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SePiCo: Semantic-Guided Pixel Contrast for
Domain Adaptive Semantic Segmentation

Binhui Xie, Shuang Li, Mingjia Li, Chi Harold Liu, Senior Member, IEEE , Gao Huang, and Guoren Wang

Abstract—Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by
utilizing the supervised model trained on a labeled source domain. One popular solution is self-training, which retrains the model with
pseudo labels on target instances. Plenty of approaches tend to alleviate noisy pseudo labels, however, they ignore the intrinsic
connection of the training data, i.e., intra-class compactness and inter-class dispersion between pixel representations across and
within domains. In consequence, they struggle to handle cross-domain semantic variations and fail to build a well-structured
embedding space, leading to less discrimination and poor generalization. In this work, we propose Semantic-Guided Pixel Contrast
(SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixels to promote learning of
class-discriminative and class-balanced pixel representations across domains, eventually boosting the performance of self-training
methods. Specifically, to explore proper semantic concepts, we first investigate a centroid-aware pixel contrast that employs the
category centroids of the entire source domain or a single source image to guide the learning of discriminative features. Considering
the possible lack of category diversity in semantic concepts, we then blaze a trail of distributional perspective to involve a sufficient
quantity of instances, namely distribution-aware pixel contrast, in which we approximate the true distribution of each semantic category
from the statistics of labeled source data. Moreover, such an optimization objective can derive a closed-form upper bound by implicitly
involving an infinite number of (dis)similar pairs, making it computationally efficient. Extensive experiments show that SePiCo not only
helps stabilize training but also yields discriminative representations, making significant progress on both synthetic-to-real and
daytime-to-nighttime adaptation scenarios. The code and models are available at https://github.com/BIT-DA/SePiCo.

Index Terms—Domain adaptation, semantic segmentation, semantic variations, representation learning, self-training.
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1 INTRODUCTION

G ENERALIZING deep neural networks to an unseen do-
main is pivotal to a broad range of critical applications

such as autonomous driving [1], [2] and medical analysis [3],
[4]. For example, autonomous cars are required to operate
smoothly in diverse weather and illumination conditions,
e.g., foggy, rainy, snowy, dusty, and nighttime. While hu-
mans excel at such scene understanding problems, it is
struggling for machines to forecast. Semantic segmentation
is a fundamental task relevant that assigns a unique label to
every single pixel in the image. Recently, deep Convolution
Neural Networks (CNNs) have made rapid progress with
remarkable generalization ability [5], [6], [7], [8]. CNNs,
however, are quite data-hungry and the pixel-level labeling
process is expensive and labor-intensive, thereby restricting
their real-world utility. As a trade-off, training with freely-
available synthetic data rendered from game engines [9],
[10] turns into a promising alternative. This is not the case,
unfortunately, deep models trained on simulated data often
drop largely in realistic scenarios due to domain shift [11].

Recent trends of domain adaptation (DA) inspire the
emergence of extensive works to transfer knowledge from a
label-rich source (synthetic) domain to a label-scarce target
(real) domain, which enjoys tremendous success [12], [13],
[14], [15], [16]. Most previous works develop adversarial
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Fig. 1: Results preview on two popular synthetic-to-real
semantic segmentation tasks. Our method is shown in bold.

training algorithms to diminish the domain shift existing
in input [17], [18], feature [19], [20] or output [21], [22]
space. Despite the fact that the above methods can draw two
domains closer globally, it does not guarantee those feature
representations from different classes in the target domain
are well-separated. Utilizing category information can refine
such alignment [23], [24], [25], [26], [27]. But, pixels in differ-
ent images might share much similar semantics while their
visual characteristics, such as color, scale, illumination, etc.
could be quite different, which is deleterious to the continual
learning of pixel representations across two domains.

Another line of work harnesses self-training to promote
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.
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Fig. 2: Illustration of the main idea. By contrastively matching a pixel query q to distinct semantics, features with the same
semantic concepts are drawn closer while those with different ones are pushed apart across domains. We first explore (a)
Centroid-aware pixel contrast including (a.1) global category prototypes simply computed on the entire source domain,
which render the overall appearance of each category and (a.2) local category centroids of each class in a single source
image, which are stored into a memory bank. Further, we develop (b) Distribution-aware pixel contrast: the distributions
of each category on source features are depicted as class-specific holistic concepts to guide the semantic alignment.

the segmentation performance [28], [29], [30], [31]. By adopt-
ing confidence estimation [32], [33], consistency regulariza-
tion [34], [35], or label denoising [36], [37], the noisy in
pseudo labels could be relieved to some extent. While many
works are already capable of establishing milestone perfor-
mance, there is still much room for improvement beyond the
current state-of-the-art. We find that most approaches do not
explicitly address the domain discrepancy, and the learned
target representations are still dispersed. In addition, many
works opt for a stage-wise training mechanism to avoid
training error amplification in a single-stage model, which
heavily relies on a well-initialized model to increase the
reliability of generated pseudo labels. Hereafter, several
methods combine adversarial training and self-training [35],
[38] or train with auxiliary tasks [39], [40] to learn discrimi-
native representations from unlabeled target data.

Contrastive learning is a relevant topic, which learns
proper visual representations by comparing different un-
labeled data [41], [42], [43], [44]. Without any supervision,
models are capable of finding patterns like similarity and
dissimilarity. The huge success of contrastive learning and
the aforementioned drawbacks in prior arts together moti-
vate us to rethink the current de facto training paradigm
in semantic segmentation under a domain shift. Basically,
the power of contrastive learning roots in instance dis-
crimination, which takes advantage of semantic concepts
within data. With this insight, we find a new path to build
models that are robust to distribution shifts by exploring
cross-domain pixel contrast under the guidance of proper
semantic concepts, which attracts similar pixels and dispels
dissimilar ones in a latent space, as illustrated in Fig. 2.

In this work, we present a novel end-to-end framework,
SePiCo, for domain adaptive semantic segmentation. Not
only does SePiCo outperform previous works (Fig. 1), but it

is also simple yet effective, keeping one-stage training com-
plexity. Precisely, we build upon a self-training method [30]
and introduce several dense contrastive learning mecha-
nisms. The core is to explore suitable semantic concepts
to guide the learning of a well-structured pixel embedding
space across domains. Here, a plain way is to adopt the
averaged feature of a category over the entire source domain
as its global prototype. A prototype could render the overall
appearance of a category but might omit variations in some
attributes (e.g., shape, color, illumination) of the category,
impairing the discriminability of the learned features. To
enhance diversity, a natural extension is to enlarge the
number of contrastive pairs. We then investigate a memory
bank mechanism, in which the averaged features of each
category in the current source image are enqueued into a
dictionary and the oldest ones are dequeued. Unfortunately,
class biases may exist in this mechanism since those under-
represented classes (e.g., truck, bus, rider) are updated more
slowly. Meanwhile, it is computationally expensive as well.

Grounded on the above discussions, we hypothesize
that if every dimension in the embedding space follows a
distribution, pixel representations from a similar semantic
class would have a similar distribution, which is indepen-
dent of the domain. Thereby, we take the distribution of
each category in the source domain as a richer and more
comprehensive semantic description. The real distribution
can be properly estimated with sufficient supervision of
source data. This formulation enables a wide variety of
samples from estimated distributions, which is tailored for
pixel representation learning in dense prediction tasks. Fur-
thermore, we analyze Pixel-wise Discrimination Distance
(PDD) to certify the validity of our method regarding pixel-
wise category alignment. Extensive experiments demon-
strate that contrastively driving the source and target pixel



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

representations towards proper semantic concepts can lead
to more effective domain alignment and significantly im-
prove the generalization capacity of the model. We hope
this exploration will shed light on future studies.

In a nutshell, our contributions can be summarized:

• We provide a new impetus to mitigate domain shift
by explicitly enhancing the similarity of pixel fea-
tures with corresponding semantic concepts and in-
creasing the discrimination power on mismatched
pairs, no matter the source or target domain.

• To facilitate efficiency and effectiveness, a closed-
form upper bound of the expected contrastive loss is
derived with the moments of each category. SePiCo
is also a one-stage adaptation framework robust to
both daytime and nighttime segmentation situations.

• Extensive experiments on popular semantic segmen-
tation benchmarks show that SePiCo achieves supe-
rior performance. Particularly, we obtain mIoUs of
61.0%, 58.1%, and 45.4% on benchmarks GTAV →
Cityscapes, SYNTHIA→ Cityscapes, and Cityscapes
→Dark Zurich respectively. Equipped with the latest
Transformer, SePiCo further improves by mIoUs of
9.3%, 5.6%, and 8.0% respectively, setting the new
state of the arts. Ablation study and throughout
analysis verify the effectiveness of each component.

• Our SePiCo, aiming at a general framework, can
further well generalize to unseen target domains and
be effortlessly employed to object detection tasks.

2 RELATED WORK

Our work draws upon existing literature on semantic image
segmentation, domain adaptation, and representation learn-
ing. For brevity, we only discuss the most relevant works.

2.1 Semantic Segmentation

The recent renaissance in semantic segmentation began with
the fully convolutional networks [6]. Mainstream methods
strive to enlarge receptive fields and capture context infor-
mation [7], [8], [45]. Among them, the family of DeepLab
enjoys remarkable popularity because of its effectiveness.
Inspired by the success of the Transformers [46] in natural
language processing, many works adopt it to visual tasks
including image classification [47] and semantic segmenta-
tion [48], offering breakthrough performance. These stud-
ies, though impressive, require a large amount of labeled
datasets and struggle to generalize to new domains.

In this work, we operate semantic segmentation under
such a domain shift with the aim of learning an adequate
model on the unlabeled target domain. Concretely, we map
pixel representations in different semantic classes to a dis-
tinctive feature space via a pixel-level contrastive learning
formulation. The learned pixel features are not only discrim-
inative for segmentation within the source domain, but also,
more critically, well-aligned for cross-domain segmentation.

2.2 Nighttime Semantic Segmentation

Nighttime Semantic Segmentation is much more challeng-
ing in safe autonomous driving due to poor illuminations

and arduous human annotations. Only a handful of works
have been investigated in the past few years. Dai et al. [49]
introduce a two-step adaptation method with the aid of an
intermediate twilight domain. Sakaridis et al. [50] leverage
geometry information to refine predictions and transfer the
style of nighttime images to that of daytime images to
reduce the domain gap. Recently, Wu et al. [51] jointly train
a translation model and a segmentation model in one stage,
which efficiently performs on par with prior methods.

