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Abstract

This paper compares different ICA preprocessing algorithms on cross-validated training data

as well as on unseen test data. The EEG data were recorded from 22 electrodes placed over the

whole scalp during motor imagery tasks consisting of four different classes, namely the

imagination of right hand, left hand, foot and tongue movements. Two sessions on different

days were recorded for eight subjects. Three different independent components analysis (ICA)

algorithms (Infomax, FastICA and SOBI) were studied and compared to common spatial

patterns (CSP), Laplacian derivations and standard bipolar derivations, which are other

well-known preprocessing methods. Among the ICA algorithms, the best performance was

achieved by Infomax when using all 22 components as well as for the selected 6 components.

However, the performance of Laplacian derivations was comparable with Infomax for both

cross-validated and unseen data. The overall best four-class classification accuracies (between

33% and 84%) were obtained with CSP. For the cross-validated training data, CSP performed

slightly better than Infomax, whereas for unseen test data, CSP yielded significantly better

classification results than Infomax in one of the sessions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Motor imagery is a frequently used mental strategy to modify

brain oscillations and to operate a brain-computer interface

(BCI) (Wolpaw et al 2002, Pfurtscheller et al 2005). It is

well known that execution or imagination of limb movement

result in similar somatotopically organized activation patterns

(Lotze et al 1999). For example, one-sided hand motor

imagery reveals an event-related desynchronization (ERD) of

mu and central beta rhythms focused over the contralateral

hand representation area (Pfurtscheller and Neuper 1997).

Although mu rhythms of similar form and frequency

are found in both hemispheres, they demonstrate no obvious

bilateral coherence (Storm Van Leeuwen et al 1978, Andrew

and Pfurtscheller 1996) or phase coupling (Spiegler et al

2004) and thus give evidence that mu generation systems

are relatively independent of each other and exist in both

hemispheres. The mu rhythm plays a dominant role in mental

cursor control (Wolpaw et al 2000, Cheng et al 2004) and is

therefore of special interest in BCI research.

Independent components analysis (ICA) separates

multichannel EEG data into statistically independent

components. It has been shown that ICA is especially suitable

for removing a wide variety of artifacts in EEG recordings

(Jung et al 2000) and separating mu rhythms generated in both

hemispheres (Makeig et al 2004). ICA is therefore a useful

method for constructing spatial filters for preprocessing raw

multichannel EEG data in BCI research. Since its conception

in the late 1990s and successful implementation in various

fields of data mining, a surge of interest in ICA has resulted in

the broad availability of various ICA algorithms. In this paper,

the performance of three well-known ICA-based algorithms

was evaluated. The specific algorithms studied were Infomax,

FastICA, and SOBI (second order blind identification). The
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choice of these algorithms was made somewhat heuristically

on the basis of past and more recent applications to biomedical

data and the results achieved (Makeig et al 2005, Tang et al

2005b). The availability of algorithms also played a major

factor in the choice. Moreover, the diversity in the methods of

source extraction was a significant aspect of the choice made.

Another well-known preprocessing method is based on the

decomposition of multichannel EEG data into spatial patterns

which are calculated from two populations of brain patterns,

known as common spatial patterns (CSP) (Koles et al 1995).

In contrast to the ICA method, which is unsupervised, CSP is a

supervised method where class information must be available

a priori. The usefulness of the CSP method has already been

proven in a number of BCI studies (Guger et al 2000, Ramoser

et al 2000, Lemm et al 2005).

The main goal of this study is to address the following

question: Does EEG preprocessing with different ICA

algorithms improve the classification accuracy in the context of

BCIs? To this end, we analyzed and classified 22-channel EEG

recordings during four motor imagery tasks. For preprocessing

we used, on the one hand, three different ICA algorithms

and either all or a reduced number of components for feature

extraction and classification, and on the other hand CSP. The

data analysis was performed without removing any artifacts

(EMG or EOG) in order to determine the robustness of the

methods.

2. Methods

2.1. Subjects and experimental paradigm

The datasets were recorded from eight able-bodied subjects,

three females and five males, with a mean age of 23.8 years

(standard deviation of 2.5 years). The subjects were naive in

BCI training. They were seated in a comfortable armchair in

front of an LCD monitor.

