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ABSTRACT. A separative ring is one whose finitely generated projective modules satisfy the 

property A EB A ~ A EB B ~ B EB B ~ A ~ B. This condition is shown to provide a key to 

a number of outstanding cancellation problems for finitely generated projective modules over 

exchange rings. It is shown that the class of separative exchange rings is very broad, and, 

notably, closed under extensions of ideals by factor rings. That is, if an exchange ring R has 

an ideal I with I and R/ I both separative, then R is separative. 

INTRODUCTION 

In order to study the direct sum decomposition theory of a class of modules, it is im

portant to know how close the class is to having an 'ideal' decomposition theory. Of course 

in the presence of suitable chain conditions, each module in the class is a direct sum of 

indecomposable modules, and an ideal decomposition theory would yield uniqueness of 

decompositions into indecomposables, as in the Krull-Remak-Schmidt-Azumaya Theorem. 

However, when the class of modules is not built from indecomposables, an 'ideal' decom

position theory must be formulated in terms of different conditions. Among the most basic 

and useful are: 

(C) Cancellation: A EB C"' B EB C =::} A"' B. 

(UR) Uniqueness of n-th roots: EB7=l A"' EB7=l B =::} A"' B. 
These conditions have been studied in many contexts. We focus on the class F P( R) 

of finitely generated projective modules over a (von Neumann) regular ring R, or, more 

generally, an exchange ring. It follows from a combination of results of Fuchs, Kaplansky 

and Handelman that the regular rings whose finitely generated projective modules satisfy 

(C) are precisely those with stable rank one (cf. [25, Theorem 4.5 and Proposition 4.12]). 

This result was recently extended to exchange rings by Yu [50, Theorem 9]. However, the 

second author has constructed simple regular rings with stable rank one over which (UR) 

fails [27]. On the other hand, right self-injective rings R constitute a nice class of exchange 

rings such that F P( R) satisfies uniqueness of n-th roots for all n ( cf. [24]), but in general 

F P( R) does not satisfy cancellation. 
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We say th31t Risa separative ring if the following condition holds for all A, B E F P(R): 

Obviously the class of separative rings includes all rings R such that F P( R) satisfies either 

cancellation or uniqueness of n-th roots. As we will prove, it includes many more - perhaps 

all - exchange rings. One important source of construction of separative exchange rings is 

provided by our Extension Theorem for separative exchange rings (Theorem 4.2). It states 

that, for an exchange ring R with a (two-sided) ideal I, the ring R is separative if and only 

if I and R/ I are separative. (Here, saying that I is separative is equivalent to saying that 

all the unital rings eRe are separative for e = e2 E I.) This is in sharp contrast with the 

class of exchange rings with stable rank one (see for example [25, Example 4.26]). 

We also prove that separativity for an exchange ring R drastically reduces the possible 

values of the stable rank of R, to 1, 2, or oo. It is conceivable that all exchange rings 

are separative. As we show, this would imply affirmative answers to five outstanding 

open questions in the theory of regular rings (see Section 6). This illustrates the role of 

separativity as a unifying principle for cancellation problems over exchange rings. 

The term separativity is borrowed from semigroup theory. Following Clifford and Pre

ston [17, p.131], an abelian monoid Mis said to be separative if for all a, b E M, 

a+a=a+b=b+b a= b. 

They chose this term because, by a 1956 result of Hewitt and Zuckerman [32], M is 

separative if and only if the characters of M separate elements of M. (See [17, Theorem 

5.59]. For this result, a character of M can be any semigroup homomorphism of M into 

the multiplicative semigroup of complex numbers.) We have chosen our terminology in 

such a way that a ring R is separative if and only if the monoid V(R) of isomorphism 

classes of finitely generated projective R-modules is a separative monoid. We have found 

it useful to apply semigroup methods in V(R) to prove some of our results. 

In the last section, we give some applications of our results to the field of operator 

algebras. Since C*-algebras with real rank zero are exchange rings (Theorem 7.2), our 

results can be applied to this important class of C*-algebras. Moreover, this theorem 

shows that the exchange property provides a uniform algebraic viewpoint for direct sum 

decomposition properties over regular rings and C*-algebras with real rank zero, and hence 

it gives further motivation to work within the class of exchange rings. 

Here is a brief outline of the paper. In Section 1, we recall some basic definitions and 

we prove some preparatory lemmas. In Section 2, we develop some basic characterizations 

and initial applications of separativity. Section 3 is devoted to the study of stable rank 

conditions on exchange rings. In particular, it is proved that the only possible values of 

the stable rank of a separative exchange ring are 1, 2, or oo. We prove in Section 4 one 

of the main results of this paper, namely the Extension Theorem for separative exchange 

rings. Section 5 gives a corresponding extension result for the smaller class of strongly 

separative exchange rings, which is obtained as a corollary of the above. Finally, Sections 

6 and 7 examine some particular features of our results for the important classes of regular 

rings and C*-algebras with real rank zero, respectively. 
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Since mos_t of the literature on regular rings and exchange rings is written for the unital 

case, we shall operate under the dictum "all rings have units" for most of the paper. When 

discussing C*-algebras in the final section, however, we state our results for not necessarily 

unital algebras as far as possible. Our notation is standard; see for instance [9, 25). In 

particular, we write nA for the direct_ sum of n copies of a module A. We use the notation 

A ;S© B to indicate that a module A is isomorphic to a direct summand of a module B. 
All monoids considered in this paper will be abelian monoids, written additively. 

1. EXCHANGE RINGS AND REFINEMENT MONOIDS 

We begin by recalling some basic concepts that are central to our work, in particular 

the notions of 'exchange ring' and 'refinement monoid', and we introduce a natural refine

ment monoid V(R) that faithfully records direct sum decompositions of finitely generated 

projective modules over any exchange ring R. 
An R-module M has the exchange property (see [19]) if for every R-module A and any 

decompositions 

A = M' ffi N = EB Ai 

iEJ 

with M' ~ M, there exist submodules Ai s;;; Ai such that 

A= M' ffi (EB A~)·· 
iEJ 

(It follows from the modular law that Ai must be a direct summand of Ai for all i.) 
If the above condition is satisfied whenever the index set is finite, M is said to satisfy 

the finite exchange property. Clearly a finitely generated module satisfies the exchange 

property if and only if it satisfies the finite exchange property. It should be emphasized 

that the direct sums in the definition of the exchange property are internal direct sums of 

submodules of A. One advantage of the resulting internal direct sum decompositions ( as 

opposed to isomorphisms with external direct sums) rests on the fact that direct summands 

with common complements are isomorphic - e.g., N ~ EBiEJ Ai above since each of these 

summands of A has M' as a complementary summand. 

Following Warfield [45), we say that a ring R is an exchange ring if RR satisfies the 

(finite) exchange property. By [45, Corollary 2], this definition is left-right symmetric. If 

R is an exchange ring, then every finitely generated projective R-module has the exchange 

property (by [19, Lemma 3.10], the exchange property passes to finite direct sums and 

to direct summands), and so the endomorphism ring of any such module is an exchange 

ring. Further, idempotents lift modulo all ideals of an exchange ring [39, Theorem 2.1, 

Corollary 1.3]. 

The class of exchange rings is quite large. It includes all semiregular rings (i.e., rings 

which modulo the Jacobson radical are regular and have idempotent-lifting), all 1r-regular 

rings, and more; see [45, 43]. Further, all C*-algebras with real rank zero are exchange 

rings, as we prove in Section 7. 

The following criterion for exchange rings was obtained independently by Nicholson and 

the second author. 
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Lemma 1.1_. [39, Theorem 2.1; 29, p. 167] Let R be a ring. Then, R is an exchange ring 

if and only if for every element a E R there exists an idempotent e E R such that e E Ra 

and 1 - e E R( 1 - a). 0 

For any ring R we denote by FP(R) the class of finitely generated projective right 

R-modules. The following common refinement property for direct sums in FP(R) is well 

known over regular rings [25, Theorem 2.8]. 

Proposition 1.2. Assume that R is an exchange ring and that A1,A2,B1,B2 E FP(R). 

If A1 EB A2 ~ B 1 EB B 2 , there exist decompositions Ai = Aii EB Aiz for i = 1, 2 such that 

A1j EB A2j ~ Bj for j = 1,2. 

Proof. This is a special case of [19, Theorem 4.1]. We give the easy proof for the reader's 

convenience. It suffices to prove the existence of common refinements for any internal 

direct sum decomposition P = AEBB = CEBD, where P,A,B,C,D E FP(R). Now A has 

the exchange property. Then P = A EB C' EB D' for some submodules C' ~ C and D' ~ D; 

moreover, C = C' EB C" and D = D' EB D" for some C", D" E F P(R). Now P = A EBB = 
A EB-C' EB D', whence B IV C' EB D'. Also, P = C' EB D' EB ( C" EB D") = ( C' EB D') EB A, and 

thus A~ C" EB D'1
• 0 

The above common refinement property is fundamental to almost all work on direct 

sum decompositions of finitely generated projective modules over an exchange ring R. 