While daytime and nighttime image segmentation tasks
differ only in appearance, current works focus on designing
specialized methods for each task. Different from the above
methods, SePiCo is able to address both daytime and night-
time image segmentation tasks in a universal framework.

2.3 Domain Adaptation in Semantic Segmentation

Domain Adaptation (DA) has been investigated for decades
in theory [52], [53] and in various tasks [?], [16], [54],
[55], [56]. Given the power of DCNNs, deep DA methods
have been gaining momentum to significantly boost the
transfer performance of a segmentation model. A multitude
of works generally fall into two categories: adversarial train-
ing [17], [20], [23], [26] and self-training [30], [36], [57], [58].

Adversarial training methods diminish the distribution
shift of two domains at image [17], [18], [19], feature [22],
[59], or output [20], [21], [23] level in an adversarial manner.
To name a few, Hoffman et al. [19] bring DA to segmentation
by building generative images for alignment. On the other
hand, Tsai et al. [20] suggest that performing alignment
in the output space is more practical. A few works also
leverage different techniques via entropy [21], [22] and in-
formation bottleneck [23]. Other concurrent works [23], [26]
incorporate category information into the adversarial loss to
intensify local semantic consistency. Due to the absence of
holistic information about each category, adversarial train-
ing is usually less stable. Therefore, some methods instead
adopt category anchors [25], [27], [35] computed on source
data to advance the alignment. A recent work [60] presents a
category contrast method to learn discriminative representa-
tion. By contrast, we endeavor to explore semantic concepts
from multiple perspectives. More importantly, we set forth a
generic semantic-guided pixel contrast to emphasize pixel-
wise discriminative learning, allowing us to minimize the
intra-class discrepancy and maximize the inter-class margin
of pixel representations across domains.

Self-training methods exploit unlabeled target data via
training with pseudo labels [29], [32], [34], [61], [62]. In
an example, Zou et al. [63] propose an iterative learning
strategy with class balance and spatial prior for target
instances. In [30], Tranheden et al. propose a domain-mixed
self-training pipeline to avoid training instabilities, which
mixes images from two domains along with source ground-
truth labels and target pseudo labels. Later on, Wang et
al. [40] enhance self-training via leveraging the auxiliary
supervision from depth estimation to diminish the domain
gap. Lately, Zhang et al. [36] utilize the feature distribution
from prototypes to refine target pseudo labels and distill
knowledge from a strongly pre-trained model. However,
most existing methods always encounter an obstacle in that
target representations are dispersed due to the discrepancy
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across domains. In addition, most of them utilize a warm-
up model to generate initial pseudo labels, which is hard
to tune. Differently, our framework performs one-stage end-
to-end adaptation produce without using any separate pre-
processing stages. In addition, SePiCo can largely improve
self-training and easily optimize pixel embedding space.

2.4 Representation Learning
To date, unsupervised representation learning has been ex-
tensively investigated due to its promising ability to learn
representations in the absence of human supervision, espe-
cially for contrastive learning [41], [42], [44], [64], [65]. Let
f be an embedding function that transforms a sample x to
an embedding vector q = f(x) , q ∈ Rd and let (x , x+)
be similar pairs and (x , x−) be dissimilar pairs. Then,
normalize q onto a unit sphere and a popular contrastive
loss such as InfoNCE [65] is formulated as:

E
q ,q+ ,{q−n }Nn=1

[
− log

eq
>q+/τ

eq>q+/τ +
∑N
n=1 e

q>q−n /τ

]
.

In practice, the expectation is replaced by the empirical
estimate. As shown above, the contrastive loss is essentially
based on the softmax formulation with a temperature τ .

Intuitively, the above methods encourage instance dis-
crimination. Recent works [43], [66], [67], [68] also extend
contrastive learning to dense prediction tasks. These meth-
ods either engage in better visual pre-training for dense pre-
diction tasks [43], [66] or explore dense representation learn-
ing in the fully supervised setting [67] or semi-supervised
setting [68]. Thereby, they generally tend to learn the pixel
correspondence on the category of objects that appear in dif-
ferent views of an image rather than learning the semantic
concepts across datasets/domains, so the learned represen-
tations cannot directly deploy under domain shift. On the
contrary, we draw inspiration from contrastive learning and
construct contrastive pairs according to different ways of
semantic information to bridge the domain shift, which has
received limited consideration in the existing literature.

3 METHODOLOGY

In this section, we first briefly introduce the background and
illustrate the overall idea in Section 3.1. Then the details of
semantic statistics and our framework are elaborated in Sec-
tion 3.2 and Section 3.3, respectively. Finally, we present the
training procedure and the SePiCo algorithm in Section 3.4.

3.1 Background

3.1.1 Problem formulation
For domain adaptive semantic segmentation, we have a
collection of labeled source data Is with pixel-level labels Ys
as well as unlabeled target data It. The goal is to categorize
each pixel of a target image into one of the predefined K
categories through learning a model consisting of a feature
encoder Θe, a multi-class segmentation head Θc, and an
auxiliary projection head Θp. We adopt the teacher-student
architecture [69] (Teacher networks are denoted as Θ′e, Θ′c,
and Θ′p.) as our basic framework, shown in Fig. 3.

During training, images from source and target do-
mains Is , It ∈ RH×W×3 are randomly sampled and passed

Segmentation head Θ𝑐𝑐 Projection head Θ𝑝𝑝Encoder Θ𝑒𝑒

EMA  Update
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Fig. 3: Framework overview. First, our basic framework
is based on a teacher-student architecture and the teacher
model provides source feature map F̄s and target pseudo
labels Ȳt. Second, we propose class-balanced cropping to
frequently crop image patches with under-represented ob-
jects that balance performance across classes. And third,
except for self training losses, Lce and Lssl, we contrastively
enforce the pixel representations Fs , Ft towards centroid-
aware or distribution-aware semantics using Lcl and Lreg .
After training is completed, we throw away projection head
Θp and use encoder Θe and head Θc for segmentation task.

into both teacher and student networks, respectively. The
hidden-layer features Fs , Ft ∈ RH′×W ′×A, and final pixel-
level predictions Ps , Pt ∈ RH×W×K are generated from the
student, where A is the channel dimension of intermediate
features andH ′(� H) ,W ′(�W ) are spatial dimensions of
features. Similarly, we access corresponding source features
F̄s ∈ RH′×W ′×A, and target pixel-level predictions P̄t from
the momentum-updated teacher. Note that no gradients will
be back-propagated into the teacher network [69].

3.1.2 Self-training domain adaptation revisit
Here, we give an overview of a self-training method [30] for
evaluating different semantic-guided pixel contrasts. Tradi-
tional self-training methods usually consider two aspects.
On the one hand, these methods train a model Θc ◦ Θe
to minimize the categorical cross-entropy (CE) loss in the
source domain, formalized as a fully supervised problem:

Lce = − 1

HW

∑
i∈{1 ,2 ,··· ,H×W}

∑
k

1[Ys,i=k] logP ks,i , (1)

where Ys,i is the one-hot label for pixel i in Is and 1[·] is
an indicator function that returns 1 if the condition holds
or 0 otherwise. On the other hand, to better transfer the
knowledge from the source domain to the target domain,
self-training usually uses a teacher network to produce more
reliable pseudo labels Ȳt for a target image,

Ȳt,j = arg max
k

P̄ kt,j , j ∈ {1 , 2 , · · · , H ×W} . (2)

In practice, we compute the pseudo labels online during the
training and avoid any additional inference step, which is
simpler and more efficient. Specifically, we forward a target
image and obtain the pseudo labels using Eq. (2). Besides,
since the pseudo labels are usually noisy, a confidence
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estimation is made for generated pseudo labels. Specifically,
the number of pixels with the maximum softmax probability
exceeding a threshold α is calculated first:

NUMconf =
∑

j∈{1 ,2 ,··· ,H×W}

1[maxkP̄
k
t,j>α] . (3)

Next, the ratio of pixels exceeding the threshold over the
whole image serves as confidence weights, w =

NUMconf

HW
and the student network is re-trained on target data,

Lssl = − 1

HW

∑
j∈{1 ,2 ,··· ,H×W}

∑
k

w · 1[Ȳt,j=k] logP kt,j . (4)

Finally, let’s go back to the teacher network. The weights
of teacher network Θ′e, Θ′c, Θ′p are set as the exponential
moving average (EMA) of the weights of student network
Θe, Θc, Θp in each iteration [69]. Take Θ′e as an example,

Θ′e ← βΘ′e + (1− β)Θe , (5)

where β is a momentum parameter. Similarly, Θ′c, Θ′p should
also be updated via Eq. (5). In this work, β is fixed to 0.999.

Note that incorporating data augmentation with self-
training has been shown to be particularly efficient [30], [34].
Following [30], we use the teacher network to generate a set
of pseudo labels Ȳt on the weakly-augmented target data.
Concurrently, the student network is trained on strongly-
augmented target data. We use standard resize and ran-
dom flip as the weak augmentation. Strong augmentation
includes color jitter, gaussian blur, and ClassMix [70].

3.1.3 Overall motivation
As mentioned before, however, there is a major limitation
of traditional self-training methods: most of them neglect
explicit domain alignment. As a result, even under perfect
pseudo labeling on target samples, the negative transfer
may exist, causing pixel features from different domains but
of the same semantic class to be mapped farther away. To
sidestep this issue, we promote semantic-guided represen-
tation learning in the embedding space. A naive way is to
directly adopt global category prototypes computed on the
source domain to guide the alignment between source and
target domains. An obstacle to this design, however, is that
prototypes could only reflect the common characteristic of
each category but cannot fully unlock the potential strength
of semantic information, leading to erroneous representa-
tion learning. Inspired by [41], we go a step further and
store the local image centroids of each source image into a
memory bank so that the semantic information exploited is
roughly proportional to the size of the bank. But this mech-
anism will arise class bias as features of some classes, e.g.,
bicycles, pedestrians and poles, rarely appear. Meanwhile,
this does consume a lot of computing resources.