The training paradigm consisted of a repetition of cue-

based (synchronous) trials of four different motor imagery

tasks, namely the imagination of left hand, right hand, foot

and tongue movement. The beginning of each trial (at t = 0 s)

was indicated by a short beep along with the display of a

fixation cross in middle of the screen. After 2 s (at t = 2 s),

a visual cue (an arrow pointing either left, right, up or down)

appeared for 1.25 s on the screen. Each position of the arrow

required the subject to perform the corresponding imaginary

movement, i.e., either left, right, tongue or foot movement,

respectively. Specifically, they were asked to keep up the

imagination of the movement between 3 and 6 s. After 6 s (at

t = 6 s), the fixation cross disappeared, allowing the subject

to relax. The next trial started after 1.5–2.5 s resting period.

The exact timing scheme is displayed in figure 1. The datasets

of each subject consist of two sessions that were recorded on

different days, each session comprising six runs. Each of the

four types of cue were displayed 12 times within each run

(which yielded a total of 72 trials per session) in a randomized

order. For the subsequent data analysis in this paper, all the

runs of each session were concatenated. Overall, there were

288 trials in each session for every subject.

Figure 1. Timing of a trial of the training paradigm. The time slice
between seconds 4.5 and 5.5 was used to train the classifiers. In
the case of CSP the same time slice was also employed to calculate
the spatial filters. However, for calculating ICA spatial filters the
entire time period (0–7.5 s) was used.

2.2. Spatial filtering

Spatial smearing of EEG signals due to volume conduction

through the scalp, skull and other layers of the brain is a

well-known fact. To address this issue, various techniques of

spatial filtering are used in EEG data analysis. The goal of

spatial filtering is to determine, under different assumptions,

an unmixing matrix W = [w1, . . . , wn] so that new time

series y(t) = [y1(t), . . . , yn(t)] with a reduced smearing effect

can be obtained. These components can be calculated by

multiplying the unmixing matrix W to the raw EEG signals

x(t):

y(t) = WT x(t).

Here, the EEG signals x(t) consist of n channels; therefore the

unmixing matrix W is a square n × n matrix.

2.2.1. ICA-based spatial filtering. The fundamental

assumption of ICA is statistical independence. There are a

number of measures that estimate statistical independence

between two time series (components), each leading to

different optimization processes for the determination of W. In

turn, each of these optimality conditions gives rise to different

ICA algorithms. All the ICA algorithms seek to unmix signals

produced by the linear combination of multiple independent

sources.

The ICA algorithms chosen for this study are Infomax,

FastICA and SOBI. The first two are linear instantaneous

versions of ICA, whereas SOBI exploits the time structure

of the data for source extraction. The main idea of

Infomax (Bell and Sejnowski 1995) is the minimization of the

mutual information among the output components. FastICA

(Hyvarinen 1997, Hyvarinen and Oja 1997) works on the

principle of separately maximizing the negentropy of each

mixture. In contrast, SOBI (Belouchrani et al 1993, 1997)

relies only on stationary second-order statistics that are based

on a joint diagonalization of a set of covariance matrices.

One salient feature of FastICA is its deflationary approach

where independent components are estimated one by one like

in projection pursuit (Hyvarinen and Oja 2000). Infomax, on

the other hand, employs a symmetric approach where all the

sources are extracted in parallel. The estimation of the sources

in SOBI is accomplished by the process of simultaneous

diagonalization.
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Both FastICA and Infomax algorithms offer a variety

of parameters that have to be tuned to obtain good results.

It should be noted that the contrast function used in

these algorithms is approximated by choosing a suitable

nonlinearity, g. The choice of g is important in optimizing the

performance of the algorithm. The default non-linearity used

in FastICA is a third-order polynomial, which is recommended

when there are no outliers. In our case, since we did not remove

artifacts, a tangent hyperbolic was used instead. The choice of

tanh was taken because it is a good general-purpose contrast

function. In Infomax, all the default parameters were used—

for example, the logistic Infomax algorithm with natural

gradient features was employed (the RunICA algorithm) to

search for super-Gaussian distribution of activity. It should be

mentioned that for the detection of sub-Gaussian distributions

such as slow cortical potentials, the optional extended ICA

algorithm can also be used. In our case, since we were

looking for ERD/ERS brain patterns, we did not choose the

extended version of Infomax. By contrast, SOBI offers only

one parameter to adjust, namely the temporal delays. In our

preliminary analysis we experimented with delays 2 to 250

with a step size of 1. Although the best result was obtained

with 120 delays, it was only marginally better than the default

value of 50 delays. Therefore, the default value of 50 delays

was used for this study.