(See, e.g., [25] for its use in the case of a regular ring.) Since this property involves 

only isomorphisms and direct sums, it can be expressed in the monoid of isomorphism 

classes of objects from FP(R). This provides a convenient notational shorthand that 

simplifies many proofs. Furthermore, the monoid viewpoint provides a perspective which 

is sometimes more suggestive than a module-theoretic viewpoint. 

For any ring R, we denote by V(R) the monoid of isomorphism classes of objects from 

F P( R). We shall use square brackets to denote these isomorphism classes; hence, the addi

tion operation in V(R) is given by [P] + [Q] = [P EB Q]. This monoid can also be described 

as the monoid of eqU:ivalence classes of idempotents from LJ~=l Mn(R). In particular, this 

shows the right-left symmetry of V(R). 
A monoid Mis said to be a refinement monoid (e.g., [21], [47]) if whenever a+b = c+d 

in M, there exist x,y,z,t EM such that a= x + y and b = z + t while c = x + z and 

d = y+t. It is sometimes convenient to record such simultaneous refinements in the format 

of a refinement matrix 

c d 

(This notation means that the sum of each row equals the element labelling that row, and 

similarly for column sums.) By induction, the refinement property also holds for sums 

with more than two terms, i.e., given a1 + ···+am = b1 + · · · + bn in M, there exist 

elements Xij E M (for i = 1, ... , m and j = 1, ... , n) such that each ai = Xii + · · · + Xin 

and each bj = X1j + · · · + Xmj. Refinement monoids have been extensively studied in recent 

years; see for example [21], [40], [47], [48]. The class of refinement monoids is very large, 

as can be seen from the following result: Every abelian semigroup can be embedded in a 

refinement monoid [30, Theorem 1; 21, Theorem 5.1]. 
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Corollary 1.3. If R is an exchange ring, then V(R) is a refinement monoid. 

Proof. This is just a restatement of Proposition 1.2. D 

5 

This result should be contrasted with the fact that Kt of an exchange ring does not 

always have the refinement property (38]. 

We will make use of a few standard concepts from the theory of abelian monoids. For 

instance, we will occasionally assume that our monoids are conical, meaning that elements 

x, y can satisfy x + y = 0 only when x = y = 0. Note that the monoids V(R) are always 

conical, since a direct sum of modules is zero only when the summands are zero. 

Let M be a monoid. For x, y E M we will write x ~ y if there exists z E M such 

that y = x + z. This translation-invariant preorder (it is reflexive and transitive, but not 

necessarily antisymmetric) is called the algebraic preorder in M [10, 2.1.1]. It is sometimes 

useful to assume that M has an order-unit, i.e., an element u E M such that every element 

of Mis bounded above by a positive multiple of u. In the monoid V(R), we have [A] ~ [BJ 

if and only if A is isomorphic to a direct summand of B. Note that [R] is an order-unit in 

V(R); more generally, a class [A] E V(R) is an order-unit precisely when A is a generator 

in the category of R-modules. 

Finally, we need a concept of 'ideal' for monoids that corresponds, when applied to 

V(R), to ideals of the ring R. The appropriate concept is not that of ideal as used in 

semigroup theory, but rather an analog of the 'o-ideals' studied in the theory of partially 

ordered groups ( cf. [23, p. 20]). 

An o-ideal of a monoid M is a submonoid S ofM such that S is hereditary with respect 

to the algebraic ordering, i.e., y ~ x for y E M and x E S implies y E S. (Equivalently, 

a nonempty subset S of M is an o-ideal if and only if we have a + b E S ~ a, b E S for 

a, b EM.) Observe that the set of invertible elements of M (i.e., its group of units) is an 

o-ideal of M, contained in every o-ideal. The monoid M is said to be o-simple provided 

M is not a group and the only ideals of M are M and the group of units. In particular, a 

nonzero conical monoid is o-simple if and only if all its nonzero elements are order-units. 

Given an o-ideal S of M, we define a congruence ,...., s on M by setting a ,...., s b if and 

only if there exist e, f ES such that a+ e = b + f. Note that a rvs O if and only if a ES. 

Let M / S be the factor monoid obtained from the congruence ,...., s. We shall write elements 

of M/ Sin the form [a]s. In case M is a refinement monoid, the congruence "'S can be 

expressed in the following alternate way: a ,...,,, s b if and only if there exist c E M and 

g, h ES such that a= c + g and b = c + h. 

Let R be a ring and I a ( two-sided) ideal of R. Denote by F P(I) the set of projectives 

PE F P(R) such that P =PI, and by V(I) the set of isomorphism classes [P] E V(R) for 

P E F P(I). If R is an exchange ring, then every finitely generated projective R-module is 

isomorphic to a finite direct sum of principal right ideals of R generated by idempotents, 

so that V(I) is the submonoid of V(R) generated by {[eR] I e = e2 E I}. 
If R is an exchange ring, then so is R/ I for every ideal I of R. The next result determines 

V(R/ I) as a quotient of V(R). 

Proposition 1.4. Let R be an exchange ring and I an ideal of R. Then V(I) is an a-ideal 

of V(R) and V(R)/V(I) ~ V(R/ I). 

Proof. It is clear that V(I) is an o-ideal of V(R). The tensor product functor (-)rg>R(R/ I) 

induces a natural homomorphism </> : V(R) ----"* V(R/ I), and </> in turn induces a natural 
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homomorphism 'lj; : V(R)/V(I) ---+ V(R/ I). First, notice that as R is an exchange ring, 

idempotents-lift modulo I, whence <p and 'lj; are surjective. 

To prove that 'lj; is injective, it suffices to show that whenever A, B E F P(R) with 

A/AI ~ B/BI, there exist decompositions A = A1 EB A2 and B = B1 EB B2 such that 

A1 ,.-.., B1 while A2 = A2I and B2 = B2I. This amounts to a problem about idempotent 

matrices over R which become equivalent modulo I. Since all matrix rings over R are 

exchange rings, it is enough to solve the 1 x 1 case. Therefore we may assume, without 

loss of generality, that A = eR and B = f R for some idempotents e, f E R. 

Now eR/ el ,.-.., f R/ f I, and so there exist x E eRf and y E f Re such that xy = e 
(mod I) and yx - f (mod I). Observe that xy E eRe. Since eRe is an exchange ring with 

unit e, there exists an idempotent g E xyRe such that e - g E ( e - xy )Re; then e - g E I. 

Write g = xyt with t E eRg, and observe that e = g =et= t (mod I). On the other hand, 

the element h = ytx E f Rf is an idempotent such that g rv h and f = yx = yex = ytx = h 
(mod I). Therefore A = gR EB (e - g)R and B = hR EB(! - h)R with gR ,.-.., hR while 

(e - g)R = (e - g)RI and(! - h)R = (! - h)RI, as desired. D 

Although it is not needed in the present paper, we mention that for any exchange ring 

R, the lattice of ideals of V(R) is isomorphic to the lattice of semiprimitive ideals of R 

[40, Teorema 4.1.7]. 

We conclude this section with some further observations about ideals that will be needed 

later. 

Lemma 1.5. Let R be an exchange ring and I an ideal of R. 

(a) Given any idempotents e1 , ... , en E I, there exists an idempotent e E I such that 

e1, ... , en E ReR. 

(b) V ( I) equals a directed union of o-ideals V ( ReR) where e runs through the idempo

tents in I. 

( c) V(ReR) ,.-.., V( eRe) for any idempotent e E R. 

Proof. (a) It suffices to consider the case n = 2. Since e1REB (1- e1)R = e2REB (1- e2)R, 
Proposition 1.2 yields a decomposition e2R = A EBB such that A and B are isomorphic 

to direct summands of e1R and (1 - e1)R respectively. Hence, there exist idempotents 

f E e1Re1 and f' E (1- e1)R(l- e1) such that(!+ f')R ,.-.., e2R. Note that f' E Re2R ~ I. 
Thus e := e1 + f' is an idempotent in I, and obviously e1 = ee1 E ReR. On the other 

hand, f + f' = e(f + f') E ReR, and therefore e2 E R(f + f' )R ~ ReR. 

(b) This is clear from (a). 

(c) Since the additive functor(-) ®eRe eR sends FP(eRe) into FP(ReR), it induces a 

monoid homomorphism <p: V( eRe) ---+ V(ReR). The functor (- )0RRe, on the other hand, 

does not send all projective R-modules to projective eRe-modules. Consider a projective 

A E FP(ReR). Since A is finitely generated, A= a1eR + · · · + aneR for some ai, whence 

there exists an epimorphism n( eR) ---+ A, and so n( eR) :::::'. A EB B for some R-module B. 