Consequently, to promote diversity in semantic concepts,
we newly introduce the distribution-aware pixel constant
to contrastively strengthen the connections between each
pixel representation and estimated distributions. Moreover,
such a distribution-aware mechanism could be viewed as
training on infinite data and is more computation efficient,
which is intractable for a memory bank.

3.2 Semantic Statistics Calculation
Given the source feature map F̄s ∈ RH′×W ′×A from the
teacher model, for any pixel indexed i ∈ {1 , 2 , · · · , H ′ ×

W ′} in F̄s, we first divide its feature into the set of kth

semantic class, i.e., Λk according to its mask Ms,i ∈ RH′×W ′

downsampled from ground truth label. Hereafter, the local
centroid of the kth category in an image is calculated by

µ′k =
1

|Λk|
∑

i∈{1 ,2 ,··· ,H′×W ′}

1[Ms,i=k]F̄s,i , (6)

where | · | is the cardinality of the set.
For centroid-aware semantic information, we require

either global category prototypes or local category centroids.
On the one side, we opt for an online fashion on the entire
source domain, aggregating mean statistics one by one to
build global category prototypes. Mathematically, the online
estimate algorithm for the mean of the kth category is given
by

µk(t) =
nk(t−1)µ

k
(t−1) +mk

(t)µ
′k
(t)

nk(t−1) +mk
(t)

, (7)

where nk(t−1) is the total number of pixels belonging to the
kth category in previous t−1 images, andmk

(t) is the number
of pixels belonging to the kth category in current tth image.
Thereby, we are allowed to obtain K global prototypes:

P = {µ1 , µ2 , · · · , µK} . (8)

On the other side, we maintain local centroids of each class
from the latest source images to form a dynamic categorical
dictionary with K-group queue,

B = {B1 ,B2 , · · · ,BK} , (9)

where Bk = {µ′k(t−B) , µ
′k
(t−B+1) , · · · , µ′k(t)}. B is the shared

queue size for all queues. Note that the oldest centroids are
dequeued and currently computed centroids are enqueued.

Discussion: merit and demerit of centroid-aware statistics.
Each global category prototype renders the overall appear-
ance of one category, yet it might omit diversity and impair
the discriminability of the learned representations. On the
other way, the memory bank is able to expand the set of
negative and positive samples, thus it can embrace more
semantic information. More importantly, almost all semantic
information could be covered when B is large enough,
however, it is neither elegant nor efficient in presenting pixel
embedding space. To capture and utilize rich semantic infor-
mation as efficiently and comprehensively as possible, we
try to build from the distributional perspective as follows.

We observe that pixel representations with respect to
each class will have a similar distribution. With this in
mind, we propose to build the distribution-aware semantic
concepts with sufficient labeled source instances. Therefore,
we need to acquire the covariance of the multidimensional
feature vector F̄s,i for a better representation of the variance
between any pair of elements in the feature vector. The
covariance matrix Σk for category k can be updated via

Σk(t) =
nk(t−1)Σ

k
(t−1) +mk

(t)Σ
′k
(t)

nk(t−1) +mk
(t)

+
nk(t−1)m

k
(t)

(
µk(t−1) − µ′

k
(t)

)(
µk(t−1) − µ′

k
(t)

)>
(
nk(t−1) +mk

(t)

)2 , (10)

where Σ′
k
(t) is the covariance matrix of the features between

the kth category in the tth image. It is noteworthy that K
mean vectors and K covariance matrices are initialized to
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zeros. During training, we dynamically update these statis-
tics using Eq. (7) and Eq. (10) with source feature map F̄s

from momentum-updated teacher network. The estimated
distribution-aware semantic statistics are more informative
to guide the pixel representation learning between domains.

3.3 Semantic-Guided Pixel Contrast

In the literature, a handful of methods have leveraged
categorical feature centroids [25], [27], [35], [60] as anchors to
remedy domain shift, yielding promising results. However,
few attempts have been made in this regime to quantify the
distance between features of different categories. It is ardu-
ous to separate pixel representations with similar semantic
information in target data as no supervision information is
available, which severely limits their potential capability in
dense prediction tasks. On the contrary, we design a unified
framework to integrate three distinct contrastive losses that
target learning similar/dissimilar pairs at the pixel level
to mitigate the domain gap via either centroid-aware pixel
contrast or distribution-aware pixel contrast.

As stated above, the pixel representation separation in
the source domain is naturally guaranteed by source mask
Ms from the ground truth label. Similarly, for target data, we
desire to obtain satisfactory target mask Mt for each pixel
via generated pseudo labels from Ȳt (Eq. (2)). Whereafter,
any pixel representation either in source or target feature
maps (defined as the pixel query q ∈ RA for simplicity) now
needs to yield a low loss value when simultaneously form-
ing multiple positive pairs (q , q+m) and multiple negative
pairs (q , qk−n ), where q+m indicates the mth positive example
from the same category considering q and qk−n represents
nth negative example from the kth different class. Formally,
we define a new pixel contrast loss function for q:

`clq = − 1

M

M∑
m=1

log
eq
>q+m/τ

eq>q
+
m/τ +

∑
k∈K−

1
N

N∑
n=1

eq>q
k−
n /τ

, (11)

where M and N are the numbers of positive and negative
pairs and K− denotes the set containing all different classes
from that of q. In the following sections, we will describe
three pixel contrast losses `protoclq , `bankclq and `distclq respec-
tively to derive a better-structured embedding space, even-
tually boosting the performance of segmentation model.

In short, we enable learning discriminative pixel repre-
sentations across domains via a unified contrastive loss

Lcl =
1

|Ψ|
∑

q∈Fs∪Ft

`clq , (12)

where |Ψ| is the total number of pixels in the union of
Fs and Ft. Note that such contrastive loss is employed in
both domains simultaneously. For one thing, when the loss
is applied in the source domain, the student network is
capable of yielding more discriminative representations for
pixel-level predictions, which increases the robustness of the
model. Another effect is that the target representations are
contrastively adapted in a pixel-wise manner, which benefits
minimizing the intra-category discrepancy and maximizing
the inter-category margin and facilitates transferring knowl-
edge from source to target explicitly.

Moreover, except for individual pixel representation
learning, we introduce a regularization term to make the

feature representations of input images globally diverse and
smooth, which is formalized as

Lreg =
1

K logK

K∑
k=1

log
eQ
>µk/τ∑K

l=1 e
Q>µl/τ

, (13)

where Q = 1
H′×W ′

∑
i∈{1 ,2 ,··· ,H′×W ′} Fs/t,i is the mean

feature representation of a source or target image. This
objective is similar to the diversity-promoting objective used
in prior DA methods [71], but is employed in the embedding
space. It could circumvent the trivial solution where all
unlabeled target data have the same feature encoding.

3.3.1 Centroid-aware Pixel Contrast
Here, we introduce two variants of centroid-aware pixel
contrast, namely SePiCo (ProtoCL) and SePiCo (BankCL).

CASE 1: ProtoCL (M = N = 1). Naively operate K
global category prototypes to establish one positive pair and
K − 1 negative pairs. We consider this formulation as the
prototype pixel contrast loss function

`protoclq = − log
eq
>µ+/τ

eq>µ+/τ +
∑

k∈K−
eq>µk−/τ

, (14)

where µ+ is the positive prototype belonging to the same
category as the specific query q and µk− is the prototype of
the kth different category.

CASE 2: BankCL (M = N = B). To involve more
negative and positive samples for representation learning,
we could access more contrastive pairs from a memory
bank, in which local category centroids of a single source
image are stored. We consider this formulation as the bank
pixel contrast loss function

`bankclq = −Eq+∈B+ log
eq
>q+/τ

eq>q+/τ +
∑

k∈K−
Eqk−∈Bk−eq

>qk−/τ
,

(15)

where B+ is the queue comprised of positive samples and
Bk− refs to a queue containing negative ones. In Section 4.3,
we will analyze the effect of bank size B.

Discussion: merit and demerit of centroid-aware pixel con-
trast. In a word, global prototypes or local centroids can
be used as good contrastive samples to pull similar pixel
representations closer and push those dissimilar pixel rep-
resentations away in the embedding space. However, from
Eq. (14) and Eq. (15), we can theorize that the main differ-
ence between them is the number of positive and negative
pairs. Because of this, if the number of contrastive pairs does
matter, it is intuitively reasonable that an infinite number of
such pairs would contribute to the establishment of a more
robust and discriminative embedding space. We will justify
this assumption from the distributional perspective.

3.3.2 Distribution-aware Pixel Contrast
In this part, we derive a particular form of contrastive loss
where infinite positive/negative pixel pairs are simultane-
ously involved with regard to each pixel representation in
the source and target domain. A naive implementation is
to explicitly sample M examples from the estimated distri-
bution that has the same latent class and N examples from
each of the other distributions featuring different semantic
concepts. Unfortunately, this is not computationally feasible
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when M and N are large, as carrying all positive/negative
pairs in an iteration would quickly drain the GPU memory.

To get around this issue, we take an infinity limit on
the number of M and N , where the effect of M and N
are hopefully absorbed in a probabilistic way. With this
application of infinity limit, the statistics of the data are
sufficient to achieve the same goal of multiple pairing. As
M ,N goes to infinity, it becomes the estimation of:

`∞q = lim
M→∞ ,N→∞

`clq

= lim
M→∞

− 1

M

M∑
m=1

log
eq
>q+/τ

eq>q+/τ +
∑

k∈K−
lim
N→∞

1
N

∑N
n=1 e

q>qk−n /τ

= −Eq+∼p(q+) log
eq
>q+/τ

eq>q+/τ +
∑

k∈K−
Eqk−∼p(qk−)e

q>qk−/τ
,

where p(q+) is the positive semantic distribution with the
same label as q and p(qk−) is the kth negative semantic
distribution with a different label from that of each query
q. The analytic form of the above is intractable, but it has a
rigorous closed form of upper bound, which can be derived

`∞q = −Eq+ log
eq
>q+/τ

eq>q+/τ +
∑

k∈K−
Eqk−eq

>qk−/τ

≤ log

Eq+
e q>q+τ +

∑
k∈K−

Eqk−e
q>qk−

τ


− q>Eq+

[
q+

τ

]

= log

Eq+e q>q+τ +
∑
k∈K−

Eqk−e
q>qk−

τ

− q>Eq+
[
q+

τ

]
= `distclq , (16)

where the above inequality follows from Jensen’s inequality
on concave functions, i.e., E log(X) ≤ logE(X). Thus,
distribution-aware pixel contrast loss, i.e., SePiCo (DistCL)
is yielded to implicitly explore infinite samples.