Since ICA is essentially blind to order and scaling,

the importance of the components cannot be determined on

this basis. However, for the purpose of comparison, the

components were sorted according to their mean projected

variances. That is, the first component contributes the most

to the EEG signal, the second contributes the second most

and so on. This does not imply that the first component will

contain the most significant ERD/ERS pattern, but it does

suggest that components at the end are less likely to contain

essential information. FastICA and SOBI originally do not sort

components according to mean projected variances by default,

but this feature was incorporated in those two algorithms in

order to make them comparable with Infomax.

2.2.2. Common spatial patterns. The method of CSP designs

spatial filters in such a way that the variances of the filtered

time series are maximized and optimally discriminable with

respect to the different motor imagery classes through joint

diagonalization of the two corresponding covariance matrices.

The resulting projection matrix is sorted in descending order

of the eigenvalues, meaning that the most important filter pair

is the first and the last entry in the matrix, the second best pair

is the second and second last and so on.

The original method of CSP can discriminate only

between two different classes or states (e.g., left-versus-right).

Therefore, in order to extend the method to four-class motor

imagery, four spatial filters were estimated on the principle of

one-versus-rest, effectively reducing the multiclass problem

to several binary problems (e.g., left-versus-rest etc). In the

presented experiments, four spatial filters (one for each motor

imagery type) have been created by calculating the covariance

matrices over a 1 s long segment (4.5–5.5 s). From each filter

matrix the projections corresponding to the three largest and to

Figure 2. EEG electrode setup, some labels corresponding to
positions in the international 10–20 system as well as the channels
used to compile six bipolar channels are marked. Similarly,
channels used to calculate six Laplacian derivations are also marked.

Table 1. Number of artifact-contaminated trials for each subject and
session (the total number of trials per session was 288).

Subjects s1 s2 s3 s4 s5 s6 s7 s8

Session 1 15 18 18 24 51 26 26 17
Session 2 7 5 15 17 24 60 12 11

the three smallest eigenvalues were selected. For details about

the extension of the CSP algorithm to multiclass problems see,

e.g., Dornhege et al (2004).

2.3. Data analysis

2.3.1. Data recording. 22 Ag/AgCl electrodes (with inter-

electrode distances of 3.5 cm), placed according to the

scheme in figure 2, were used to record the EEG. Monopolar

derivations were used throughout all recordings (the left

mastoid served as reference and the right mastoid as ground).

The signals were sampled with 250 Hz and filtered between

0.5 and 100 Hz. A 50 Hz notch filter was enabled to suppress

line noise.

A visual inspection of the datasets was carried out by an

expert and trials contaminated with artifacts (e.g., EMG, EOG)

were marked (see table 1). However, since ICA has proven

to be robust to outliers and artifacts (Jung et al 2000, James

and Gibson 2003, Iriarte et al 2004), none of these trials were

precluded from further analysis. In fact, this ability of ICA

might also increase the statistical significance of the results.

For the purpose of calculating ICA-based spatial filters, all

the datasets were first triggered (i.e., each trial was cut out

from continuous EEG data and then joined in the same order)

and then detrended by a second-order polynomial (i.e., each

individual 7.5 s trial was detrended).

2.3.2. Feature extraction and classification. In order to

find optimal feature sets, components extracted by the ICA

algorithms were visually examined with the help of time-

frequency maps (Graimann et al 2002) and topographic

maps (Delorme and Makeig 2004) with the goal of finding

important and unnecessary components. The analysis by

visual inspection led us to conclude that 6 out of the
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Figure 3. Time-frequency maps (Infomax): subject s3 session 1 (all 22 components). The six components selected are: 3, 5, 6, 7, 8, 10.

22 components were enough to represent the task-related

activities.