Consequently, n( eRe) rv Ae EBB e, and hence Ae E F P( eRe ). Therefore ( - ) 0 R Re induces 

a monoid homomorphism 'lj;: V(ReR)---+ V(eRe). 

It is clear that 'lj;<p is the identity on V( eRe ). Observe that for all right R-modules A 

there is a natural homomorphism T/A : A 0R Re 0eRe eR---+ A given by multiplication, and 

that T/eR is an isomorphism. If A E F P( ReR), then as above A is isomorphic to a direct 
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summand of n( eR) for some n, whence 'r/A is an isomorphism. Therefore qnp is the identity 

on V(ReR). D 

2. SEPARATIVITY 

We develop some basic characterizations and initial applications of separativity in this 

section. Let us say that a class C of modules is separative if for all A, B E C we have 

A~B. 

A ring R will be called a separative ring if F P(R) is a separative class of modules. This 

is clearly more general than rings for which FP(R) is cancellative. We give some concrete 

classes of examples later, after developing some equivalent formulations of separativity. 

Since some of our work with separative exchange rings R involves calculations with 

the monoids V(R), we turn next to separativity for monoids. The monoid context is also 

convenient for demonstrating the equivalence of various forms of this condition. Recall 

that a monoid Mis separative if for all a, b E M, 

a= b. 

Note that our terminology has been chosen so that a ring R is separative precisely when the 

monoid V(R) is separative. In describing alternate forms of this condition, it is convenient 

to use the following notation, borrowed from [48, Section 2]. For a, b E M we write a ex b 

if there exists a positive integer n such that a :::;; nb; equivalently, a belongs to the o-ideal 

generated by b. 

Since every semigroup can be embedded in a refinement monoid [30, Theorem 1; 21, 

Theorem 5.1], there exist non-separative refinement monoids. In fact, every o-simple coni

cal monoid can be embedded in an o-simple conical refinement monoid [48, Corollary 2.7], 

and so there exist non-separative o-simple refinement monoids. The first example of such 

a monoid was constructed by Bergman [8]. 

Lemma 2.1. Given a monoid M, the following conditions are equivalent: 

(i) M is separative. 

(ii) For a, b EM, if 2a = 2b and 3a = 3b, then a= b. 

(iii) For a, b EM, if there exists n EN such that na = nb and (n + l)a = (n + l)b, then 

a= b. 

(iv) For a, b, c EM, if a+ c = b + c with c ex a and c ex b, then a= b. 

In case M is a reflnement monoid, separativity is also equivalent to the following: 

(v) For a, b, c EM, if a+ 2c = b + 2c, then a+ c = b + c. 

Proof. The equivalence of (i) and (iv) amounts to Hewitt and Zuckerman's result that 

M is separative if and only if its archimedean components are cancellative [32, Corollary 

4.15.1] (cf. [17, Theorem 4.16]). Our approach via condition (iii) gives an alternate proof. 

The implication (iii) ===?- (iv) is based on an argument of Kimura and Tsai [34, Theorem 

1] (cf. [10, Theorem 2.1.9]). 

(i) ===?- (ii). Observe that 2(2a) = 2(a + b) = 2a +(a+ b). Then by (i), we have 

2a =a+ b. Since 2a = 2b also, we conclude using (i) again that a= b. 
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(ii)====:;, (iii). If n EN such that na = nb and (n + l)a = (n + l)b, then na +a= na + b. 

It follows that na + ka = na + kb = nb + kb for all k E N. If n > 1, then 2n - 2 2:: n 

and so 2(n - l)a = 2(n - l)b and 3(n - l)a = 3(n - l)b. We conclude using (ii) that 

(n - l)a = (n - l)b. Therefore by induction on n, we obtain a= b. 

(iii) ====:;, (iv). Assume that a+ c = b + c with c ~ ka and c ~ kb for some k E N. Write 

ka = c + d for some d EM. We have 

(k + l)a =a+ c + d = b + c + d = ka + b. 

Then (k + 2)a = (k + l)a + b = ka + 2b, and so on: (k + r)a = ka + rb for all r E N. 

By symmetry, (k + r)b = kb+ ra for all r E N. In particular, taking r = k we obtain 

2ka = ka + kb = 2kb. Further, (2k + l)a = ka + (k + l)a = 2ka + b = (2k + l)b, and 
therefore a = b using (iii). 

(iv) ====:;, (i). Obvious. 

Now assume that M is a refinement monoid. The implication (iv) ====:;, (v) is clear. For 

the converse, consider elements a, b, c E M such that a + c = b + c while c oc a and c oc b. 

Since c ~ ka for some k E N, we have c = c1 + · · ·+Ck for some Ci ~ a. It suffices to cancel 

the Ci successively from the equality a+ c1 +···+Ck = b + c1 +···+ck, and so there is no 

loss of generality in assuming that c ~ a. Similarly, we may reduce to the case that c ~ b. 

Now write a = a' + c and b = b' + c for some a', b' E M. Then a' + 2c = b' + 2c and so 

a'+ c = b' + c by (v), that is, a= b. This shows that (v) ====:;, (iv). D 

Lemma 2.1 gives characterizations of separativity (using isomorphism in place of equal

ity) for any class C of modules which is closed under finite direct sums - simply form 

the monoid of isomorphism classes. (To avoid set-theoretical difficulties, one can apply 

the lemma to monoids of isomorphism classes of modules taken from subsets of C.) In 

particular, (ii) shows that separativity of C occurs precisely when 'multiple-isomorphism' 

(nA ,....., nB for all n > 1) coincides with isomorphism. In this light, it appears that 

'multiple-isomorphism' within the class of finite rank torsionfree abelian groups is a con

siderably finer equivalence relation than 'near-isomorphism', since by [46, Theorem 5.9] 

the latter is equivalent to nA ~ nB for some n. 

Our main interest in Lemma 2.1 is its application to the monoids V(R). Thus, separa

tivity for a ring R is equivalent to any of the following conditions holding for all modules 

A,B,C E FP(R): 
(ii) If 2A,...., 2B and 3A,....., 3B, then A"'"' B. 

(iii) If there exists n EN such that nA,...., nB and (n + l)A"'"' (n + l)B, then A~ B. 

(iv) If A EB C "'"' B EB C and C is isomorphic to direct summands of both mA and nB 

for some m, n EN, then A"'"' B. 

We refer to property (iv) as separative cancellation. In case R is an exchange ring, 

separativity is also equivalent to the condition 

( v) If A EB 2C "'"' B EB 2C, then A EB C "'"' B EB C 

for A, B, C E F P(R). In [4, Theorem 3.4], we show that R is separative if and only if all 

regular square matrices over each corner ring eRe are diagonalizable over eRe. 

Many large classes of rings of interest are separative. For instance: 

(1) All rings R with stable rank 1, since FP(R) is cancellative in that case [22, Theorem 

2]. This includes all unit-regular rings as well as all strongly 1r-regular rings [3, Theorem 

4], and hence all algebraic algebras over a field. 
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(2) Any ring whose finitely generated projective modules enjoy uniqueness of square 

roots (2A ,..; 2B ===} A ~ B), because of condition (ii) above. This includes all right 

~ 0 -continuous regular rings [1, Theorem 2.13] and all right self-injective rings ( e.g., [24, 

Theorem 3]), as well as all AW*-algebras - even all Rickart C*-algebras (see [2, Theorem 

2.7]). 

(3) In light of the Extension Theorem that we prove in Section 4, many seemingly patho

logical examples of regular rings in the literature, from Bergman's example of a directly 

finite regular ring which is not unit-regular [25, Example 4.26] to the rings constructed in 

[5] and [6], are actually separative. 

The examples just mentioned illustrate the point that all known classes of exchange 

rings are separative. Outside the class of exchange rings, however, separativity can easily 

fail. Examples include the first Weyl algebra and the coordinate ring of the 2-sphere ( cf. 

[28, Section 2]). It is not difficult to see that a commutative ring R is separative only if 

F P( R) is actually cancellative. 

Proposition 2.2. The class of separative exchange rings is closed under taking corners, 

finite matrix rings, arbitrary direct products, direct limits, and factor rings. 

Proof. Closure under direct products and direct limits is easy, using Lemma 1.1 and the 

definition of separativity. We leave that part of the proof to the reader. That separativity 

passes to factor rings of exchange rings is easiest to prove using monoid calculations. Since 

we will need the corresponding monoid result later, we defer the proof to Lemma 4.3. 

Finally, let R be an exchange ring and T either a corner eRe or a matrix ring Mn(R). 

Then Tis an exchange ring because it is the endomorphism ring of an object in FP(R). 