Next, to facilitate our formulation, we further need an
assumption on the feature distribution. For any random
variable x that follows Gaussian distribution x ∼ N (µ,Σ),
we have the moment generation function [72] that satisfies:

E
[
ea
>x
]

= ea
>µ+ 1

2
a>Σa ,

where µ is the expectation of x, Σ is the covariance matrix
of x. Therefore, we assume that q+ ∼ N (µ+ ,Σ+) and
qk− ∼ N (µk− ,Σk−), where µ+ and Σ+ are respectively the
statistics i.e., mean and covariance matrix, of the positive
semantic distribution for q, µk− and Σk− are respectively
the statistics of the kth negative distribution. Under this
assumption, Eq. (16) for a certain pixel representation q
immediately reduces to

`distclq = log

e q>µ+

τ
+ q>Σ+q

2τ2 +
∑
k∈K−

e
q>µk−

τ
+ q>Σk−q

2τ2

− q>µ+

τ

= − log
e
q>µ+

τ
+ q>Σ+q

2τ2

e
q>µ+

τ
+ q>Σ+q

2τ2 +
∑

k∈K−
e
q>µk−

τ
+ q>Σk−q

2τ2

+
q>Σ+q

2τ2
.

Eventually, the overall loss function regarding each pixel-
wise representation thereby boils down to the closed form
whose gradients can be analytically solved.

Algorithm 1: Pseudocode of class-balanced crop-
ping on an unlabeled target image (PyTorch-style)

.
# img: an unlabeled target image to be cropped
# pl: corresponding pseudo label of img
# cat_max_ratio: max ratio of a category in img

best_score = -1, best_crop_box = None # initialize

# randomly crop N_crop times and get the best crop
for _ in range(N_crop):

score = 0 # initial score
# get a random box crop
box_crop = get_random_box_crop(img)
pl_crop = crop(pl, box_crop) # crop pl by crop_box
# unique classes with pixel count in cropped pl
classes, cnt = unique_with_counts(pl_crop)
# category max ratio should be satisfied
if max(cnt) / sum(cnt) < cat_max_ratio:

score = sum(log(cnt)) # calculate score
# compare and get the best
if score > best_score:

best_score, best_box_crop = score, box_crop

# perform class-balanced cropping (CBC)
img = crop(img, best_box_crop)
pl = crop(pl, best_box_crop)

3.4 Training Procedure

In brief, the training procedure of SePiCo can be optimized
in a one-stage manner, and we further introduce class-
balanced cropping in Alg. 1 to stabilize and regularize the
process. We summarize the algorithm in Alg. 2.

3.4.1 Class-balanced Cropping (CBC)
As we are all aware, realistic segmentation datasets are
highly imbalanced. Thus, one challenge of training a capable
model under distribution shift is overfitting to the majority
classes of the source domain. One can solve this during
training through class-balanced sampling over the entire dataset
like rare class sampling (RCS) in DAFormer [28]. Though
this strategy is effective, it is only suited to source-domain
data with ground-truth labels. Unfortunately, there are no
available annotations for target-domain data. To handle
this issue, we utilize generated target pseudo labels and
provide an alternative strategy, class-balanced cropping within
a single image, to crop image regions that jointly promote
class balance in pixel number and diversity of internal
categories (see Alg. 11). Note that we turn to this online
strategy for the fact that pseudo labels are constantly chang-
ing, thus collecting class statistics over the whole target
dataset (like RCS on the whole source dataset) could be
much more inefficient. On this basis, we employ RCS for
the entire source domain while CBC for a single target
image. Accordingly, samples with smaller class frequencies
throughout the source domain will have a higher sampling
probability, while regions of an unlabeled target image with
multiple classes will enjoy a higher cropping probability.
Experimentally, we also compare RCS and CBC in Sec. 4.3.

3.4.2 Optimization Objective
The well-known self-training extensively studied in previ-
ous methods [27], [33], [36], [37], is usually achieved by
iteratively generating a set of pseudo labels based on the
most confident predictions on target data. Nevertheless,
it primarily depends on a good initialization model and

1We fix N crop=10 and cat max ratio=0.75 for all experiments.
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Algorithm 2: SePiCo algorithm.
1 Input: Input data Is, Ys, It, bank size B, parameters
λcl , λreg and maximum/warm-up iteration L/Lw.

2 Initialize Θe with ImageNet pre-trained parameters
and randomly initialize two heads Θc and Θp.

3 Initialize statistics {µk}Kk=1 and {Σk}Kk=1 to zeros.
4 Teachers init: Θ′e ← Θe, Θ′c ← Θc, Θ′p ← Θp.
5 for iter ← 0 to L do
6 Randomly sample a source image Is with Ys and

a target image It.
7 Apply class-balance cropping on both Is and It.
8 Obtain feature maps Fs and Ft and separate

pixel-wise representations in the embedding
space using corresponding masks Ms and Mt.

9 Update mean {µk}Kk=1 via Eq. (7) and covariance
matrices {Σk}Kk=1 via Eq. (10) or memory bank
with current image-wise centroids {µ′k}Kk=1.

if iter > Lw then
10 Train Θe ,Θc ,Θp using Lce , Lssl , Lcl , Lreg .

else
11 Train Θe ,Θc using Lce , Lssl .

12 Update Θ′e ,Θ
′
c ,Θ

′
p with Θe ,Θc ,Θp via Eq. (5).

Return: Final network weights Θc and Θe.

is hard to tune. Our SePiCo aims to learn a discrimina-
tive embedding space and is complementary to the self-
training. Therefore, we unify both into a one-stage, end-to-
end pipeline to stabilize training and yield discriminative
features, which promotes the generalization ability of the
model. The overall training objective is formulated as:

min
Θe,Θc,Θp

Lce + Lssl + λclLcl + λregLreg , (17)

where λcl , λreg are constants controlling the strength of
corresponding loss. Initial tests suggest that using equal
weights to combine the Lcl with Lreg yields better results.
For simplicity, both are set to 1.0 without any tuning. By
optimizing Eq. (17), clusters of pixels belonging to the same
category are pulled together in the feature space while
synchronously pushed apart from other categories, which
eventually establishes a discriminative embedding space.
In this way, our method can simultaneously minimize the
gap across domains as well as enhance the intra-class com-
pactness and inter-class separability in a unified framework.
Meanwhile, it is beneficial for the generation of reliable
pseudo labels which in turn facilitates self-training.

4 EXPERIMENT

In this section, we validate SePiCo on two popular synthetic-
to-real tasks and challenging daytime-to-nighttime tasks.
First, we describe datasets and implementation details.
Next, numerous experimental results are reported for com-
parison across diverse datasets and architectures. Finally, we
conduct detailed analyses to obtain a complete picture.

4.1 Experimental Setups
4.1.1 Datasets
GTAV [9] is a composite image dataset sharing 19 classes
with Cityscapes. 24,966 city scene images are extracted from

the physically-based rendered computer game “Grand Theft
Auto V” and are used as source domain data for training.
SYNTHIA [10] is a synthetic urban scene dataset. Follow-
ing [20], [28], we select its subset, called SYNTHIA-RAND-
CITYSCAPES, that has 16 common semantic annotations
with Cityscapes. In total, 9,400 images with the resolution
1280×760 from SYNTHIA dataset are used as source data.
Cityscapes [74] is a dataset of real urban scenes taken
from 50 cities in Germany and neighboring countries. We
use finely annotated images which consist of 2,975 training
images, 500 validation images, and 1,525 test images, with a
resolution at 2048×1024. Each pixel of the image is divided
into 19 categories. For synthetic-to-real adaptation [28], [30],
[36], we adopt training images as unlabeled target domain
and operate evaluations on its validation set. For daytime-
to-nighttime adaptation [50], [51], [75], we use all images
from the training set as the source training data.
Dark Zurich [75] is another real-world dataset consisting of
2,416 nighttime images, 2,920 twilight images and 3,041 day-
time images, with a resolution of 1920×1080. Following [51],
we utilize 2,416 day-night image pairs as target training data
and another 151 test images as target test data that serves as
an online benchmark evaluating via online site2.

4.1.2 Implementation Details
Network architecture. Our implementation is based on the
mmsegmentation toolbox3. For CNN-based architectures,
we utilize the DeepLab-V2 [8] with ResNet101 [76] as the
backbone. For recent Transformer-based ones, we adopt the
same framework used in DAFormer [28] as a strong back-
bone. As for the segmentation head, We follow the main-
stream pipelines [20], [28], [30], [34]. Subsequently, a pro-
jection head is integrated into the network that maps high-
dimensional pixel embedding into a 512-d `2-normalized
feature vector [67]. It consists of two 1×1 convolutional
layers with ReLU. For fairness, all backbones are initialized
using the weights pre-trained on ImageNet [77], with the
remaining layers being initialized randomly.
Training. Our model is implemented in PyTorch [78] and
trained on a single NVIDIA Tesla V100 GPU. We use
the AdamW [79] as our optimizer with betas (0.9, 0.999)
and weight decay 0.01. The learning rate is initially set
to 6 × 10−5 for the encoder and 6 × 10−4 for decoders.
Similar to [28], learning rate warmup policy and rare class
sampling are also applied. In all experiments, we set trade-
offs λcl , λreg to 1.0, 1.0 and threshold α, momentum β,
and bank size B to 0.968, 0.999, 200 respectively. We train
the network with a batch of two 640×640 random crops
for a total of 40k iterations. The statistics in Section 3.2 are
estimated right from the beginning, but pixel contrast starts
from Lw (default 3k) iteration to stabilize training.
Testing. At the test stage, we only resize the validation
images to 1280×640 as the input image. Note that there is
no extra inference step inserted into the basic segmentation
model, that is, the teacher network, projection head Θp, and
memory bank B, are directly discarded. We employ per-
class intersection-over-union (IoU) and mean IoU over all
classes as the evaluation metric which is broadly adopted in
semantic segmentation [20], [28], [36], [51].