More specifically, a priori knowledge of the physiological

processes underlying motor imagery helped us in selecting

the six most important components. In the case of hand

imagery, the most important components were those focused

on contralateral regions over the motor cortex area containing

mu or beta ERD. The ipsilateral components containing ERS

activity were also important. For foot or tongue imagery,

midcentral or parietal components containing localized and

prominent activity were considered. The components chosen

to depict tongue imagery contained dominant ERS activity,

whereas for foot imagery both ERD and ERS patterns were

more significant (Pfurtscheller et al 2006). In addition, the

components that showed scattered activity over the whole

surface on a topographic map (which is merely a projection

of the components [w1, . . . , wn] on a two-dimensional head

surface) were not chosen. As an example time-frequency maps

and topographic maps of subject s3 session 1 for Infomax are

shown in figures 3 and 4

It should be mentioned that for building ICA-based spatial

filters the entire triggered data (i.e., a whole session) for each

subject were used. This ICA spatial filter (i.e., unmixing

matrix) was then multiplied to the entire data. Then, six

components were selected using the procedure described

above. As a next step, for each of these six components,

two logarithmic bandpower features (which correspond to

the logarithm of the power in certain frequency bands) were

calculated. The frequency bands selected were 10–12 Hz and

16–24 Hz for all subjects, covering the alpha and beta bands.

Overall, there were 12 bandpower features from 6 components.

Figure 4. Topographic maps (Infomax): subject s3 session 1 (all 22
components). The six components (from left to right) selected are:
3, 5, 6, 7, 8, 10.

For the sake of comparison, all the 44 features (computed from

all 22 ICA components) were also calculated.

In the next step, samples were partitioned into ten parts

and each part was used as test set once in the following

way. Nine parts (90%) of the data were used to train four

linear statistical classifiers (fisher linear discriminant analysis,
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FDA) (Duda et al 2001) combined in a one-versus-the-rest

classification scheme (i.e., one class was compared to all the

remaining classes). These classifiers were then applied to

the remaining 10% of the data and the classification accuracy

was calculated by choosing the class corresponding to the

maximum value of the four FDAs. The whole procedure

was repeated ten times, i.e., a 10 × 10-fold cross-validation

procedure (Duda et al 2001) was performed in order to avoid

overfitting. Within each trial, samples between 4.5 and 5.5 s

were used to train the classifiers. This time slice was chosen

because it showed a high discriminability of the data for all

the subjects.

In order to compare the classification accuracies of

the ICA-filtered datasets with the results from other spatial

preprocessing methods, CSP-preprocessed data (with the best

six components) are also presented in this paper. It should

be mentioned here that special care was taken to carry out

the cross-validation correctly in the case of CSP, since this is

a supervised method and the class labels are known when

calculating the spatial filter matrices. More specifically,

signals were first band-pass filtered in the range of 8–

30 Hz and then samples were partitioned into ten parts before

building four CSP spatial filters. Each part was used as test

set only once in the following way. The (four) spatial filters

were calculated on the basis of the 90% portion (nine parts)

and were then multiplied to these data. In the next step, six

components (the first and last three) were chosen and log-

transformed normalized variances were calculated for each of

the components. Next, these features were forwarded to four

linear statistical classifiers (again using a one-versus-the-rest

scheme). It should be noted that each classifier gets the same

24 features. The classifier weights were calculated and these

classifiers plus the four spatial filters were then applied to the

remaining 10% of the data. The whole procedure was repeated

ten times, i.e., a 10×10-fold cross-validation procedure (Duda

et al 2001) was performed and classification accuracies were

determined. The same time slice (between 4.5 and 5.5 s) was

used to train the classifiers, as in the case of ICA. It should be

mentioned that in the case of CSP this time slice was also used

to calculate the spatial filters.

Since our main goal was to find out whether ICA-based

preprocessing improves classification results, we also present

the classification accuracies of simple bipolar derivations (six

components) and Laplacian derivations (six components) in

this paper. The electrodes chosen for the bipolar derivations,

in addition to C3, C4 and Cz, are one electrode anterior and

posterior over these recording sites (see figure 2), whereas in

the case of Laplacian derivations the electrodes chosen were

C3, C4, Cz, CP1, CP2 and CPz. The same bandpower features

as in the case of ICA were calculated. Similarly, the same

procedure as in the case of ICA for feature extraction and

classification was carried out.

In addition to the cross-validated analysis described

above, the performance of ICA-based spatial filters was

evaluated in session-to-session transfer. To this end, the

unmixing matrices and classifiers from one session were used

to calculate the classification accuracies of the remaining

unseen session. The same procedure was carried out for

Table 2. Mean overall accuracies (in %) for all subjects and both
sessions for the CSP methods using different numbers of
components. The results were calculated on the basis of running
classifier and without prefiltering for this analysis.

Two Four Six
components components components

With artifacts 63.3 67.2 68.9
Without artifacts 64.0 67.9 69.2

the CSP components, bipolar derivations and the Laplacian

derivations.