In the first case, V(T) ,...., V(ReR) ~ V(R) by Lemma 1.5, while in the second case 

V(T) = V(Te11T) ,...., V(e11Te11) ~ V(R) by the same lemma, where e11 is the usual 

matrix unit. In either case, separativity therefore passes from V(R) to V(T). 0 

Our first application of separativity is to the stability of direct finiteness under the 

formation of matrix rings. Recall that a module A is called directly finite or directly 

infinite according to whether or not A is isomorphic to a proper direct summand of itself. 

A ring R is said to be directly finite provided RR is a directly finite module; equivalently, 

xy = 1 implies yx = 1 for x, y E R. We say that R is stably finite if all matrix rings Mn(R) 

are directly finite; equivalently, if all finitely generated projective R-modules are directly 

finite. 

Proposition 2.3. Any directly finite separative ring R is stably finite. 

Proof. Suppose that nR EB C ,...., nR for some n E N and C E FP(R). Then we have 

(n - l)R EB (R EB C),...., (n - l)R EB R. Since R is separative, we can cancel (n - l)R from 

both sides, obtaining R EB C ,...., R. Then since R is directly finite, we conclude that C = 0. 

Therefore R is stably finite. 0 

An interesting situation in which separativity occurs is the case of an a-simple 'purely 

infinite' monoid, as follows. This is a monoid version of an argument of Cuntz [20, Theorem 

1.4, Proposition 1.5]. 

Proposition 2.4. Let M be an a-simple conical monoid, and assume that for every nonze

ro element a EM, there exists a nonzero element b EM such that a+ b = a. Then Mis 
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a separative refinement monoid. In fact, the set M* = M \ { 0} is a group. 

Proof. Since Mis conical, M* is closed under addition. We claim that given any x, y E M*, 

there exists an element z E M* such that x + z = y. By hypothesis, y + b = y for some 

b E M*, and we observe that y + nb = y for all n E N. Since M is o-simple, x :::; nb for 

some n. Then x + x' = nb for some x' E M, and x + (x' + y) = y. Since M is conical, 

x' + y E M*, and the claim is proved. 

The claim above implies that M* is a group ( e.g., [18, Section 3.2, Theorem l]). In 

particular, M* is cancellative, and it follows immediately that M is separative. It also 

follows easily that M* is a refinement monoid, and therefore that M is one as well. D 

Corollary 2.5. Let R be a simple ring. If every nonzero finitely generated projective 

R-module is directly infinite, then R is separative. D 

Corollary 2.6. If Risa simple exchange ring which is not separative, then R has a corner 

eRe which is a directly finite, simple, non-separative exchange ring. 

Proof. By Corollary 2.5, there must be some nonzero A E F P(R) which is directly finite. 

Now A= A1 EB··· EB An for some Ai which are isomorphic to direct summands of RR, and 

these Ai must be directly finite. Hence, there exists a nonzero idempotent e E R such that 

eR is a directly finite module. Thus eRe is a directly finite simple exchange ring. Since 

V(eRe) ~ V(ReR) = V(R) by Lemma 1.5, eRe cannot be separative. D 

Although separativity for a ring R is an 'external' condition in that it involves all the 

modules from F P(R), it is equivalent to a corresponding 'internal' version involving direct 

summands of R in case R is an exchange ring (Corollary 2.9). En route to proving this, 

we give the main reduction step as a lemma that will be used again later. 

Lemma 2. 7. Let M be a refinement monoid, and let a, b, c E M with a+ c = b + c. 

(i) There exist decompositions a= a1 + a2 and b = b1 + b2 together with c = c1 + c2 in 

M such that a1 = b1 and a2 + c2 = b2 + c2 = c. 

(ii) If c:::; a and c:::; b, there exist decompositions as in (i) such that c2 :::; a2 and c2 :::; b2 . 

Proof. (i) Since a+ c = b + c, there exists a refinement matrix 

c 

a2) 
Cz 

Set b1 = a1 and c1 = az. 
(ii) We modify the decompositions obtained in (i). Since c2 :::; c:::; a = a1 + a2 , we can 

write c2 = c' + c" with c' :::; a1 and c" :::; a2 . Then a1 = c' + d for some d, and we obtain 

decompositions 

a = d + ( a2 + c'), b = d + (b2 + c'), c = ( c1 + c') + c" 

such that ( a2 + c') + c" = (b2 + c') + c" = c and c" :::; a2 :::; a2 + c'. Thus, after replacing 

the original decompositions of a, b, c with these new ones, we may assume that c2 :::; a2 . 

Note that the procedure just performed reduces c2 while enlarging a2 and b2 • Therefore 

we need only repeat the procedure with the roles of a and b reversed. D 
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Proposition 2.8. Let M be a refinement monoid containing an order-unit u. Then Mis 

separative if and only if, for a, b, c E M, if a+ c = b + c S u with c S a and c S b, then 

a= b. 

Proof. Assume that the given special cases of separativity hold, and suppose that a+ c = 
b + c for a, b, c E M with c ex a and c ex b. As in the proof of Lemma 2.l[(v)===}(iv)], we 

can reduce to the case that c S { u, a, b}. 

Now there exist decompositions a= a1 + a2, b = b1 + b2, and c = c1 + c2 as in Lemma 

2.7(i). Since a2 + c2 = c S u, we may - by hypothesis - cancel c2 from the equation 

a2 + c2 = b2 + c2 • Therefore a2 = b2, and hence a = b as desired. D 

Corollary 2.9. Let R be an exchange ring. Then R is separative if and only if whenever 

A EB C '.:::'. B EB C ;:S(!) R with C ;:S(!) A and C ;:S(!) B, it follows that A"' B. D 

3. STABLE RANK 

It has been known for some time that stable rank conditions on endomorphism rings 

imply various cancellation properties [22, 46]. For a regular ring R, a combination of 

results of Kaplansky, Fuchs and Handelman shows that R has stable rank 1 if and only if 

RR cancels from direct sums ( cf. [25, Theorem 4.5 and Proposition 4.12]). This equivalence 

was recently extended to exchange rings by Yu [50, Theorem 9]; see also [16, Theorem 3]. 
Further, Menal and Moncasi proved that bounds on the stable rank of a regular ring R 

are equivalent to cancellation conditions in FP(R) [36, Theorem 3]. 
We prove that for any exchange ring R, the stable rank of R is determined by cancel

lation conditions within F P( R). This allows us to restrict the stable rank severely in the 

separative case - namely, the stable rank of a separative exchange ring can only be 1, 2, 

or oo. 

Recall that a ring R satisfies the n-stable rank condition (for a given positive integer n) if 

whenever a1, ... ,an+1 ER with a1R+· · ·+an+1R = R, there exist elements b1, ... , bn ER 

such that 

If n is the least positive integer such that R satisfies the n-stable rank condition, then R 

is said to have stable rank n, and we write sr(R) = n. If no such n exists, then sr(R) = oo. 

The reader is referred to [ 44] for the basic properties of stable rank. 

Lemma 3.1. [39, Proposition 2.9] The following conditions are equivalent for a projective 

module P: 

(i) P has the finite exchange property. 

(ii) If P = M1 +···+Mn, where the Mi are submodules of P, then there is a decom

position P = P1 EB··· EB Pn with Pi ~ Mi for each i. 

(iii) If P = M + N, where M and N are submodules of P, then there exists a direct 

summand P1 of P such that P1 ~ M and P = P1 + N. D 

Theorem 3.2. Let R be an exchange ring, P E F P(R), and n E N. Then sr(EndR(P)) S 
n if and only if the following condition holds: 

(t) Whenever X, YE FP(R) with nP EB X "'P EBY, there exists Q E FP(R) such that 

nP C=1 P EB Q and Y "'X EB Q. 
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Proof. Set S = EndR(P). The implication ( ===}) is due to Warfield [46, Theorem 1.3], 

and is valid -without the exchange property. 

Conversely, assume that ( t) holds, and let a1, ... , an+l be elements in S such that 

a1S+· · ·+an+1S = S. By Lemma 3.1, there exist orthogonal idempotents e1, ... , en+I ES 

such that e1 + · · · + en+I = 1 and eiP ~ aiP for all i; it follows that eiS ~ aiS, Choose 

elements Xi E Sei such that ei = aiXi, and set Ji = Xiai, Then adi = aiXiai = eiai, 

Further, JiXi = Xi, and hence fr = Ji. 
Note that eiP '.::::'. fiP for all i. Hence, we have 

nP EB en+1P = fiP EB (1 - Ji )P EB··· E9 J nP EB (1 - J n)P EB en+1P 

'.::::'. e1P EB··· EB en+1P EB (1 - fi)P EB··· EB (1 - J n)P 

= P EB (1 - fi)P EB··· EB (1 - Jn)P. 