2https://competitions.codalab.org/competitions/23553
3https://github.com/open-mmlab/mmsegmentation

https://competitions.codalab.org/competitions/23553
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TABLE 1: Comparison results of GTAV → Cityscapes. All methods are based on DeepLab-V2 with ResNet-101 for a fair
comparison. The best result is highlighted in bold.

Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mIoU
Source Only 70.2 14.6 71.3 24.1 15.3 25.5 32.1 13.5 82.9 25.1 78.0 56.2 33.3 76.3 26.6 29.8 12.3 28.5 18.0 38.6
AdaptSeg [20] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CLAN [23] 88.7 35.5 80.3 27.5 25.0 29.3 36.4 28.1 84.5 37.0 76.6 58.4 29.7 81.2 38.8 40.9 5.6 32.9 28.8 45.5
CBST [63] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRKLD [33] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
PLCA [62] 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
BDL [38] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
SIM [25] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
CaCo [60] 91.9 54.3 82.7 31.7 25.0 38.1 46.7 39.2 82.6 39.7 76.2 63.5 23.6 85.1 38.6 47.8 10.3 23.4 35.1 49.2
ConDA [32] 93.5 56.9 85.3 38.6 26.1 34.3 36.9 29.9 85.3 40.6 88.3 58.1 30.3 85.8 39.8 51.0 0.0 28.9 37.8 49.9
FADA [26] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
LTIR [59] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
CAG-UDA [27] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
PixMatch [58] 91.6 51.2 84.7 37.3 29.1 24.6 31.3 37.2 86.5 44.3 85.3 62.8 22.6 87.6 38.9 52.3 0.7 37.2 50.0 50.3
Seg-Uncert. [31] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA-MBT [18] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
KATPAN [29] 90.8 49.8 85.1 39.5 28.4 30.5 43.1 34.7 84.9 38.9 84.7 62.6 31.6 85.1 38.7 51.8 26.2 35.4 42.6 51.8
DACS [30] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
MetaCorrection [73] 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
IAST [61] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
UPLR [37] 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6
DPL-dual [57] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
SAC [34] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CTF [35] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1
CorDA [40] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [36] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
SePiCo (ProtoCL) 95.6 69.2 89.0 40.8 38.6 44.3 56.3 64.4 88.3 46.5 88.6 73.1 47.6 90.7 58.9 53.8 5.4 22.4 43.8 58.8
SePiCo (BankCL) 96.1 72.1 88.6 43.1 42.4 43.7 56.0 63.5 88.9 44.5 89.0 72.7 45.7 91.1 61.7 59.6 0.0 24.7 53.6 59.8
SePiCo (DistCL) 95.2 67.8 88.7 41.4 38.4 43.4 55.5 63.2 88.6 46.4 88.3 73.1 49.0 91.4 63.2 60.4 0.0 45.2 60.0 61.0

4.2 Experimental Results

We comprehensively compare our SePiCo with the recently
leading approaches in two representative synthetic-to-real
adaptation scenarios: GTAV→ Cityscapes in TABLE 1, and
SYNTHIA → Cityscapes in TABLE 2 and a challenging
daytime-to-nighttime scenario: Cityscapes → Dark Zurich
in TABLE 3. Additionally, we provide some qualitative
results in Fig. 4 and Fig. 5. Next, due to the great potential
of Vision Transformer, we evaluate our framework on the
above three benchmarks and list results in TABLE 4. Last but
not least, SePiCo can be applied to domain generalization
setting in TABLE 5 and detection task in TABLE 6.

4.2.1 Comparisons with the state-of-the-arts

GTAV → Cityscapes. We first present the adaptation re-
sults on the task of GTAV → Cityscapes in TABLE 1, with
comparisons to the state-of-the-art DA approaches [29], [32],
[35], [36], [40], [60], and the best results are highlighted
in bold. Overall, our SePiCo (ProtoCL) sets the new state
of the art. Particularly, we observe: (i) SePiCo (DistCL)
achieves 61.0% mIoU, outperforming the baseline model
trained merely on source data by a large margin of +22.4%
mIoU; (ii) Due to the rare presence of “train” class in
an image and its significant appearance difference across
domains, our SePiCo fails to predict them well. (iii) Ad-
versarial training methods, e.g., AdaptSeg [20], CLAN [23],
FADA [26], can improve the transferability, but the effect
is not as obvious as using self-training methods, e.g., Seg-
Uncert. [31], DACS [30], IAST [61], SAC [34]; (iv) On top of
that, our SePiCo (DistCL) beats the best-performing model,
ProDA [36], by a considerable margin of +3.5% mIoU, while
ProDA has three complex training stages including warm
up, self-training, and knowledge distillation.

Comparing the three variants of our framework, SePiCo
(ProtoCL) and SePiCo (BankCL) also achieve remarkable

mIoUs of 59.5% and 60.4% respectively. It is clear that
BankCL and DistCL perform much better than ProtoCL,
indicating features of higher quality are generated thanks
to semantic concepts with greater diversity. It is worth
reminding that methods built on memory banks are gen-
erally slower and demands more memory in training, while
SePiCo (DistCL) eases such burden and still manages to
surpass SePiCo (BankCL) at the same time.

SYNTHIA → Cityscapes. As revealed in TABLE 2, our
SePiCo remains competitive on SYNTHIA → Cityscapes.
SePiCo (DistCL) attains 58.1% mIoU and 66.5% mIoU∗,
achieving a significant gain of +24.6% mIoU and +27.9%
mIoU∗ in comparison with “Source Only” model. It is
noticeable that our SePiCo (DistCL) ranks among the best in
both mIoU and mIoU∗, outperforming ProDA [36] by +2.6%
mIoU and CorDA [40] by +3.7% mIoU∗. The former is a
multi-stage self-training framework and the latter combines
auxiliary tasks, i.e., depth estimation, to facilitate knowledge
transfer to the target domain. SePiCo (ProtoCL/BankCL)
also obtain a comparable performance in terms of mIoU∗

compared with SePiCo (DistCL), but under-perform or tie
with it in mIoU, indicating that a more class-balanced per-
formance is done by SePiCo (DistCL).

Cityscapes → Dark Zurich. TABLE 3 highlights the
capability of our SePiCo on the challenging daytime-to-
nighttime task Cityscapes→ Dark Zurich. To show that the
current daytime-trained semantic segmentation models face
significant performance degradation at night, we compare
with AdaptSeg [20], AdvEnt [21], and BDL [38], adopting
DeepLab-V2 as backbone network. Our framework, espe-
cially SePiCo (BankCL) and SePiCo (DistCL), outperforms
the comparison counterparts by a large margin. The less
powerful variant, SePiCo (ProtoCL), is still able to win by
a narrow margin when compared to the previous SOTA
DANNet [51]. Due to the huge domain divergence between
daytime and nighttime scenarios, there are always two steps
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TABLE 2: Comparison results of SYNTHIA→ Cityscapes. mIoU∗ denotes the mean IoU of 13 classes excluding the classes
with ∗. All methods are based on DeepLab-V2 with ResNet-101 for a fair comparison. The best result is highlighted in bold.

Method road side. buil. wall∗ fence∗ pole∗ light sign veg. sky pers. rider car bus mbike bike mIoU mIoU∗

Source Only 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6
AdaptSeg [20] 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9
CLAN [23] 82.7 37.2 81.5 - - - 17.7 13.1 81.2 83.3 55.5 22.1 76.6 30.1 23.5 30.7 - 48.8
CBST [63] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
LTIR [59] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
MRKLD [33] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
BDL [38] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
SIM [25] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1
FDA-MBT [18] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
CAG-UDA [27] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 -
MetaCorrection [73] 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5
FADA [26] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5
ConDA [32] 88.1 46.7 81.1 10.6 1.1 31.3 22.6 19.6 81.3 84.3 53.9 21.7 79.8 42.9 24.2 46.8 46.0 53.3
CaCo [60] 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 81.2 56.3 24.2 78.6 39.2 28.1 48.3 46.0 53.6
PixMatch [58] 92.5 54.6 79.8 4.78 0.08 24.1 22.8 17.8 79.4 76.5 60.8 24.7 85.7 33.5 26.4 54.4 46.1 54.5
PLCA [62] 82.6 29.0 81.0 11.2 0.2 33.6 24.9 18.3 82.8 82.3 62.1 26.5 85.6 48.9 26.8 52.2 46.8 54.0
DPL-Dual [57] 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
Seg-Uncert. [31] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
UPLR [37] 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6
CTF [35] 75.7 30.0 81.9 11.5 2.5 35.3 18.0 32.7 86.2 90.1 65.1 33.2 83.3 36.5 35.3 54.3 48.2 55.5
DACS [30] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
IAST [61] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
KATPAN [29] 82.3 40.8 83.7 19.2 1.8 34.6 29.5 32.7 82.9 83.4 67.3 32.8 86.1 41.2 33.5 52.1 50.2 57.6
SAC [34] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3
CorDA [40] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8
ProDA [36] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
SePiCo (ProtoCL) 79.2 42.9 85.6 9.9 4.2 38.0 52.5 53.3 80.6 81.2 73.7 47.4 86.2 63.1 48.0 63.2 56.8 65.9
SePiCo (BankCL) 76.7 34.3 84.9 18.7 2.9 38.4 51.8 55.6 85.0 84.6 73.2 45.0 89.7 63.7 50.5 63.8 57.4 66.1
SePiCo (DistCL) 77.0 35.3 85.1 23.9 3.4 38.0 51.0 55.1 85.6 80.5 73.5 46.3 87.6 69.7 50.9 66.5 58.1 66.5

TABLE 3: Comparison results of Cityscapes → Dark Zurich. The DeepLab-V2 (D) [8] and RefineNet (R) [80] architecture
with ResNet-101 trained on Cityscapes are used as Source Only baselines. The best result is highlighted in bold.

Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mIoU
Source Only R 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5
DMAda [49] R 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA [75] R 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA [50] R 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet [51] R 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3
CDAda [81] R 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
Source Only D 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8
AdaptSeg [20] D 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
AdvEnt [21] D 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL [38] D 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
DANNet [51] D 88.6 53.4 69.8 34.0 20.0 25.0 31.5 35.9 69.5 32.2 82.3 44.2 43.7 54.1 22.0 0.1 40.9 36.0 24.1 42.5
SePiCo (ProtoCL) D 87.3 50.9 64.5 25.6 12.1 38.3 40.8 37.5 61.0 21.9 77.6 37.4 47.0 67.8 54.5 0.0 33.7 27.0 23.7 42.6
SePiCo (BankCL) D 88.5 54.8 66.5 25.1 13.5 40.0 39.6 40.8 62.5 25.1 79.0 37.8 54.8 70.4 63.7 0.0 36.8 15.6 23.4 44.1
SePiCo (DistCL) D 91.2 61.3 67.0 28.5 15.5 44.7 44.3 41.3 65.4 22.5 80.4 41.3 52.4 71.2 39.3 0.0 39.6 27.5 28.8 45.4
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Fig. 4: Qualitative results on Cityscapes (val). From left to
right: target image, ground truth, the maps predicted by
Source Only, DACS, ProDA and Ours (DistCL) are shown
one by one. Our method shows a clear visual improvement.

in prior methods. Take CDAda [81] as an example, it consists
of inter-domain style transfer and intra-domain gradual
self-training. While our SePiCo aims at ensuring pixel-wise
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Fig. 5: Qualitative results on Dark Zurich (val). From left to
right: target image, Ground Truth, the maps predicted by
Ours (ProtoCL), Ours (BankCL) and Ours (DistCL).

representation consistency between daytime and nighttime
images, it is complementary to models designed for the
nighttime and can still be trained in one stage. It is worth
noting that our methods based on DeepLab-V2 are even
superior or comparable to CDAda based on RefineNet [80],
which further demonstrates the efficacy of our method.

Qualitative results. In Fig. 4, we first visualize the
segmentation results on two synthetic-to-real scenarios, pre-
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TABLE 4: Comparison results using Swin-B ViT [82] and SegF. MiT-B5 [48]. The best result is highlighted in bold.

(a) GTAV→ Cityscapes
Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mIoU
Swin-B ViT (88M) 63.3 28.6 68.3 16.8 23.4 37.8 51.0 34.3 83.8 42.1 85.7 68.5 25.4 83.5 36.3 17.7 2.9 36.1 42.3 44.6
TransDA-B [83] 94.7 64.2 89.2 48.1 45.8 50.1 60.2 40.8 90.4 50.2 93.7 76.7 47.6 92.5 56.8 60.1 47.6 49.6 55.4 63.9
SegF. MiT-B5 (84.7M) 77.1 15.2 83.8 30.8 32.0 27.9 41.5 18.5 86.5 42.5 86.8 62.6 22.2 87.0 42.7 36.8 6.1 33.5 12.5 44.5
DAFormer [28] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
SePiCo (ProtoCL) 96.1 72.9 89.7 54.4 48.8 53.5 60.4 65.3 90.0 48.4 91.6 75.2 47.1 93.3 74.4 74.6 41.2 58.8 65.9 68.5
SePiCo (BankCL) 96.3 73.6 89.6 53.7 47.8 53.8 60.8 60.0 89.9 48.8 91.5 74.6 45.1 93.1 74.8 73.8 51.5 60.3 65.3 68.7
SePiCo (DistCL) 96.9 76.7 89.7 55.5 49.5 53.2 60.0 64.5 90.2 50.3 90.8 74.5 44.2 93.3 77.0 79.5 63.6 61.0 65.3 70.3

(b) SYNTHIA→ Cityscapes
Method road side. buil. wall∗ fence∗ pole∗ light sign veg. sky pers. rider car bus mbike bike mIoU mIoU∗

Swin-B ViT (88M) 57.3 33.8 56.0 6.3 0.2 33.8 35.5 18.9 79.9 74.8 63.1 10.9 78.3 39.0 20.8 19.4 39.2 45.2
TransDA-B [83] 90.4 54.8 86.4 31.1 1.7 53.8 61.1 37.1 90.3 93.0 71.2 25.3 92.3 66.0 44.4 49.8 59.3 66.3
SegF. MiT-B5 (84.7M) 69.9 27.8 82.9 21.6 2.3 39.2 36.3 29.9 84.2 84.9 61.6 22.6 83.8 48.0 14.9 19.7 45.6 51.3
DAFormer [28] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4
SePiCo (ProtoCL) 85.9 45.5 88.9 38.2 2.5 52.3 57.7 58.2 89.3 88.4 74.0 50.5 92.3 70.6 56.2 56.7 62.9 70.3
SePiCo (BankCL) 88.2 49.3 88.6 36.1 4.7 53.1 58.9 58.4 88.5 84.8 72.4 49.3 92.8 76.3 55.5 55.2 63.3 70.6
SePiCo (DistCL) 87.0 52.6 88.5 40.6 10.6 49.8 57.0 55.4 86.8 86.2 75.4 52.7 92.4 78.9 53.0 62.6 64.3 71.4

(c) Cityscapes→ Dark Zurich
Method road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train mbike bike mIoU
SegF. MiT-B5] (84.7M) 80.3 37.1 57.5 28.1 7.9 35.5 33.2 29.3 41.7 14.8 4.7 48.9 48.0 66.6 5.7 7.9 63.3 31.4 23.3 35.0
DAFormer] [28] 92.0 63.0 67.2 28.9 13.1 44.0 42.0 42.3 70.7 28.2 83.6 51.1 39.1 76.4 31.7 0.0 78.3 43.9 26.5 48.5
SePiCo (ProtoCL) 90.1 57.7 75.0 34.9 16.4 53.5 47.0 47.8 70.1 31.7 84.1 57.3 53.3 80.5 42.4 2.3 83.6 42.6 30.1 52.7
SePiCo (BankCL) 91.1 61.2 73.4 31.9 18.0 51.6 48.6 47.7 72.8 33.0 85.5 57.0 51.1 80.6 48.4 3.1 84.6 45.3 28.2 53.3
SePiCo (DistCL) 93.2 68.1 73.7 32.8 16.3 54.6 49.5 48.1 74.2 31.0 86.3 57.9 50.9 82.4 52.2 1.3 83.8 43.9 29.8 54.2

] Implement according to source code.

dicted by our SePiCo (DistCL), and compare our results to
those predicted by the Source Only, DACS and ProDA mod-
els. The results predicted by SePiCo (DistCL) are smoother
and contain fewer spurious areas than those predicted
by other models, showing that the performance has been
largely improved. Next, as the daytime-to-nighttime task
is far more challenging than the previous two, we further
show several qualitative segmentation results in Fig. 5 to
illustrate the advantage of SePiCo (DistCL) over the other
two variants SePiCo (ProtoCL) and SePiCo (BankCL).

4.2.2 More Experimental Results
Advanced network architecture. Vision Transformer-based
DA methods have been actively studied not long ago [28],
[83]. Hoyer et. al [28] analyze different architectures for
adaptation and propose a new architecture, DAFormer,
based on a Transformer encoder [48] and a context-aware
fusion decoder. Lately, Chen et al. [83] introduce a momen-
tum network and dynamic of discrepancy measurement to
smooth the learning dynamics for target data. Therefore, we
further adopt one of architectures such as DAFormer [28],
to support our claims. Inspired by a multi-level context-
aware feature fusion decoder, we also fuse all stacked multi-
level features from the decoder to provide valuable concepts
for contrastive learning. From TABLE 4, we have the fol-
lowing observations: (i) Approaches based on Transformer
perform generally better than those based on DeepLab-V2,
confirming the strength of these advanced architectures; (ii)
Our SePiCo is still competitive on the new architecture. All
variants of SePiCo achieve an extraordinary improvement of
around +20% mIoU on each task when compared with the
models trained merely on source data, i.e., Swin-B ViT [82]
and SegF. MiT-B5 [48]; (iii) SePiCo (DistCL) improves the
state-of-the-art DAFormer by +2.0% mIoU for GTAV →
Cityscapes, +3.4% mIoU for SYNTHIA → Cityscapes, and
+5.7% mIoU for Cityscapes→ Dark Zurich.

Generalization to unseen domains. In TABLE 3 and
TABLE 4(c), we have benchmarked our method on the
Dark Zurich test. To showcase the better generalization of

TABLE 5: Comparison results of Cityscapes→ Dark Zurich
trained models for generalization on two unseen target
domains: Nighttime Driving and BDD100k-night test sets.

Method Dark Zurich Nighttime Driving BDD100k-night Cityscapes
DMAda (RefineNet) [49] 32.1 36.1 28.3 -
GCMA (RefineNet) [75] 42.0 45.6 33.2 -
MGCDA (RefineNet) [50] 42.5 49.4 34.9 -
CDAda (RefineNet) [81] 45.0 50.9 33.8 -
SegF. MiT-B5 [48] 35.0 46.9 34.0 76.8
DAFormer [28] 48.5 51.8 33.9 76.4
SePiCo (ProtoCL) 52.7 55.5 37.5 79.5
SePiCo (BankCL) 53.3 54.9 39.1 78.9
SePiCo (DistCL) 54.2 56.9 40.6 78.9

TABLE 6: Experiments over weather DA object detection:
Cityscapes→ Foggy Cityscapes based on Faster R-CNN.

Method person rider car truck bus train mcycle bicycle mAPr
0.5

Faster R-CNN [84] 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
DA-Faster [85] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SW-Faster [86] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3
PDA [87] 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9
EveryPixelMatters [88] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
SePiCo (ProtoCL) 41.9 40.4 58.2 24.9 40.3 32.6 25.5 35.0 37.4
SePiCo (BankCL) 43.8 42.8 57.9 22.5 43.0 26.4 27.0 38.9 37.8
SePiCo (DistCL) 43.9 41.2 57.5 25.1 42.8 26.1 29.1 39.1 38.1
Faster RCNN (oracle) 47.4 40.8 66.8 27.2 48.2 32.4 31.2 38.3 41.5

SePiCo, the trained Dark Zurich models are also tested
on two unseen target domains, i.e., Nighttime Driving [49]
and BDD100k-night [89]. From TABLE 5, we can find that
the generalization ability of previous self-training methods
is limited, and they often fail to transfer well to unseen
domains or concepts. On the contrary, our SePiCo markedly
improves over the sophisticated baselines. Notably, SePiCo
(DistCL) achieves mIoUs of 56.9% and 40.6%, respectively,
releasing the newest records on both. Another interesting
finding is that our SePiCo indeed boosts the segmentation
performance on the source domain even compared with
SegF. MiT-B5 (Source Only) model that is only trained on
source images. There is some evidence that a well-structured
pixel embedding space provides the best of both worlds:
reducing distribution shift, plus promoting the source task.