3. Results

3.1. CSP: preliminary analysis

In our preliminary analysis we experimented with two, four

and six CSP components to optimize the results. Table 2 shows

six components gives better results (higher overall accuracies)

in comparison with two and four components. Moreover, the

results using all trials were comparable with CSP spatial filters

built with artifact-free trials only (see table 2); therefore we

decided to keep all available trials.

It should be mentioned that for this particular analysis

(table 2) a running classifier instead of the static classifier was

used to calculate the results. Since our purpose was to show

the comparative performance of the number of components

chosen for CSP, and a running classifier calculates the results

faster, it was preferred for this preliminary analysis (table 2).

For the running classifier, the same segment of the data was

used for training and testing purposes, whereas for a static

classifier one particular segment (in our case between 4.5 and

5.5 s) was used for training and then the entire data set (0–7.5 s)

for the purpose of testing. It should be noted that in all the

subsequent analyses static classifiers were used.

3.2. Cross-validated data

The accuracies for features extracted from six visually selected

ICA components for all the subjects are shown in table 3. In

addition, the corresponding results of the CSP method and the

Laplacian derivations are presented.

Surprisingly, the mean accuracies for the six visually

selected cross-validated ICA components (table 3) are slightly

lower (in the range of 1–2%) than the corresponding values

of all 22 components (results not shown). The time points

of highest classification accuracies were also slightly earlier

especially for Infomax and FastICA.

The pairwise t-test, in this comparison, was performed

on the data for each session separately at a 5% significance

level. The results revealed that CSP showed significantly

better performance in session 2, with respect to accuracies

in comparison with FastICA, SOBI and the Laplacian

derivations. Similarly, Infomax was found to be significantly

better than FastICA and SOBI in session 2. On the other hand,

in session 1 the t-test only found CSP to be significantly better

than FastICA, SOBI and the Laplacian derivations. Moreover,

when compared to Infomax, CSP did not show a significant

212



Seperability of four-class motor imagery data using ICA

Table 3. Accuracies (cross-validated and unseen data) of six selected components—Overall accuracies of ICA algorithms, CSP and
Laplacian derivation. The abbreviation STD denotes standard deviation.

Cross-validated data Session-to-session transfer

Subject Info Fast SOBI CSP Lap Info Fast SOBI CSP Lap

s1/1 57.9 56.6 57.8 73.1 60.4 59.7 56.9 60.1 67.7 58.0
s2/1 37.0 52.7 52.6 54.4 50.8 35.4 35.4 35.7 45.5 51.7
s3/1 72.1 59.5 68.7 80.2 74.4 72.2 66.7 63.9 69.8 70.8
s4/1 76.0 67.1 62.6 74.5 68.7 64.9 55.2 55.2 69.1 65.6
s5/1 79.8 74.0 75.9 76.8 76.4 71.5 62.5 66.3 75.0 75.0
s6/1 46.0 47.2 42.9 50.4 37.7 51.3 49.0 45.8 49.3 39.6
s7/1 38.6 37.1 34.8 38.1 36.7 38.2 38.2 35.4 36.5 35.7
s8/1 70.9 70.0 56.1 69.2 71.4 59.7 61.5 55.6 67.0 58.7

Mean/1 59.8 58.0 56.4 64.6 59.6 56.6 53.2 52.3 60.0 56.9
STD /1 17.3 12.4 13.3 15.1 16.1 14.0 11.4 12.0 14.1 14.0

s1/2 70.3 69.7 65.7 73.1 60.8 64.9 64.9 65.7 74.3 57.6
s2/2 35.6 35.3 33.0 48.9 48.2 37.2 50.4 49.7 51.4 50.0
s3/2 73.0 66.8 68.7 78.2 75.2 71.2 52.8 63.9 76.0 75.7
s4/2 70.6 58.6 53.8 75.6 65.8 71.5 60.1 56.6 72.2 65.6
s5/2 77.8 72.1 73.2 83.4 73.2 69.8 59.6 64.9 71.2 72.6
s6/2 61.1 54.4 56.3 57.6 50.1 50.4 47.6 46.9 53.1 41.3
s7/2 43.3 41.4 38.3 41.1 33.6 35.4 35.8 32.6 37.5 38.5
s8/2 74.7 73.7 67.6 78.1 74.9 66.7 65.6 51.7 72.9 67.0

Mean/2 63.3 59.0 57.1 67.0 60.2 58.4 54.6 54.0 63.6 58.5
STD/2 15.6 14.4 14.8 15.7 15.1 15.2 10.0 11.3 14.3 14.1

difference in either session. This is interesting because in

each session the mean accuracy values for CSP are higher in

the range of 3–5 % as compared to the values obtained with

Infomax.

