Separations in Query Complexity Based on Pointer Functions (with a slight hint of quantum complexity)

Alexander Belov CWI

Joint work with: Andris Ambainis, Kaspars Balodis, Troy Lee, Miklos Santha, and Juris Smotrovs
(presented at QIP'16, to appear in STOC'16)

Introduction

Computational Models: Deterministic

Computational Models: Deterministic

Computational Models: Deterministic

Computational Models: Randomised

Introduction

Deterministic
Randomised
Quantum
Separations
Overview of Results
R_{1} versus R_{0}
R_{0} versus D

Conclusion

D : Deterministic (Decision Tree)
R : Randomised (Probability distribution on decision trees)

a, b, c : uniform random permutation of $1,2,3$.
Complexity

- on input: Expected number of queries 2 or $\frac{8}{3}$
- in total:

Worst input
$\frac{8}{3}$

Computational Model: Randomised

Introduction

Deterministic
Randomised
Quantum
Separations
D : Deterministic (Decision Tree)
R : Randomised (Probability distribution on decision trees)
R_{0} : Zero-error (Las Vegas)

- always outputs the correct output

Computational Models: Randomised

Introduction

$\underline{R_{1} \text { versus } R_{0}}$
R_{0} versus D

Conclusion

D : Deterministic (Decision Tree)
R : Randomised (Probability distribution on decision trees)

$$
R_{0}: \text { Zero-error (Las Vegas) }
$$

- always outputs the correct output

R_{2} : Bounded-error (Monte Carlo)

- rejects a negative input with probability $\geq \frac{2}{3}$
- accepts a positive input with probability $\geq \frac{2}{3}$

Computational Models: Randomised

$D: \quad$ Deterministic (Decision Tree)
R : Randomised (Probability distribution on decision trees)
R_{0} : Zero-error (Las Vegas)

- always outputs the correct output
R_{1} : One-sided error
- always rejects a negative input
- accepts a positive input with probability $\geq \frac{1}{2}$ (or vice versa)
R_{2} : Bounded-error (Monte Carlo)
- rejects a negative input with probability $\geq \frac{2}{3}$
- accepts a positive input with probability $\geq \frac{2}{3}$

Computational Models: Quantum

Introduction

Deterministic
Randomised
Quantum
Separations

D: Deterministic (Decision Tree)
R : Randomised (Probability distribution on decision trees)
R_{0} : Zero-error (Las Vegas)

- always outputs the correct output
R_{1} : One-sided error
- always rejects a negative input
- accepts a positive input with probability $\geq \frac{1}{2}$ (or vice versa)
R_{2} : Bounded-error (Monte Carlo)
- rejects a negative input with probability $\geq \frac{2}{3}$
- accepts a positive input with probability $\geq \frac{2}{3}$

Q: Quantum
Q_{E} : Exact
Q_{2} : Bounded-error

Separations

Easy for partial functions

Separations

Introduction

Deterministic
Randomised
Quantum
Separations
R_{1} versus R_{0}
$\underline{R_{0} \text { versus } D}$

Conclusion

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

- Reject iff all input variables are zeroes

- Accept iff exactly half of the variables are ones

Separations

Introduction

Deterministic
Randomised
Quantum
Separations

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

- Reject iff all input variables are zeroes

- Accept iff exactly half of the variables are ones

$$
R_{1}=1
$$

Separations

Introduction

Deterministic
Randomised
Quantum
Separations

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

- Reject iff all input variables are zeroes

- Accept iff exactly half of the variables are ones

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
R_{1}=1, \quad Q_{E}=1
$$

Separations

Introduction

Deterministic
Randomised
Quantum
Separations

Easy for partial functions

Example: Deutsch-Jozsa problem (almost)

- Reject iff all input variables are zeroes

- Accept iff exactly half of the variables are ones

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|}
\hline \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\hline
\end{array} \\
& R_{1}=1, \quad Q_{E}=1, \\
& R_{0}=n / 2+1
\end{aligned}
$$

Separations

Easy for partial functions
Example: Deutsch-Jozsa problem (almost)

- Reject iff all input variables are zeroes

- Acrant iff nuantly half of the wariablac arn anac

Total Functions — ???