Adaptation for object detection. We further extend our
SePiCo to a weather adaptive object detection task, i.e.,
Cityscapes [74] → Foggy Cityscapes [90]. More specifically,
Foggy Cityscapes is a synthetic foggy dataset that applies
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TABLE 7: Ablation study on GTAV→ Cityscapes. All mod-
els are trained end-to-end in a total of 40k iterations.

Method Lssl Lcl Lreg CBC mIoU ∆

w/o self-training

38.6±0.5 -
X 48.5±0.8 9.9
X X 49.2±0.7 10.6
X X X 49.8±0.4 11.2

SePiCo (DistCL)

X 52.1±2.0 -
X X 59.3±1.7 7.2
X X X 60.4±1.3 8.3
X X X X 61.0±0.7 8.9
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Fig. 6: Parameter sensitivity analysis for CBC.

simulated fog to scenes of Cityscapes. Build upon [88], we
employ Faster R-CNN [84] with VGG-16 [91] as the back-
bone. The model is trained with learning rate of 5 × 10−3,
momentum of 0.9 and weight decay of 5×10−4. The image’s
shorter side is set to 800 and RoIAlign is employed for
feature extraction. From TABLE 6, we observe that SePiCo
achieves comparable results with other task-specific and
well-optimized detection algorithms [86], [87], [88].

4.3 Ablation Studies

We evaluate the contribution of each component present
in our one-stage framework. Specifically, we testify SePiCo
on the task of GTAV → Cityscapes, and the results are
reported in TABLE 7, TABLE 8, TABLE 9 and Fig. 6. As
can be seen, each of these components contributes to the
ultimate success. Eventually, we achieve 49.8% and 61.0%
mIoU under “w/o self-training” and “SePiCo (DistCL)”
respectively, outperforming the corresponding baselines by
+11.2% and +8.9%.

Effect of semantic-guided pixel contrast. As discussed
in Section 3.3, centroid-aware and distribution-aware pixel
contrast can build up stronger intra-/inter-category connec-
tions and minimize the domain divergence efficiently. We
validate the performance increments by separately training
models with and without self-training. As shown in Table 7,
contrastive learning alone can improve the segmentation
performance, but the effect is not as noticeable as using
self-training (48.5% mIoU vs. 52.1% mIoU). When they are
adopted properly in a unified pipeline, the full potential
of the model is released, further promoting gains of +7.2%
mIoU. The results imply the effect and necessity of repre-
sentation learning for the classical self-training paradigm.

Effect of Lreg . We study the advantages of diversity-
promoting regularization term Lreg in TABLE 7. It is clearly
shown that using Lreg also brings an extra increase (+0.7%
mIoU and +1.1% mIoU, respectively), verifying the effec-
tiveness of smoothing the learned representations.

road side. buil. wall fence pole light sign veg. terr. sky  pers. rider car truck bus train mbike bike mIoU

SePiCo (DistCL)

SePiCo (DistCL) w/o RCS

SePiCo (DistCL) w/o CBC

95.2 67.8 88.7 41.4 38.4 43.4 55.5 63.2 88.6 46.4 88.3 73.1 49.0 91.4 63.2 60.4 0.0 45.2 60.0 61.0

95.4 69.7 88.5 39.1 36.8 44.5 55.0 60.8 88.5 47.3 88.2 71.3 38.2 90.8 57.1 54.0 0.2 20.5 45.6 57.5

96.2 72.3 88.9 43.5 42.2 45.0 56.1 65.2 88.5 44.3 89.1 73.0 47.4 90.2 52.3 58.3 0.0 36.0 58.2 60.4

Fig. 7: Comparison results of per-class IoU for CBC and RCS.

TABLE 8: Effect of the teacher network and the bank size on
GTAV→ Cityscapes. The default choice is colored in gray .

(a) Effect of the teacher network.

w/ teacher w/o teacher
β 0.99 0.999 0.9995 0.9999 0.0

mIoU 60.8 61.0 60.6 60.7 56.1

(b) Effect of the bank size B.

SePiCo (BankCL) SePiCo (DistCL)
B 50 100 200 500 ∞

mIoU 59.4 59.5 59.8 59.7 61.0

Effect of class-balanced cropping (CBC). We first re-
move the class-balanced cropping discussed in Section 3.4.1
to verify its necessity. As shown in TABLE 7, as expected, the
mIoU of the adapted model decreases moderately without
CBC, supporting the importance of class imbalance crop-
ping. Furthermore, we test CBC from parameter sensitivity
and compare it with other strategies. From Fig. 6, we can
observe that increasing cropping times (N crop) helps us to
select more class-balanced regions and bring slight gains.
However, to increase the training efficiency, we just make
10 croppings for all experiments. As for cat max ratio, a
high threshold (e.g., > 0.9) will result in too many futile
candidates and, conversely, a low threshold (e.g., < 0.5) will
result in no candidate (In this case, the first crop will be
selected). Both cases invalidate CBC, which leads to random
cropping. Thus, cat max ratio is default set to 0.75.

Furthermore, Fig. 7 shows the results of class-wise IoU
of ablating two class-balanced strategies (RCS and CBC), re-
spectively. As seen, RCS mainly improves the performance
of minority classes (e.g., large gains on “rider”, “mbike”
and “bike”). While our CBC mainly aims to balance the
IoUs among all categories, in which some categories such
as “side”, “wall”, and “fence” even show slight decreases
in IoU while others show tremendous increases in IoU. In
summary, the RCS is a direct yes effective class-balanced
strategy since supervised annotations are utilized. In con-
trast, the proposed CBC serves as an alternative choice in the
absence of annotations but is also able to balance the IoUs
among all categories and improve the overall performance.

Effect of the teacher network. The teacher-student archi-
tecture is frequently adopted to introduce a strong regular-
ization during training [69]. Essentially, a larger momentum
value β indicates a stronger effect from the teacher net. We
adjust β to change the amount of regularization and report
the results in TABLE 8a. A performance gain of more than
+3.0% mIoU is brought about by the teacher net, confirming
its efficacy. Thus β is fixed to 0.999 for proper regularization.

Effect of the bank size B. TABLE 8b lists the effect of
bank size for SePiCo (BankCL). As we enlarge the memory
bank from 50 to 500, a gradual gain can be witnessed in
performance, with a slight drop when B=500. Generally, a
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Fig. 8: Quantitative analysis of the discrimination of features. For each class, we show the values of pixel-wise discrimi-
nation distance (PDD) as defined in Eq. (18) on Cityscapes validation set. These comparison results are from 1) category
adversarial learning methods, i.e, CLAN and FADA; 2) category centroid-based alignment methods i.e., SIM and CAG-
UDA; 3) pixel contrast methods, i.e., Ours (ProtoCL/BankCL/DistCL), respectively. A high PDD suggests the pixel-wise
representations of same category are clustered densely while the distance between different categories is relatively large.

TABLE 9: Ablation of feature selection in SePiCo variants
for GTAV→ Cityscapes based on DeepLab-V2.

Method layer 1 layer 2 layer 3 layer 4 mIoU

SePiCo (ProtoCL)

X 58.7
X 58.6

X 58.6
X 58.8

{1,2,3,4}-fusion 58.4

SePiCo (BankCL)

X 58.5
X 58.4

X 58.0
X 59.8

{1,2,3,4}-fusion 58.6

SePiCo (DistCL)

X 60.7
X 59.3

X 58.8
X 61.0

{1,2,3,4}-fusion 60.2

larger bank size means more diversity in semantic concepts,
leading to better performance. However, a huge bank will
result in prolonged retention of outdated representations,
which may exert a negative effect on pixel-level guidance. In
comparison, SePiCo (DistCL) overcomes this issue by using
the distribution to simulate infinite bank size on-the-fly, thus
exceeding SePiCo (BankCL) by a considerable margin.

Effect of multi-level features. We provide the perfor-
mance of applying SePiCo to intermediate layers. In partic-
ular, there are four residual blocks in the original ResNet-
101 backbone [76]. The four layers (denoted by layer 1 -
layer 4) are taken from the output of each residual block
and {1,2,3,4}-fusion means that features from all four layers
are concatenated together. Interestingly, features from layer
1 also exhibit distinctive information. This is expected be-
cause earlier features provide valuable low-level concepts
for semantic segmentation at a high resolution. However,
if we fuse all the features for adaptation, the results are
slightly degraded, which is different from the Transformer-
based architecture. We conjecture that the ViTs have more
similarity between the representations obtained in shallow
and deep layers compared to CNNs. Overall, the features
from layer 4 prove to be the best choice for all three variants
of SePiCo. It can be seen that SePiCo (DistCL) performs
nearly equally well while adopting features from the last

layer or the fusion of multiple layers, indicating that the
distribution indeed increases the diversity of features and is
more robust.

4.4 Further Analysis

4.4.1 Pixel-wise Discrimination Distance
To verify whether our adaptation framework can yield a
discriminative embedding space, we design a metric to
take a closer look at what degree the pixel-wise represen-
tations are aligned. In the literature, CLAN [23] defines a
Cluster Center Distance as the ratio of the intra-category
distance between the initial model and the aligned model
and FADA [26] proposes a new Class Center Distance
to consider inter-category distance. To better evaluate the
effectiveness of pixel-wise representation alignment, we in-
troduce a new Pixel-wise Discrimination Distance (PDD) by
taking intra- and inter-category affinities of pixel represen-
tations into account. Formally, a PDD value for category k
is given by:

PDD(k) =
1

|Λk|
∑
x∈Λk

sim(x, µk)∑K
i=1,i 6=k sim(x, µi)

, (18)

where sim(·, ·) is the similarity metric, and we adopt cosine
similarity. Λk denotes the pixel set that contains all the pixel
representations belonging to the kth semantic class.