By (t), there exists a projective Q E FP(R) such that nP "'P EB Q and 

Therefore there exist elements ti E en+1S(l - Ji) and Si E (1 - Ji)Sen+I such that 

I::1 tiSi = en+l· Note that aiSi = ai(l - Ji)Si = (1 - ei)aiSi for all i ~ n. 

For i = 1, ... , n, set Zi = en+1ai(l - Ji) and Ci= Xn+1(ti - zi), and observe that 

n 

di =Si+ Xi - Xi L ajSj 
j=l 
#i 

for i = 1, ... , n. Since Xi = Ji Xi while tdi = zdi = 0, we compute that 

n n n n 

= :r>iSi +Lei+ L(ai - Zi)Si - L ejaiSi 
i=l i=l i=l i,j=l 

i=j:j 
n n 

= 1 + L( ai - Zi)Si - L(l - ei - en+1)aiSi = 1. 
i=l i=l 

Therefore I:~=1(ai + an+1ci)S = S, which verifies that sr(S) ~ n. D 

Theorem 3.2 shows in particular that if P cancels from direct sums in FP(R), then 

EndR(P) has stable rank 1. The converse follows from Evans' theorem [22, Theorem 2]. 

Hence, we obtain a new proof of Yu's result that an exchange ring R has stable rank 1 if 

and only if RR cancels from direct sums [50, Theorem 9]. 
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Theorem 3.3. Let R be a separative exchange ring and Pa finitely generated projective 

R-module. 

(a) sr(EndR(P)) can only be 1, 2, or oo. 

(b) sr(EndR( P)) < oo if and only if the following condition holds: 

for all X, YE FP(R). 

Proof. It is clear from Theorem 3.2 that the condition given in (b) implies sr(EndR(P)) :=::; 

2. It remains to deduce this condition from the assumption that sr(EndR(P)) = n < oo. 

Suppose that 2P ffi X "'P ffi Y for some X, Y E F P(R); we wish to show that P ffi X "'Y. 

Because of the separativity of FP(R), it suffices to prove that P ;S© nY. By adding 

( n - 1) Y to both sides of the isomorphism 2P EB X ~ P ffi Y and repeatedly replacing P ffi Y 

by 2P EB X on the left hand side, we obtain nP ffi (P ffi nX) ~ P ffi nY. Since EndR(P) has 

stable rank n, there exists Q E F P(R) such that nP "' P ffi Q and nY "' (P EB nX) EB Q. 
Therefore P ;S© nY as desired. D 

Theorem 3.4. Let R be a separative exchange ring. If R is simple and directly_ finite, 

then sr(R) = 1. 

Proof. In view of Theorem 3.2, it suffices to show that F P(R) is cancellative. Suppose 

A, B, C are in F P( R) with A ffi C "' B ffi C. If one of A or B is 0, then so is the other, since 

R is stably finite (Proposition 2.3). If both A and B are nonzero, then by simplicity of R, 

we have C ;S© nA and C ;S© nB for some n. Now by separative cancellation in FP(R), 

we obtain A ~ B. Therefore F P( R) is cancellative, as desired. ( An alternative method of 

proof can be found at the end of [28, Section 3]). D 

Returning to Theorem 3.2 for a moment, we note that this result shows that the stable 

rank of an exchange ring R is determined by the monoid V(R). To simplify the connection, 

it is convenient to introduce a definition of stable rank for elements of a monoid, modelled 

on the condition appearing in the theorem. 

Let M be a monoid, a an element of M, and n EN. We say that a satisfies then-stable 

rank condition provided the following implication holds: Whenever na+x = a+y for some 

x, y EM, there exists b EM such that na =a+ bandy= x + b. (Note that then-stable 

rank condition implies the m-stable rank condition for all integers m ~ n.) The stable 

rank of a, denoted sr( a), is the least positive integer n such that a satisfies the n-stable 

rank condition (if such an n exists), or oo (if no such n exists). 

Theorem 3.2 can now be restated as follows: Given a finitely generated projective 

module P over an exchange ring R, the stable rank of the ring EndR(P) equals the stable 

rank of the element [P] in the monoid V(R). In particular, sr(R) = sr([R]). 

We conclude the section by noting a recent result of Wu and Tong: If R is an exchange 

ring such that all idempotents in R/ J(R) are central, then FP(R) is cancellative [49, 

Theorem 2.5]. 

4. EXTENSIONS 

We now develop an Extension Theorem for separativity, which shows that the class of 

separative exchange rings is closed under extensions in the following sense - whenever R 
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is an excha~ge ring with an ideal I such that I and R/ I are both separative, then R is 

separative. (The exchange property for R must be assumed at the outset, since the class 

of exchange rings is not closed under extensions.) 

We say that an ideal I of a ring R is a separative ideal if V(I) is a separative monoid. 

The following characterization of separative ideals of exchange rings is clear from Lemma 

1.5. 

Lemma 4.1. Let R be an exchange ring and I an ideal of R. Then I is separative if and 

only if all corner rings eRe, for idempotents e E I, are separative. D 

Theorem 4.2. (Extension Theorem) Let R be an exchange ring and I an ideal of R. 

Then R is separative if and only if I and R/ I are separative. 

Proof. The result will follow from Theorem 4.5 and Proposition 1.4. 0 

Theorem 4.2 shows that separativity leads to better closure properties than cancellativ

ity. Namely, if R is an exchange ring and I is an ideal of R such that V(R/ I) and V(I) 
are cancellative then V(R) need not be cancellative; see for example [25, Example 4.26] or 

[36, Example 1). However, Theorem 4.2 shows that V(R) must at least be separative, and 

we shall see in the next section that it in fact satisfies a rather strong form of separativity. 

We derive Theorem 4.2 from a corresponding extension theorem for separative refine

ment monoids. The monoid approach proved invaluable here. Indeed, we were unable to 

prove Theorem 4.2 with module-theoretic methods, and it was only the perspective afford

ed by phrasing the problem in terms of refinement monoids that indicated a route to the 

solution. 

Lemma 4.3. Let M be a separative monoid and S an a-ideal of M. Then M/ S is 

separative. 

Proof. Assume that 2[a]s = [a]s + [b]s = 2[b]s for some a, b E M. Then there exist 

e1, e2, e3 E S such that 2a + e1 = a + b + e2 = 2b + e3. After replacing each ei by ei + e3, 

we may assume in addition that e3 :::; 2e2. Now observe that 

with a :::; a+ e1 and a :::; 2a + e1 = 2b + e3 :::; 2(b + e2). By Lemma 2.l(iv), we obtain 

a+ e1 = b + e2 since Mis separative. Therefore [a]s = [b]s. 0 

Lemma 4.4. Let M be a refinement monoid and S a separative a-ideal of M. Assume 

that a + e = b + e for some a, b E M and e E S such that e ex: a and e ex: b. Then a = b. 

Proof. As in the proof of Lemma 2.l[(v)==Hiv)], we can reduce to the case that e:::; a and 

e:::; b. By Lemma 2.7, there exist decompositions 

such that a1 = b1 and a2 + e2 = b2 + e2 :::; e, while also e2 :::; a2 and e2 :::; b2. Since e lies 

in S, so do a2, b2, e2. Hence, a2 = b2 because S is separative, and therefore a = b. 0 

I .· 

! 
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We are n<?w ready to prove our extension theorem for separative refinement monoids. 

The hypotheses of the theorem include the assumption that the whole monoid has refine

ment, since, in general, an extension of two separative refinement monoids has neither 

separativity nor refinement. For example, consider the (abelian) monoid M generated by 

symbols a, b, c subject to the relation a+ 2c = b + 2c. The order ideal S of M generated by 

c is just the free abelian monoid on c, and the factor M / S is the free abelian monoid gener

ated by [a]s = [b]s. However, Mis neither separative (2(a+c) = (a+c)+(b+c) = 2(b+c), 

yet a + c #- b + c) nor a refinement monoid ( the relation a + 2c = b + 2c cannot be refined). 

Theorem 4.5. Let M be a refinement monoid and S an o-ideal of M. Then M is 

separative if and only if S and M / S are separative. 

Proof. If M is separative, then Sis obviously separative and M / S is separative by Lemma 

4.3. 

Assume now that Sand M/ Sare separative and that 2a = a+b = 2b for some a, b EM. 

We have to prove that a = b. Let M' be the o-ideal generated by a, which equals the o

ideal generated by b. Set S' = M' n S. Then S' is a separative o-ideal of M', and M' / S' is 

isomorphic to a submonoid of M / S, whence M' / S' is separative. Thus, changing notation, 

we can assume that M is the o-ideal generated by a. 

Since M / S is separative, we have [a]s = [b]s and so a+ x = b + y for some x, y E S. 

Now 

2a + x = a + b + x = 2b + y = 2a + y. 