Overview of Results

$\underline{R_{1} \text { versus } R_{0}}$
R_{0} versus D
Conclusion

Iterated Functions

We have just seen $D\left(M A J_{3}\right)=3$ and $R_{0}\left(M A J_{3}\right)=8 / 3$.

Iterated Functions

We have just seen $D\left(M A J_{3}\right)=3$ and $R_{0}\left(M A J_{3}\right)=8 / 3$. Iterate it:

Iterated Functions

Introduction

Overview of Results

Iterated Functions
Record-Holder
Our Main Results

Göös-Pitassi-Watson

Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Conclusion

We have just seen $D\left(M A J_{3}\right)=3$ and $R_{0}\left(M A J_{3}\right)=8 / 3$.

Iterate it:

We get

$$
D\left(M A J_{3}^{d}\right)=3^{d} \quad \text { and } \quad R_{0}\left(M A J_{3}^{d}\right) \leq(8 / 3)^{d} .
$$

(Actually, it is less...)

Previous Record-Holder

Introduction

Overview of Results

Iterated Functions
Record-Holder
Our Main Results

Göös-Pitassi-Watson

Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Conclusion

Iterated NAND: record-holder for R_{0}, R_{1}, R_{2} versus D

We have [Snir'85, Saks \& Wigderson'86]:

$$
R_{0}=R_{1}=R_{2}=O\left(n^{0.7537 \ldots}\right), \quad D=n
$$

State of the Art

We have [Snir'85, Saks \& Wigderson'86]:

$$
R_{0}=R_{1}=R_{2}=O\left(n^{0.7537 \ldots}\right), \quad D=n
$$

It is known [Nisan'89]

$$
D=O\left(R_{1}^{2}\right)
$$

Our Main Results

It is known [Nisan'89]

$$
D=O\left(R_{1}^{2}\right)
$$

We get functions with:

$$
D=\widetilde{\Theta}\left(R_{0}^{2}\right)
$$

$$
R_{0}=\widetilde{\Theta}\left(R_{1}^{2}\right)
$$

Our Main Results

It is known [Nisan'89]

$$
D=O\left(R_{1}^{2}\right)
$$

We get functions with:

$$
D=\widetilde{\Theta}\left(R_{0}^{2}\right)
$$

$$
R_{0}=\widetilde{\Theta}\left(R_{1}^{2}\right)
$$

The last one also saturates [Kulkarni \& Tal'13, Midrijānis'05]

$$
R_{0}=\widetilde{O}\left(R_{2}^{2}\right)
$$

Göös-Pitassi-Watson

Adversary Method
D Lower Bound
Features of Pointers
Our Modifications
$\underline{R_{1} \text { versus } R_{0}}$
R_{0} versus D
Conclusion
$\underline{\text { Introduction }}$

Overview of Results Paper

Goal
D versus 1-certificates
Pointers
Adversary Method
D Lower Bound
Features of Pointers
Our Modifications
R_{1} versus R_{0}
R_{0} versus D

Deterministic Communication vs. Partition Number

Mika Göös Toniann Pitassi Thomas Watson

Department of Computer Science, University of Toronto

$$
\text { April 1, } 2015
$$

Abstract

We show that deterministic communication complexity can be superlogarithmic in the partition number of the associated communication matrix. We also obtain near-optimal deterministic lower bounds for the Clique vs. Independent Set problem, which in particular yields new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999) together with lower bounds for the analogous query complexity questions.

Goal

- Clique vs. Independent Set in communication complexity

There exists a number of 1-certificates such that each positive input satisfies exactly one of them.

D versus 1-certificates

Function on $n m$ Boolean variables

- Accept iff there exists a unique all-1 column

- $D=n m$
- short 1-certificates $(n+m-1)$, BUT not unambiguous.

