclude the latter conclusion breaks down here since the parameter
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of universality ranges over N~, which has greater cardinality than the
space U™,

For some ¢ an argument similar to the above can be applied, how-
ever. We illustrate with the case where C is finite. Here we can choose
a ZI% subset of 9" universal for the ZI”’ subsets of 9™, whereas
the diagonal argument does prevent the existence of a X~
subset of 9" universal for IV~ subsets of N™°. So we can
conclude Sepy(Zi?) as before. Similar arguments work, of course, at all
levels of the (-arithmetical and C-analytical hierarchies with finite (.

7. Summary. The first and second separation principles hold on
the universal side and fail on the existential side of the arithmetical,
finite Borel, analytical, and projective hierarchies, with the exception
of the first level of the analytical and projective hierarchies, where the
situation is exactly reversed. (At the third and higher levels of the ana-
Iytical and projective hierarchies our proofs require the axiom of con-
structibility.)

For all four hierarchies the reduction prineciple holds wherever the
separation principles fail and fails wherever they hold. Whenever the
reduction or separation principles fail for a class in these hierarchies
they fail, in a certain sense, by very much. The results can be extended
to wide classes of hierarchies of which the four mentioned are special cases.
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