Apply refinement to the equality a+ a+ x =a+ a+ y to obtain a refinement matrix 

y 

Y1) Y2 

Y3 

Next, apply refinement to the equality an +a12 +y1 = a12 +a22 +x2 to obtain a refinement 

matrix 
a12 a22 x2 

:~~ ( ~:~ ~:: ~::) 
Y1 C31 C32 C33 

In particular, c12::; {an,a22}, and so we can remove c12 from an and a22 as long as we 

add it to a12 and a21, More precisely, we obtain a new refinement matrix for the equality 

a+ a+ x =a+ a+ y as follows: 

a 

c12 + a12 

C22 + C32 

X2 

y 

Y1) Y2 

Y3 

Further, c11 + c13 ::; a12 + x2 ::; c12 + a12 + x2 and c22 + c32 ::; a12 + Y1 ::; c12 + a12 + Y1. 

Hence, after replacing our first refinement matrix with the new one, we may assume that 

an ::; a12 + x2 and a22 ::; a12 + Y1. 
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With a similar argument, based on a refinement of the equality au + azI + XI = azI + 
a22 + Yz, we -may assume in addition that au ~ azI + Yz and a22 ~ azI + XI. 

Observe that XI,x2,Y1,Y2 E S. Hence, in M/S we have [an]s + [a12]s = [a]s = 
[au]s + [a21]s, with [a11]s ~ {[a12]s, [a21]s}. Since M/ S is separative, [aiz]s = [a21]s, 
and thus a12 + tI = a21 + tz for some tI, tz E S. 

Now we have 

a + x + tI = au + a12 + YI + x + tI = au + a21 + YI + x + tz 

= a + Y1 + xz + Y3 + tz = a21 + a22 + y + xz + tz 

= a12 + a22 + y + xz + t1 = a + y + tI. 

Since tI E S and tI ex a (because the o-ideal generated by a is M), Lemma 4.4 gives us 

a + x = a + y. Finally, note that a + y = a + x = b + y with y E S and y ex a, y ex b, so 

that Lemma 4.4 yields a= b as desired. D 

5. STRONG SEPARATIVITY 

As indicated in the previous section, there is a strong form of separativity that can 

hold even when cancellation still fails. The Extension Theorem leads to a corresponding 

result for strong separativity which allows us to show that the finitely generated projective 

modules over many exchange rings, including a number of seemingly pathological examples, 

satisfy strong separativity. 

Lemma 5.1. Let C be a class of modules, closed under finite direct sums. Then the 

following conditions are equivalent: 

(a) For A, B, CE C, if A EB C,...., B EB C and C ;::;ai nA for some n EN, then A,...., B. 

(b) For A, BE C, if 2A,...., A EBB, then A~ B. 

( c) For A, B, CE C, if A EB 2C,...., B EB C, then A EB C,...., B. 

Proof. Straightforward. (Compare [6, Proposition 4.2].) D 

We shall say that a class C of modules, closed under finite direct sums, is strongly sepa

rative if the conditions of Lemma 5.1 hold. Condition (a), for finitely generated projective 

modules, was considered in [6] under the name cancellation of small projectives. 

Let us say that a ring R (or an ideal I of R) is strongly separative provided FP(R) 

(or FP(I)) is strongly separative. As with Lemma 4.1, it is clear from Lemma 1.5 that 

an ideal I of an exchange ring R is strongly separative if and only if the corner rings 

eRe are strongly separative for all idempotents e E I. Strongly separative exchange rings 

form a large subclass of separative exchange rings. On the other hand, since members of 

this subclass have stable rank at most 2 (see Theorem 3.3), there are many examples of 

separative exchange rings which lie outside this subclass. In fact, there exist separative 

regular rings with rank functions which are not strongly separative (see [5, Example 3.8]; 

Theorem 4.2 can be used to show that these examples are separative). The exact connection 

between separativity and strong separativity will be given in Proposition 5.6. 

We can now state our Extension Theorem for strong separativity in exchange rings. 

This result will follow immediately from Proposition 1.4 and Theorem 5.5. 
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Theorem 5.2. Let R be an exchange ring and I an ideal of R. Then R is strongly 

separative i{and only if so are I and R/ I. D 

As an application of Theorem 5.2 we see that right semiartinian exchange rings are 

strongly separative. Bergman's example of a directly finite regular ring R which is not 

unit-regular [25, Example 5.10] is right and left semiartinian; hence, V(R) is strongly 

separative but not cancellative. Note that [7, Example 3.1] gives an example of a directly 

finite regular ring which is right semiartinian and a right V-ring (i.e., all simple right 

modules are injective), but not unit-regular. 

The analog of Lemma 5.1 for a monoid Mis that the following conditions are equivalent: 

(a) For a, b, c EM, if a+ c = b + c and c ex a, then a= b. 

(b) For a, b E M, if 2a = a+ b, then a = b. 

( c) For a, b, c E M, if a + 2c = b + c, then a + c = b. 
We say that M is strongly separative provided these conditions are satisfied. 

Lemma 5.3. If Sis an a-ideal of a strongly separative monoid M, then Sand M/S are 

strongly separative. 

Proof. Obviously Sis strongly separative. Consider a, b E M such that 2[a]s = [a]s + [b]s 

in M/ S. Then there exist e, f ES such that 2a+e = a+b+ f, that is, (a+e)+a = (b+ f)+a. 
Since a ~ a+ e, it follows from strong separativity in M that a+ e = b + f. Therefore 

· [a]s = [b]s, proving that M /Sis strongly separative. D 

Lemma 5.4. A monoid M is strongly separative if and only if M is separative and all 

the a-simple factors of principal a-ideals of M are cancellative. 

Proof. Any factor of an o-ideal of M is strongly separative by Lemma 5.3. Since an 

a-simple strongly separative monoid is cancellative, we get one of the implications. 

Now assume that M is separative and that all the a-simple factors of all the principal 

o-ideals of M are cancellative. Let a, b E M be such that 2a = a + b. Denote by I and 

J the a-ideals generated by a and b respectively. Clearly J ~ I. If I = J then a = b by 

separativity of M. If J is strictly contained in I, then we can choose a maximal proper 

o-ideal S of I containing J, and we obtain that 2[a]s = [a]s =I- [O]s in I/ S, contradicting 

the assumption that I/ S is cancellative. Therefore a = b and M is strongly separative. D 

Theorem 5.5. Let M be a reflnement monoid and San a-ideal of M. Then Mis strongly 

separative if and only if S and M / S are strongly separative. 

Proof. One implication is given by Lemma 5.3. Conversely, assume that S and M / S are 

strongly separative. Then all the a-simple factors of principal o-ideals of S and M / S are 

cancellative. Now consider an arbitrary a-simple factor I/ J of a principal o-ideal I of M. 

If I n S ~ J, then 

I I J = I/ ( I n ( J + S)) IV ( I + S) / ( J + S) IV ( ( I + S) / S) / ( ( J + S) / S) 

with (I+ S)/S a principal o-ideal of M/S. On the other hand, if In S </:_ J, then 

(In S) + J = I by the maximality of J and so I/ J ~(In S)/(J n S); since this monoid 

has an order-unit, it is isomorphic to a factor of a principal o-ideal of S. In either of the 

above cases, we conclude that I/ J is cancellative. Since M is separative by Theorem 4.5, 

the result follows from Lemma 5.4. D 

We conclude the section with the following ring-theoretic analog of Lemma 5.4. 
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Proposition 5.6. An exchange ring R is strongly separative if and only if R is separative 

and all simple factor rings of corners of R are directly finite, if and only if R is separative 

and all simple factor rings of corners of R have stable rank 1. 

Proof. This follows from Propositions 1.4, Theorem 3.4, and Lemmas 1.5, 5.4, together 

with the observation that the principal o-ideals of V ( R) are precisely the o-ideals of the 

form V(ReR) for idempotents e E R. It is clear that V(ReR) is the o-ideal generated by 

[eR]. Conversely, the o-ideal of V(R) generated by a class [A] is easily seen to equal V(I) 

where I is the trace ideal of A. We can write A ,...., e1 R EB · · · EB enR for some idempotents 

ei E R, and then I = Re1R + · · · + RenR. In view of Lemma 1.5, I = ReR for some 

idempotent e, and the proof is complete. 0 

6. SEPARATIVE REGULAR RINGS 

Since regular rings. constitute the most thoroughly investigated class of exchange rings, 

and since many of the cancellation problems to which separativity is related were originally 

formulated over regular rings, we summarize our main results in this context and discuss 

their relations with various open questions. In particular, we observe that several basic 

open problems in this area have positive answers within the class of separative regular 

rings. We also develop an elementwise characterization of separativity for regular rings, 

which we use to pinpoint the relationship between separativity and unit-regularity. 