Therefore, this comparison would place CSP as the

best performing algorithm followed by Infomax, Laplacian,

FastICA and finally SOBI. It should be mentioned that bipolar

derivation performed significantly worse than Laplacian

derivation for this comparison.

Contrary to the accuracy, pairwise t-tests with respect to

the time points revealed nothing significant for any pair of the

algorithms.

The accuracy plots of CSP (examples of all methods are

presented in figure 5) show that the time courses in general are

not similar to ICA algorithms or to Laplacian derivations. For

example, the curve stays at a high level around the maximum

value for a longer time period, which is unlike in the case

of ICA algorithms. For online applications, such a behavior

would be preferable, but that depends also on the paradigms

one wants to use. On the other hand, the accuracy curves of

ICA algorithms look quite alike.

3.3. Session-to-session transfer

In order to simulate an online BCI application, the spatial

filters and classifiers built with data from session 1 were

applied to session 2 and vice versa. Therefore, it makes sense

that the accuracy of each session in cross-validated data is

compared with the accuracy of the corresponding session (in

this case unseen data) in session-to-session transfer for all the

algorithms.

The results are shown in table 3. One immediate

conclusion that can be drawn from these results is that CSP

Figure 5. Comparison of different ICA algorithms, CSP and
Laplacian derivations for two subjects and six components
(cross-validated) showing the classification accuracy for the
four-class problem (from 0 to 1) versus the time (in seconds). The
cue onset is marked by a solid vertical line. The location of the
maximum in each curve is marked by two dotted lines.

has the best accuracy values in comparison with all the other

algorithms. The performance of Laplacian derivations and

Infomax is comparable followed by FastICA and SOBI.

Although the best classification result is obtained with

CSP, comparing the results with cross-validated data shows

a decrease in mean accuracy values of 4.6% and 3.4% for

session 1 and session 2, respectively (see table 3 for more

details). For the purpose of comparison, accuracy curves of s3

and s5 are presented (see figure 6).
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Figure 6. Comparison of different ICA algorithms, CSP and
Laplacian derivations for two subjects and six components (unseen
data) showing the classification accuracy for the four-class problem
(from 0 to 1) versus the time (in seconds). The cue onset is marked
by a solid vertical line. The location of the maximum in each curve
is marked by two dotted lines.

The pairwise t-test at a 5% significance level showed that

CSP has a higher and significantly different mean accuracy

values in session 2 in comparison to all other algorithms.

However, in session 1, CSP only performed significantly better

than FastICA and SOBI. Similarly, Infomax was found to

be significantly better than FastICA and SOBI in session 1.

The differences between the remaining pairs, in both sessions,

were not found to be statistically significant. It should be

mentioned that Bipolar derivations performed slightly worse

than Laplacian derivations for this comparison. Another

important fact to note is that the performance of Infomax with

22 components in session-to-session transfer is comparable

with the corresponding analysis with 6 selected components.

In contrast, FastICA and SOBI performed worse for six

visually selected components.

The pairwise t-test was also conducted with respect to the

classification timing and no significant differences were found.

4. Discussion and conclusion

It is of importance to note that the EEG data analyzed were

recorded from untrained subjects without feedback. They were

only instructed to perform the indicated motor imagery tasks

over a time period of 3 s (see figure 1). Two sessions were

recorded on different days. On the one hand, the intrasubject

stability of motor imagery related brain states could be studied

and on the other hand, separated training and test sets could

be generated for the classification. Due to the untrained

subjects, the four-class classification accuracy demonstrated

a great variability between about 33% and 84%.

4.1. Comparison of the different ICA algorithms

The best performance was achieved by Infomax when using

all 22 components as well as for the selected 6 components

in comparison with FastICA and SOBI. Therefore, among

the ICA algorithms considered Infomax can be recommended

for preprocessing EEG data in BCI research. In contrast,

SOBI’s overall performance is poor, worse than Laplacian or

even bipolar derivations. One of the plausible reasons for

this failure could be that time delay models of ICA may not

be suitable to represent ERD/ERS related brain dynamics.