D versus 1-certificates

Function on $n m$ Boolean variables

- Accept iff there exists a unique all-1 column

- $D=n m$
- short 1-certificates $(n+m-1)$, BUT not unambiguous.

Should specify which zero to take in each column!

Pointers

Introduction
Overview of Results
Göös-Pitassi-Watson
Paper
Goal
D versus 1-certificates

Pointers
Adversary Method
D Lower Bound
Features of Pointers

Our Modifications
R_{1} versus R_{0}
$\underline{R_{0} \text { versus } D}$
Conclusion

- Alphabet: $\{0,1\} \times([n] \times[m] \cup\{\perp\})$

Not Boolean, but we can encode using $O(\log (n+m))$ bits.

- Accept iff
\square There is a (unique) all- 1 column b;
\square in b, there is a unique element r with non-zero pointer;
\square following the pointers from r, we traverse through exactly one zero in each column but b.

Pointers

$\underline{\text { Introduction }}$
Overview of Results

- short unambiguous 1-certificates $(n+m-1)$

Pointers

- short unambiguous 1-certificates $(n+m-1)$
- Still have $D=n m$ (Adversary argument, next slide)

Adversary Method

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.

Adversary Method

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.

Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson
Paper
Goal
D versus 1-certificates
Pointers
Adversary Method
D Lower Bound
Features of Pointers
Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.
irrelevant

Adversary Method

Introduction

Overview of Results

Göös-Pitassi-Watson
Paper
Goal
D versus 1-certificates
Pointers
Adversary Method
D Lower Bound
Features of Pointers
R_{1} versus R_{0}
R_{0} versus D
Conclusion

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.
irrelevant

Adversary Method

Adversary finds a bad input for each deterministic decision tree, by playing along with the decision tree.

For each queried variable, the adversary provides the value, so that the value of the function is unknown as long as possible.

Deterministic Lower Bound

■ While there are non-queried elements in a column:
\square Return 1 .

- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

					1		$!$
					1	1	
1				1			
					1		
				1	1		
					1		
					1	1	
1			1		1		1

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

					1		$!$
					1	1	
1				1	0		
					1		
				1	1		
					1		
					1	1	
1			1		1		1

Deterministic Lower Bound

- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

	1		1		1		$!$
			1		1	1	
1			1	1	0		
			1		1	1	
			1	1	1		
			0		1		
1	1	1	1		1	1	
1			1		1		1

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

\left.| 1 | 1 | 1 | 1 | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | | 1 | | |
| 1 | 1 | 1 | 1 | 1 | 1 | |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |$\right)$

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

1	1	1	1	1	1	1	1
1	0	-1	1	1	1	1	1
1	1	1	1	1	0	1	1
1	1	1	1		1	1	1
0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	0	1

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

1	1	1	1	1	1	1	1
1	0	-1	1	1	1	1	1
1	1	1	1	1	0	1	1
1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	0	1

Deterministic Lower Bound

- While there are non-queried elements in a column:
\square Return 1.
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1
1	1						
1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1
	1	1	1	1	1		
0	1	1	1	1	1	1	0
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	0	1

Features of Pointers

Highly elusive (flexible)

Still traversable (if know where to start).

Our Modifications

Binary Tree

Definition (base)

R_{1} versus R_{0}
$\underline{R_{0} \text { versus } D}$

Conclusion

Instead of a list

we use a balanced binary tree

- More elusive
- Random access

Definition (base)

Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.

Definition (base)

Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.
- Some additional information is contained in the leaves (to be defined).

R_{1} versus R_{0}

State of the Art

■ NO separation was known even between R_{2} and R_{0}.