Separativity for regular rings is apparently the norm, in that it holds for all known 

classes of regular rings and is preserved in standard constructions. For instance, the class 

of separative regular rings includes all unit-regular rings, all right or left ~0 -continuous 

regular rings (see [1, Theorem 2.13]), and all regular rings satisfying general comparability 

- in fact, all regular rings satisfying 'generalized s-comparability' [41, Theorem 3.9(2)]. 

By Proposition 2.2, this class is closed under taking corners, finite matrix rings, arbitrary 

direct products, direct limits, and factor rings. Further, the class is closed under extensions 

of ideals by factor r1ngs, by [25, Lemma 1.3] and the Extension Theorem ( 4.2). 

The presence of separativity in a regular ring has a number of nontrivial positive impli

cations, which we summarize in the following theorem. For this reason, separativity was 

awarded a 'blue ribbon' in [28]. 

Recall that a ring Risa right (left) Hermite ring [33] provided every 1 x 2 (2 x 1) matrix 

over R is equivalent to a diagonal matrix. These conditions are equivalent for regular rings 

[36, Proposition 8]. Further, a regular ring R is Hermite if and only if 

2R EB A rv R EB B 

for all A,B E FP(R) [36, Theorem 9]. 

Theorem 6.1. Let R be a separative regular ring. 

(a) If R is directly finite, then R is stably finite. 

(b) If R is simple and directly finite, then R is unit-regular. 

( c) The stable rank of R is 1, 2, or oo. 

( d) If R has finite stable rank, then Risa Hermite ring. 

( e) Every square matrix over R is equivalent to a diagonal matrix. 

Proof. Properties ( a)-( d) follow directly from Proposition 2.3 and Theorems 3.3, 3.4. Part 

(e) is [4, Theorem 2.5]. 0 
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Each of ~he five parts of Theorem 6.1 is itself the subject of an outstanding open 

problem - namely, does that implication or statement hold universally for regular rings? 

Parts (a) and (b) correspond to Open Problems 1 and 3 in [25], parts (c) and (d) arose 

from [36], while part (e) corresponds to Question 6 in [37]. It is generally regarded that, 

on balance, the first four of these problems ( which are seemingly independent) are likely to 

have negative answers. In this light, it seems rather likely that non-separative regular rings 

should exist. One of the reasons that current construction techniques have not yielded non

separative examples is that the class of separative regular rings is closed under extensions. 

This is in sharp contrast with, say, the class of unit-regular rings. For instance, the first 

example by Bergman of a directly finite regular ring which is not unit-regular [25, Example 

5.10] was constructed as an extension of two unit-regular (in fact, semisimple) rings. 

As Theorem 6.1 and the discussion above show, separativity plays a key role in the 

direct sum decomposition theory of regular rings. Thus the question whether separativity 

holds universally appears as a fundamental problem, which we emphasize by formulating 

the 

Separativity Problem. Are all regular rings separative? 

For a regular ring R, cancellativity for F P(R) can be characterized entirely within the 

ring R by an elementwise property, namely, that each a E R be unit-regular ( a = aua 

for some unit u ). Unit-regularity of certain elements of R also serves to characterize 

separativity. The characterization is as follows; we write r( a) and f( a) for the right and 

left annihilators of an element a. 

Proposition 6.2. A regular ring R is separative if and only if each a E R satisfying 

(*) Rr(a) = f(a)R = R(l - a)R 

is unit-regular in R. 

Proof. Firstly assume that R is separative and a E R satisfies (*). Let J = R(l - a )R 

and choose an idempotent g E J such that 1 - a E gRg. (Such an idempotent exists by 

[31, Lemma 2.4].) Note that J = RgR and a= y + (1 - g) where y = ag = ga is in gRg. 

Also r( a) ~ g R and £(a) ~ Rg. Let A = r( a) and choose principal right ideals B and C 
such that gR = A EB C = B EB yR. Then yR = agR = aC,....., C, so A EB C,....., B EB C. Now 

gR ~ J = RA by (*), whence gR ;S(f) nA for some n. Also by the second equality in (*), 
gR ~ J = f(a)R and so gR ;S(f) m(R/aR),....., m(gR/yR),....., mB for some m. Therefore by 

separative cancellation we can cancel C from A EB C '.:::::'. B EB C to obtain A ,....., B. Finally, 

we see that a is unit-regular because r(a) =A,....., B,....., gR/yR,....., R/aR. 

Conversely, assume (*) always implies the element a is unit-regular. By Corollary 2.9, 

it is enough to show that we can obtain cancellation of C in the special case 

A EB C ~ B EB C <(£) R 
rv 

where A, B, C are principal right ideals of R satisfying C ;S(f) A and C ;S(f) B. Write 

R = A1 EB C1 EB D = B1 EB C2 EB D where A1 ,....., A and B1 ,....., B while C1 ,....., C2 ~ C. Let 

a E R induce (by left multiplication) an endomorphism of RR which is zero on A1 , an 
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isomorphism from C1 onto C2 , and the identity on D. Then (1 - a)R ;:5$ A 1 E9 C1 ;S$ 
2A1 = 2r(a)~ whence (1 - a)R ~ Rr(a) and so R(l - a)R = Rr(a). Also, R/aR'"" B 1 

yields (l-a)R ;S$ A1 E9C1 '""B1 E9C2 ;S$ 2B1 '""2(R/aR), and therefore (l-a)R ~ R(a)R. 
Hence, R(l - a)R = R(a)R. Now a satisfies(*) and so, by assumption, a is unit-regular. 

Thus r(a) ~ R/aR which implies A'"" A1 = r(a) ~ R/aR'"" B 1 '.::::'.Band yields the desired 

cancellation. D 

Proposition 6.2 allows us to give the following connection between separativity and 

unit-regularity, parallel to [6, Proposition 4.9]. 

Proposition 6.3. A regular ring R is unit-regular if and only if R is separative, every 

factor ring of R is directly finite, and units can be lifted modulo every ideal of R. 

Proof. Direct finiteness and separativity are obvious consequences of unit-regularity. That 

units lift is an old folklore result, recently recorded in [7, Lemma 3.5]. 

Conversely, assume that the given conditions hold, and let a E R and I = Rr( a). In the 

factor ring R = R/ I, the right annihilator of 7i is zero, and so Ra= R. By assumption, 7i is 

a unit of Rand lifts to a unit u ER. Set b = u-1a. Then I= Rr(b) and 1- b EI, whence 

Rr(b) = R(l - b )R 2 R(b )R. Since R/ R(b )R is directly finite, we obtain that r(b) ~ R(b )R. 
Thus Rr(b) = R(b)R = R(l - b)R, which by separativity and Proposition 6.2 implies bis 

unit-regular. Now b equals a unit times an idempotent, whence a= ub has the same form, 

and so a is unit-regular. Therefore R is unit-regular. D 

7. APPLICATIONS TO OPERATOR ALGEBRAS 

The cancellation problems for finitely generated projective modules over regular rings 

discussed in the previous section all have analogs over C*-algebras, although in that setting 

it is common to phrase them in terms of orthogonal sums of projections (self-adjoint 

idempotents). The parallels between the two situations, in terms of what is known and 

what is open, are particularly striking for C*-algebras whose 'real rank' (see below) is 

zero. We prove here that these parallels are not just coincidental - the C*-algebras with 

real rank zero are precisely those C*-algebras which are exchange rings .. This theorem 

then allows our separativity results to be applied to C*-algebras with real rank zero. We 

summarize the main applications using operator algebra terminology and notation, for the 

convenience of operator algebraic readers. 

We refer the reader to [9] and [26] for background and notation for C*-algebras. In 

particular, we use'"" and ;S to denote Murray-von Neumann equivalence and subequivalence 

of projections, and we write M 00 (A) for the (non-unital) algebra consisting of w xw matrices 

over an algebra A with only finitely many nonzero entries. Unless specifically noted, our 

C*-algebras are not assumed to be unital. 

The concept of real rank zero for a C*-algebra A has a number of equivalent character

izations (see [14]). The one that relates most naturally to orthogonal sums of projections 

is the requirement that each self-adjoint element of A can be approximated arbitrarily 

closely by real linear combinations of orthogonal projections. (This is usually phrased as 

saying that the set of self-adjoint elements of A with finite spectrum is dense in the set 

of all self-adjoint elements.) The main result of this section is that the unital C*-algebras 

of real rank zero are exactly the C*-algebras which are exchange rings. Since the class of 
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C*-algebras of real rank zero is quite large (see for example [11]), this gives a wealth of 

new examples of exchange rings. In particular, all von Neumann algebras, AF-algebras, 

irrational rotation algebras and simple purely infinite C*-algebras are exchange rings. (See 

[ 11] and the references therein.) 

Lemma 7.1. Let A be a unital Banach algebra such that for each a EA there exists an 

idempotent e E Aa satisfying Ill - ell ::; 1 and Ila - aell < 1. Then A is an exchange ring. 