Another reason may be the sensitive dependence of SOBI

(Tang et al 2005a) to a proper choice of time delays (number

and range). Although in our preliminary analysis the default

value of 50 delays showed near optimum results, a direction of

further research, as already pointed out in (Tang et al 2005a),

is to investigate the optimum number and also the range of

time delays for oscillatory activities.

On the other hand, robustness is an issue in the case of

algorithms such as Infomax and FastICA. That is, two runs

of FastICA, for example, will yield slightly different results.

SOBI does not have this drawback. The lack of robustness

can be directly traced to the optimization process of these

algorithms. The search for a global minimum is sensitively

dependent on the choice of initial values, which in turn are

arbitrary and random. To address this issue, constrained ICA

is an area of active research these days. The basic idea of

constrained ICA is to incorporate prior information in ICA

and other blind source separation (BSS) algorithms, thereby

making them semi-blind. Recent publications (James and

Gibson 2003, Lu and Rajapakse 2005) suggest various ways

to do this. One of the approaches works by creating reference

signals (James and Gibson 2003) of different classes and

artifacts based on some distinct representative attributes and

employing them as constraints in ICA algorithms. The other

way is to create probability distribution functions of reference

signals (Lu and Rajapakse 2005) and incorporate them directly

as models in ICA algorithms.

It should be noted that, in addition to robustness, SOBI

distinguishes itself in terms of speed of convergence and

least number of tunable parameters requiring adjustment. On

average, for this study, it took SOBI about 1.2 min for source

resolution, while the average time taken by FastICA and

Infomax was 12.1 min and 9.2 min, respectively. This could

make SOBI a better candidate for a possible online adaptive

implementation. The only adjustable parameter that SOBI has

is the time delay. In contrast, Infomax and FastICA require

many parameters to be adjusted for different situations.

Since there is an inherent indeterminacy with respect

to scaling and permutation, in this study for the purpose

of comparison, the components were sorted according to

their mean projected variances. In our experience of the

datasets used in this study, more often than not components

at the end can be associated with EMG artifacts or in some

cases electrode artifacts. But this does not imply that the

components at the end are always useless and can never

contain important information. Ideally, ICA can be expected

to resolve one unique component for each movement imagery

class. However, independence is a stringent criterion and

different ICA algorithms would only seek an approximation

to independence; therefore in practice often more than one
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extracted component is needed to represent a single task-

related activity. In the case of our datasets, six components

were enough to represent task-related activities.

4.2. Comparison of ICA with CSP and Laplacian derivations

Both in the case of cross-validated data as well as unseen

test data the CSP method yielded better results in comparison

with all the other algorithms considered. The overall better

performance of CSP is an expected result as this is a supervised

method where class information is known, whereas all the

ICA algorithms employ blind source separation techniques

in source extraction. Another important thing to note is that

CSP performed significantly better than Infomax in the case of

session-to-session transfer as determined by a t-test. However,

for cross-validated data Infomax performed only slightly

worse in comparison with CSP. In this context, it should be

noted that for ICA algorithms we were using physiological

knowledge by selecting corresponding components (related to

motor imagery type) and using suitable bandpower features. In

contrast, physiological information was not used for selecting

the components in the case of CSP. Therefore, the performance

of CSP might be further enhanced by utilizing physiological

information in component selection.

Similarly high classification results were obtained with

unseen testing data without sophisticated preprocessing

algorithms by just calculating six Laplacian and bipolar

derivations. Interestingly, the performance of Laplacian

derivations was found to be comparable with Infomax

preprocessed data and better than FastICA and SOBI.

But perhaps by using sophisticated methods of automatic

component selection, the performance of ICA-based

algorithms can be improved further. This is important for

the reason that visual selection of components has a subjective

bias that may culminate in a cumulative error, whereas methods

of automatic component selection use objective criteria which

might result in improved performance.

ICA has two important advantages. First, ICA (in

theory) is able to separate EEG data into physiologically and

functionally discrete sources (Makeig et al 2004) and second,

ICA separates the contamination of biological artifacts, e.g.,

eye movement and muscle activity, as well as technical artifacts

such as line noise. The first property is especially interesting

because it underlines the importance of selecting a small

number of components (in our case six components were

selected) based on time-frequency (ERD/ERS) maps and

topographic maps of the most reactive EEG components.
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