Reminder 1: Partial Separation

Recall the separation for a partial function

- Reject iff all input variables are zeroes

- Accept iff exactly half of the variables are ones

Reminder 2: Definition (base)

R_{1} versus R_{0}

State of the Art
Reminder 1
Reminder 2
Definition
Totalisation
Check Column
R_{1} Upper Bound
R_{0} Lower Bound
Summary
R_{0} versus D
Conclusion

Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.
- Some additional information is contained in the leaves (to be defined).

Definition

Accept iff

- There is a (unique) all-1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.
■ exactly $m / 2$ of the leaves back point to the root r.

Totalisation

A column is good if it contains a leaf back pointing to the root of a legitimate tree.

- A positive input contains exactly $m / 2$ good columns.
- A negative input contains no good columns.

Totalisation

A column is good if it contains a leaf back pointing to the root of a legitimate tree.

- A positive input contains exactly $m / 2$ good columns.
- A negative input contains no good columns.

A total function looks like a partial function!

Check Column: Informal

Reminder 1
Reminder 2
Definition
Totalisation
Check Column
R_{1} Upper Bound
R_{0} Lower Bound
Summary
R_{0} versus D
Conclusion

Check Column: Informal

Deterministic subroutine

Given a column $c \in[m]$, accept iff it is good.

Go through column c, find the back pointer to r, and check the tree.

Check Column: Informal

Deterministic subroutine

Given a column $c \in[m]$, accept iff it is good.

Go through column c, find the back pointer to r, and check the tree. Wait, column c may contain many bogus pointers — ???

Check Column: Informal

Deterministic subroutine

Given a column $c \in[m]$, accept iff it is good.

Go through column c, find the back pointer to r, and check the tree.
Wait, column c may contain many bogus pointers — ???
On each step, either

- eliminate a column: it is not the all-1 column; or
- eliminate an element in column c : it is not a leaf of the tree.

Check Column: Formal

Deterministic subroutine

Given a column $c \in[m]$, accept iff it is good.

- While there is ≥ 2 non-eliminated columns:
\square Let a be a non-eliminated element in c. If none, reject.
\square Let r be the back pointer of a, and b be the column of r.
$\square \quad$ Let j be a non-eliminated column $\neq b$.
\square If the path $T(j)$ from r ends in a zero in column j, eliminate column j. Otherwise, eliminate element a.
- Verify the only non-eliminated column.

R_{1} Upper Bound

- On each iteration of the loop, either an element or a column gets eliminated. At most $n+m$ iterations.
Complexity: $\widetilde{O}(n+m)$.
Sticking into Deutsch-Jozsa, get R_{1} and Q_{E} upper bound of

$$
\widetilde{O}(n+m)
$$

R_{0} Lower Bound

Introduction \quad :
(Negative) input with exactly one zero in each column.

R_{0} Lower Bound

(Negative) input with exactly one zero in each column.

- An R_{0} algorithm can reject only if it has found $m / 2$ zeroes.

R_{0} Lower Bound

	1	1	1	1	1			1	1
Overview of Results	1	1	1	0	1			0	1
Gubs.Pliass:-Walson	1	1	1	1	. 1			1	1
Our Modificitions	1	1	1	1	0			1	1
$R_{\text {vesus }} R_{0}$	0	1	1	1	1			1	1.
State of the At	1	1	0	1	1			1	0
Reminder 1	1	1	1	1	1			1	1
	1	0		1	1			1	1

(Negative) input with exactly one zero in each column.

- An R_{0} algorithm can reject only if it has found $m / 2$ zeroes.

Requires $\Omega(n m)$ queries.

Summary

- Upper bound for R_{1} and Q_{E} is $\widetilde{O}(n+m)$.
- Lower bound for a R_{0} algorithm is $\Omega(n m)$.

Reminder 2
Definition
Taking $n=m$, we get a quadratic separation between R_{1} and R_{0}, as well as between Q_{E} and R_{0}

NB. The previous separation was [Ambainis'12]:

$$
Q_{E}=O\left(R_{0}^{0.8675 \ldots}\right)
$$

\qquad
Overview of Results
Göös-Pitassi-Watson
Our Modifications
$\xrightarrow{R_{1} \text { versus } R_{0}}$
R_{0} versus D
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound

R_{0} versus D

Reminder: Definition (base)

Introduction
Overview of Results
Göös-Pitassi-Watson
Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound
Summary

Accept iff

- There is a (unique) all- 1 column b;
- in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.
- Some additional information is contained in the leaves (to be defined).