Proof. Let a E A, and choose an idempotent 1 - e E A(l - a) with llell ::; 1 such that 

11(1 - a) - (1 - a)(l - e)II < 1. Then lie - aell < 1, and as llell ::; 1, we have that 
lie - eaell < 1. Thus, eae is invertible in the Banach algebra eAe. Let t E eAe such 

that t(eae) = (eae)t = e, and set g = e + ta(l - e). Then, g = g2 and also ta = 

ete(ea) = ete(eae + ea(l - e)) = e + ta(l - e) = g, whence g E Aa. On the other hand, 

1 - g = 1- e -ta(l - e) = (1 - ta)(l - e) E A(l - e) ~ A(l - a). By Lemma 1.1, A is an 

exchange ring. D 

Let A be a C*-algebra. For E > 0, denote by !€ the continuous function from R to R 

which is O on (-oo, E/2], linear on [c/2, El, and 1 on [E, +oo ). For a positive element x in 

A, the set {JE(x) IE> O} forms an approximate identity for the hereditary sub-C*-algebra 

generated by x, namely (xAx)-. As noted in [42, proof of Theorem 7.2], if for each E > 0 

there is a projection p€ EA such that fzc(x)::; p€::; f€; 2 (x), then the projections p€ form 

an approximate identity for (xAx)-. 

Theorem 7.2. Let A be a unital C*-algebra. Then the following conditions are equivalent: 

(a) A has real rank zero. 

(b) A is an exchange ring. 

( c) For any positive element x in A and any E > 0, there exists a projection p E xAx 

such that f€ ( x) E pAp. 

( cl) For each positive element x E A, there exists a projection pin A such that p E xA 

and 1 - p E (1 - x )A. 

Remark. As the proof shows, it is also equivalent to ask that conditions ( c) or ( cl) hold for 

all self-adjoint elements, or that condition ( d) hold for elements x such that O ::; x ::; 1. 

Proof. ( a) =} (b ). By a result of Menal [35, Proposition 4.8], every unital C*-algebra 

with real rank zero satisfies the hypothesis of Lemma 7.1. 

(b) =} ( c ). Let x ::::: 0 in A and E > 0. By Lemma 1.1, there exists an idempotent 

e EA such that e E JE; 2(x)A and 1- e E (1-f€;2 (x))A. Observe that JE;4(x)e = e, 

so that g := ef€;4(x) is an idempotent and eA = gA. Now set z = 1 + (g* - g)(g - g*) 

and observe that p = g*gz-1 is a projection in A ( cf. [9, Proposition 4.6.2]). Note that 

pA = g* A~ JE;4(x)A and sop E f€;4(x)Af€;4(x) ~ xAx. 

On the other hand, since 1 - e E (1 - f€;2 (x))A, we have f€(x)(l - e) = 0 and so 

f€(x) = JE(x)e. Consequently 

JE(x)g = JE(x)ef€;4(x) = f/x)f€/4(x) = f€(x). 

This implies that JE(x) E g* A= pA. Thus pis a projection in xAx such that f€(x) E pAp. 
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(c) ===?- (d). Let x be a positive element in A. By (c), there exists a projection 

p E xAx such that f 1 ; 2 (x) E pAp. By spectral calculus, (1 - f 1; 2 (x))A ~ (1 - x)A. 

Also, 1- p = (1 - f1;2(x))(l - p), and thus 1- p E (1 - f1;2(x))A ~ (1- x)A. 

(d) ===?- (a). It is enough to show that for each positive element x EA, the hereditary 

sub-C*-algebra (xAx)- has an approximate identity consisting of projections (use [14, 

Theorem 2.6(iv)]). For this, it suffices to find, for each E > 0, a projection pin A such that 

f2€(x) ~ P ~ f€;2(x). 
Applying condition (d) to the element f€(x), we get a projection p E f€(x)A such 

that 1 - p E (1 - f€(x))A. Then fz€(x)(l - p) = 0 and so fz€(x) = fz€(x)p. This gives 

fz€( x) ~ p. On the other hand, since p E !€( x )A, we get f€;2 ( x )112 p = p and sop ~ f€;2 ( x ), 
as desired. 0 

Given a (unital) C*-algebra A, all idempotents in matrix algebras Mn(A) are equivalent 

to projections ( e.g., [9, Proposition 4.6.2], [26, Proposition 19.1]). Hence, the monoid V(A) 
may be described as the set of Murray-von Neumann equivalence classes of projections from 

M 00 (A), with addition induced from orthogonal sums. This description of V(A) is taken as 

the definition by operator algebraists ( cf. [9, Section 5.1 ]). The same definition is also used 

when A is not unital, and does not conflict with our usage in that case either. Namely, 

if A is identified with a closed ideal in its unitification A"' in the standard manner, the 

above definition of V(A) in terms of projections yields a monoid isomorphic to the one 

constructed from the class FP(A) ~ FP(A"') as in Section 1. 

In view of Theorem 7.2, Corollary 1.3 provides an alternative route to Zhang's Riesz 

decomposition results for projections in C*-algebras with real rank zero [51, Theorem 3.2]: 

Theorem 7.3. Let P1,P2,q1,q2 be projections in M 00 (A) where A is a C*-algebra with 

real rank zero. If P1 EB P2 ,....., q1 EB q2, there exist orthogonal decompositions Pl = r11 EB r12 
and P2 = r21 EB r22 such that q1 ,....., r11 EB r21 and q2 ,....., r12 EB r22. 

Proof. After replacing q1 and q2 by equivalent projections, we may work within the unital 

C*-algebra (p1 EB P2)M00 (A)(p1 EB p2), which has real rank zero by [14, Theorem 2.10, 

Corollary 2.8]. Thus, without loss of generality, we may assume that A is unital and that 

p1, p2 , q1 , q2 all lie in A. By Theorem 7 .2 and Corollary 1.3, V (A) is a refinement monoid. 

The desired result now follows from the description of V(A) as the monoid of equivalence 

classes of projections from M 00 (A). 0 

This theorem of course includes Zhang's original Riesz decomposition result [52, The

orem 1.1], namely that p ;S qi EB q2 implies p = r1 EB r2 with ri ;:S qi for each i. 

Theorem 7.2 together with Theorem 3.2 yields the following means of calculating stable 

ranks (see the end of Section 3 for the definition of stable rank of elements of a monoid): 

Theorem 7.4. If A is a unital C*-algebra with real rank zero, then its stable rank equals 

the stable rank of the element [lA] in the monoid V(A). 0 

Since the monoid V(A) has the same description in terms of projections in both the 

unital and non-unital cases, the definition of separativity for C*-algebras can be given in 

both cases simultaneously. Thus, a C*-algebra A is separative provided that 
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for projections p, q E M00 (A). (Some equivalent formulations follow from Lemma 2.1.) 

The class- of separative C*-algebras includes those with stable rank 1 ( over which or

thogonal sums of projections enjoy cancellation) as well as those whose projections satisfy 

the condition p EB p ,.._, q EB q ====>- p ,.._, q. Thus, for example, all AW*-algebras, Rickart C*

algebras, AF-algebras, and irrational rotation algebras are separative. It follows from re

sults of Cuntz [20, Theorem 1.4, Proposition 1.5] that all purely infinite simple C*-algebras 

are separative. In work in progress, Brown and Pedersen have shown that C*-algebras of 

real rank zero which are extremally rich in the sense of [15] are separative ( cf. [13, Section 

1]). 

Theorem 7.5. Let A be a C*-algebra witb real rank zero and assume tbat I is a closed 

ideal of A. Tben A is separative if and only if I and A/ I are separative. In particular, A 

is separative if and only if its unitification is separative. 

Proof. This follows from Theorems 4.2 and 7.2. D 

We conclude by summarizing our main applications of separativity in the operator 

algebra context. Recall that a unital C*-algebra A is said to be finite if xx* = 1 implies 

x*x = 1 for x E A; this is equivalent to A being directly finite [9, 6.3.2]. 

Theorem 7.6. Let A be a unital C*-algebra witb real ranlc zero, and assume tbat A is 

separative. 

(a) If A is finite, tben A is stably finite. 

(b) If A is simple and finite, tben A bas stable rank 1. 

(c) Tbe stable rank of A is 1, 2, or oo. 
( d) Tbe stable rank of A is finite if and only if tbe following cancellation property bolds 

for projections p, q E Moo(A): 

Proof. Because of Theorem 7.2, we can apply Proposition 2.3 and Theorems 3.3, 3.4. D 

There exist examples of finite unital C*-algebras which are not stably finite. These 

examples are constructed as extensions of a commutative C*-algebra by the algebra of 

compact operators on a separable infinite-dimensional Hilbert space [9, 6.10.l]. By The

orems 7.5 and 7.6, no such construction gives a finite but not stably finite C*-algebra of 

real rank zero. 
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