Definition

Accept iff

- There is a (unique) all- 1 column b;
\square in b, there is a unique element r with non-zero pointers;
- for each $j \neq b$, following a path $T(j)$ from r gives a zero in the j th column.
- all the leaves back point to the all-1 column b.

Reminder 2: Adversary Argument

- While there are non-queried elements in a column:
\square Return 1 .
- When the last element in a column is queried:
\square Return 0 , linking it to the last returned 0 .

1	1	1	1	1	1	1	1
1	0	-1	1	1	1	1	1
1	1	1	1	1	0	1	1
1	1	1	1		1	1	1
0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	0	1

Deterministic Lower Bound

R_{1} versus R_{0}
$\underline{R_{0} \text { versus } D}$
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound
Summary

Conclusion

Adversary Method.
Let $n=2 m$.
If the k th element is queried in a column:

- If $k \leq m$, return 1 .
- Otherwise, return 0 with back pointer to column $k-m$.

At the end, the column contains $m!1.0$ and m with back pointers to all columns $1,2, \ldots, m$.

Deterministic Lower Bound

\qquad
Overview of Results
R_{1} versus R_{0}
R_{0} versus D
Reminder
Definition
Reminder 2

Adversary Method.
Let $n=2 m$.
If the k th element is queried in a column:

- If $k \leq m$, return (1).
- Otherwise, return 0 with back pointer to column $k-m$.

At the end, the column contains $m!1.0$ and m with back pointers to all columns $1,2, \ldots, m$.

■ The algorithm does not know the value of the function until it has queried $>m$ elements in each of m columns.

Deterministic Lower Bound

\qquad
Overview of Results
$\underline{R_{1} \text { versus } R_{0}}$
R_{0} versus D
Reminder
Definition
Reminder 2

Adversary Method.
Let $n=2 m$.
If the k th element is queried in a column:

- If $k \leq m$, return (1).
- Otherwise, return 0 with back pointer to column $k-m$.

At the end, the column contains $m, 1$ and m with back pointers to all columns $1,2, \ldots, m$.

- The algorithm does not know the value of the function until it has queried $>m$ elements in each of m columns.

Lower bound: $\Omega\left(m^{2}\right)$.

R_{0} Upper Bound: Informal

\qquad
$\underline{R_{1} \text { versus } R_{0}}$
R_{0} versus D

- Each column contains a back pointer to the all-1 column. BUT which one is the right one-?

R_{0} Upper Bound: Informal

Introduction
Overview of Results
Göös-Pitassi-Watson
Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound
Summary

- Each column contains a back pointer to the all-1 column. BUT which one is the right one-?

We try each back pointer by quering few elements in the column, and proceed to a one where no zeroes were found.

- Even if this is not the all-1 column, we can arrange that it contains fewer zeroes whp.

R_{0} Upper Bound: Formal

Algorithm

- Let c be the first column, and $k \leftarrow n$.
- While $k>1$,
$\square \quad$ Let $c \leftarrow \operatorname{ProcessColumn}(c, k)$, and $k \leftarrow k / 2$.
ProcessColumn(column c, integer k)
- Query all elements in column c.
- If there are no zeroes, verify column c.
- If there are $>k$ zeroes, query all $n m$ variables, and output the value of the function.
- For each zero a :
$\square \quad$ Let j be the back pointer of a.
\square Query $\widetilde{O}(n / k)$ elements in column j. (Probability $<\frac{1}{(n m)^{2}}$ that no zero found if there are $>k / 2$ of them).
\square If no zero was found, return j.
- Reject

Summary

Introduction

Overview of Results
Göös-Pitassi-Watson
Our Modifications
R_{1} versus R_{0}
$\underline{R_{0} \text { versus } D}$
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound
Summary
Conclusion

Take $n=2 m$.

- Lower bound for a D algorithm is $\Omega\left(m^{2}\right)$.
- Upper bound for a R_{0} algorithm is $O(n+m)$.

We get a quadratic separation between R_{0} and D.

Summary

Introduction

Overview of Results
Göös-Pitassi-Watson
Our Modifications
R_{1} versus R_{0}
R_{0} versus D
Reminder
Definition
Reminder 2
D Lower Bound
R_{0} Upper Bound
Summary
Conclusion

Take $n=2 m$.

- Lower bound for a D algorithm is $\Omega\left(m^{2}\right)$.
- Upper bound for a R_{0} algorithm is $O(n+m)$.

We get a quadratic separation between R_{0} and D.

- Also, upper bound for a Q_{2} algorithm is $\widetilde{O}(\sqrt{n+m})$.

We get a quartic separation between Q_{2} and D.
NB. Previous separation was quadratic: Grover's search.

Conclusion

Open Problems

$$
\begin{aligned}
R_{1} & =\widetilde{O}\left(R_{0}^{1 / 2}\right) \\
Q_{E} & =\widetilde{O}\left(R_{0}^{1 / 2}\right) \\
R_{0} & =\widetilde{O}\left(D^{1 / 2}\right) \\
Q_{2} & =\widetilde{O}\left(D^{1 / 4}\right) \\
Q_{2} & =\widetilde{O}\left(R_{0}^{1 / 3}\right) \\
Q_{E} & =\widetilde{O}\left(R_{2}^{2 / 3}\right) \\
\widetilde{\operatorname{deg}} & =\widetilde{O}\left(R_{2}^{1 / 4}\right)
\end{aligned}
$$

Open Problems

We have resolved $R_{2} \leftrightarrow R_{0}$ and $R_{1} \leftrightarrow D$. Can we resolve $R_{2} \leftrightarrow D$ too? Known: $R_{2}=\Omega\left(D^{1 / 3}\right)$ and $R_{2}=\widetilde{O}\left(D^{1 / 2}\right)$.

■ Can we overcome the "certificate complexity barrier"? Obtain a function with $R_{2}=o(C)$?

- The same about $Q_{2} \leftrightarrow D$

Known: $Q_{2}=\Omega\left(D^{1 / 6}\right)$ and $Q_{2}=\widetilde{O}\left(D^{1 / 4}\right)$.
\square and $Q_{E} \leftrightarrow D$?
Known: $Q_{E}=\Omega\left(D^{1 / 3}\right)$ and $Q_{E}=\widetilde{O}\left(D^{1 / 2}\right)$.

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.

Cheat Sheets

Introduction

Overview of Results
Göös-Pitassi-Watson
Our Modifications
$\underline{R_{1} \text { versus } R_{0}}$
$\underline{R_{0} \text { versus } D}$
Conclusion
Results
Open Problems
Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.

- also uses pointers
- is incomparable to our results
- prove a number of interesting results, e.g., a total Boolean function f with

$$
R_{2}(f)=\widetilde{\Omega}\left(Q_{2}(f)^{2.5}\right) .
$$

Cheat Sheets

Aaronson, Ben-David, and Kothari came up with the Cheat-Sheet technique.
also uses pointers

- is incomparable to our results
- prove a number of interesting results, e.g., a total Boolean function f with

$$
R_{2}(f)=\widetilde{\Omega}\left(Q_{2}(f)^{2.5}\right) .
$$

- Actually, $R_{2}(f)=\widetilde{\Omega}\left(Q_{2}(f)^{3}\right)$, if there exists a partial function g on n variables with

$$
Q_{2}(g)=O(\log n) \quad \text { and } \quad R_{2}(g)=\widetilde{\Omega}(n)
$$

Any questions?