With PDD, we could investigate the relative magni-
tude of inter-category and intra-category pixel feature dis-
tances. Specifically, we calculate the PDD on the whole
Cityscapes validate set and compare PDD values with other
state-of-the-art category alignment methods: CLAN [23]
and FADA [26] for category-level adversarial training and
SIM [25] and CAG-UDA [27] for category centroid based
counterparts that do not tackle the distance between dif-
ferent category features. As shown in Fig. 8, we observe
that: (i) CLAN and FADA could not cope well with the
distance between different category features, thus obtaining
lower PDD values. (ii) Both SIM and CAG-UDA adopt
category anchors computed on the source domain to guide
the alignment but they do not regularize the distance among
different category features. Thus, the PDD values of some
categories such as “road”, “wall”, “light” and “car” are even
lower than those of adversarial training methods while the
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λcl 0.01 0.1 0.5 1.0 2.0
G→ C 58.9 59.9 60.9 61.0 59.3
S→ C 57.3 57.4 57.8 58.1 57.9

(a) Study on λcl.

λreg 0.01 0.1 0.5 1.0 2.0
G→ C 59.5 59.3 59.3 61.0 58.7
S→ C 57.8 57.9 58.2 58.1 57.6

(b) Study on λreg .

Lw 0 1500 3000 5000 10000
G→ C 59.2 59.5 61.0 59.7 58.4
S→ C 57.2 58.0 58.1 57.8 57.3

(c) Study on Lw .

TABLE 10: Parameter sensitivity on GTAV→ Cityscapes (G→ C) and SYNTHIA→ Cityscapes (S→ C) tasks.

(a) CLAN (b) SIM (c) CAG-UDA

(d) ProtoCL (e) BankCL (f) DistCL

Fig. 9: t-SNE analysis of existing comparable alignment
methods and our SePiCo. As seen, the proposed pixel
contrast objectives (ProtoCL/BankCL/DistCL) beget well-
structured embedding spaces. Please zoom in for details.

PDD values of some categories are sometimes higher. (iii)
Considering cross-domain pixel contrast, our SePiCo (Pro-
toCL/BankCL/DistCL) can achieve much higher PDD val-
ues in most categories. Based on these quantitative results,
together with the t-SNE analysis in Fig. 9, it is clear that
our SePiCo can achieve better pixel-wise category alignment
and largely improve the pixel-wise accuracy of predictions.

4.4.2 t-SNE Visualization
To better develop intuition, we draw t-SNE visualiza-
tions [92] of learned representations for three competitive
category alignment methods (CLAN [23], SIM [25], CAG-
UDA [27]) and compare them with all variants of our SePiCo
(ProtoCL, BankCL, DistCL) in Fig. 9. With this in mind, we
first randomly select an image from target domain and then
map its high-dimensional latent feature representations to
a 2D space. From the t-SNE visualizations, we can observe
that (i) Existing category alignment methods could produce
separated features, but it may be hard for dense prediction
since the margins between different category features are
not obvious and the distribution is still dispersed; (ii) When
we apply pixel contrast, features among different categories
are better separated, demonstrating that the semantic dis-
tributions can provide correct supervision signal for target
data; (iii) More importantly, the representations of SePiCo
(DistCL) exhibit clear clusters, revealing the discriminative
capability of the distribution-aware contrastive adaptation.

4.4.3 Parameter Sensitivity
We conduct parameter sensitivity analysis to evaluate the
sensitivity of SePiCo (DistCL) on two synthetic-to-real
benchmarks. As shown in TABLE 10a, 10b and 10c, we
select loss weights λcl and λreg ∈ {0.01 , 0.1 , 0.5 , 1.0 , 2.0},
the iteration at which to start contrastive learning Lw ∈
{0 , 1500 , 3000 , 5000 , 10000}, respectively. While altering
λcl and λreg in a large range, we find that both losses
are slightly sensitive to their assigned weight on GTAV
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Fig. 10: Comparison results of model transferability for
different methods trained on GTAV→ Cityscapes.

→ Cityscapes, and probably their relative weight due to
their resemblance. Nevertheless, our method keeps outper-
forming the previous SOTA in different compositions of
loss weights. We also explore the sensitivity of our method
on the iteration to start contrastive learning and observe
that SePiCo (DistCL) is relatively robust to Lw, peaking at
Lw = 3000. The result could be attributed to better category
information learned through warm-up iterations.

4.4.4 Quality of Model Generalization

To quantify the generalization of our SePiCo, we adopt a
transferability metric (i.e., LogME [93]) to accurately as-
sess the transferability of the model trained on GTAV →
Cityscapes to the target dataset. Specifically, LogME calcu-
lates the maximum value of label evidence given extracted
features by the adapted models and can measure the quality
of models. A model with a higher LogME value is likely
to have good transfer performance. In the trial, we con-
sider each pixel and its ground-truth label as a separate
observation. Since using all observations of target data to
calculate is too computationally expensive, we instead cal-
culate the LogME metric within a single target image and
then average them. Fig. 10 shows the comparison results
at different stages of CAG-UDA [27] (Stage1, Stage2, and
Stage3) and ProDA [36] (Stage1, Stage2, and Stage3) and our
one-stage pipeline SePiCo (ProtoCL, BankCL, and DistCL).
This case study confirms the strong generalization of our
pixel contrast paradigm, which essentially learns a well-
structured pixel embedding space by making full use of the
prototype, bank, or distribution-aware semantic similarities
from the source domain.

4.4.5 Throughput

We first compare inputs of different baseline methods.
Source Only [8], [48], for instance, contains a student model
and takes source (Is) images as input. DACS [30], an ad-
vanced self-training method, introduces the teacher-student
model. The student model takes both source (Is) and target
(It) images as input, and the target model takes target
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TABLE 11: Throughput measured for different networks
(DeepLab-V2 [8] and SegF. Mit-B5 [48]) on GTAV →
Cityscapes. Results are obtained using V100-32G and
throughput is measured using a batch size of 1.

Method mIoU
Student
model

Teacher
model

ImageNet
pretrained model

Training time
per iteration (s)

Source Only [8] 38.6 Is - - 0.32 (1.00×)
DACS [30] 52.1 Is + It It - 1.16 (3.63×)
SePiCo (DistCL) 61.0 Is + It Is + It - 1.34 (4.18×)
Source Only [48] 44.5 Is - - 0.35 (1.00×)
DAFormer [28] 68.3 Is + It It Is 1.33 (3.80×)
SePiCo (DistCL) 70.3 Is + It Is + It - 1.45 (4.14×)

images as input to generate target pseudo labels. As for
DAFormer [28], the state-of-the-art method based on a
Transformer backbone, it also contains a teacher model and
a student model. The training process is similar to DACS,
except that DAFormer introduces an auxiliary ImageNet
pre-trained model and takes source (Is) images as input
to distill knowledge from expressive thing features of Im-
ageNet. In this work, we also contain a teacher model and a
student model and introduce a very lightweight projection
head into the network that generates a new pixel embedding
space. And both teacher and student models take source (Is)
and target (It) images as input, as shown in Fig. 3.

Then, we compute the throughput of the mentioned
methods on the GTAV → Cityscapes task using different
networks. Since the throughput of the test phase is the same
with the same network, we compare the training time of
one iteration in TABLE 11. Compared to existing methods,
we can observe that SePiCo only introduces slight extra
computation on either CNN-based or Transformer-based
networks but significantly surpasses comparison methods.

5 CONCLUSION

In this paper, we present SePiCo, a novel end-to-end adap-
tation framework tailored for semantic segmentation, which
successfully enhances the potential of the self-training
paradigm in conjunction with representation learning. Our
main contribution is the discovery of pixel contrast guided
by different semantic concepts. Eventually, we propose a
particular form of contrastive loss at the pixel level, which
implicitly involves the joint learning of an infinite number of
similar/dissimilar pixel pairs for each pixel representation
of both domains. Additionally, we derive an upper bound
on this formulation and transfer the originally intractable
loss function into practical implementation. Though simple
yet effective, it works surprisingly well. Extensive experi-
ments demonstrate the superiority of SePiCo on both day-
time and nighttime segmentation benchmarks.
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versarial entropy minimization for domain adaptation in semantic
segmentation,” in CVPR, 2019, pp. 2517–2526.

[22] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, “Unsupervised
intra-domain adaptation for semantic segmentation through self-
supervision,” in CVPR, 2020, pp. 3764–3773.

[23] Y. Luo, P. Liu, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Category-
level adversarial adaptation for semantic segmentation using puri-
fied features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 8,
pp. 3940–3956, 2022.

[24] S. Li, M. Xie, K. Gong, C. H. Liu, Y. Wang, and W. Li, “Transferable
semantic augmentation for domain adaptation,” in CVPR, 2021,
pp. 11 516–11 525.

[25] Z. Wang, M. Yu, Y. Wei, R. Feris, J. Xiong, W.-m. Hwu, T. S.
Huang, and H. Shi, “Differential treatment for stuff and things:
A simple unsupervised domain adaptation method for semantic
segmentation,” in CVPR, 2020, pp. 12 635–12 644.

[26] H. Wang, T. Shen, W. Zhang, L. Duan, and T. Mei, “Classes matter:
A fine-grained adversarial approach to cross-domain semantic
segmentation,” in ECCV, 2020, pp. 642–659.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[27] Q. Zhang, J. Zhang, W. Liu, and D. Tao, “Category anchor-guided
unsupervised domain adaptation for semantic segmentation,” in
NeurIPS, 2019, pp. 433–443.

[28] L. Hoyer, D. Dai, and L. Van Gool, “Daformer: Improving network
architectures and training strategies for domain-adaptive semantic
segmentation,” in CVPR, 2022, pp. 9924–9935.

[29] J. Dong, Y. Cong, G. Sun, Z. Fang, and Z. Ding, “Where and
how to transfer: Knowledge aggregation-induced transferability
perception for unsupervised domain adaptation,” IEEE Trans.
Pattern Anal. Mach. Intell., pp. 1–1, 2021.

[30] W. Tranheden, V. Olsson, J. Pinto, and L. Svensson, “DACS:
domain adaptation via cross-domain mixed sampling,” in WACV,
2021, pp. 1378–1388.

[31] Z. Zheng and Y. Yang, “Rectifying pseudo label learning via un-
certainty estimation for domain adaptive semantic segmentation,”
Int. J. Comput. Vis., vol. 129, no. 4, pp. 1106–1120, 2021.

[32] C. Corbiere, N. Thome, A. Saporta, T.-H. Vu, M. Cord, and P. Perez,
“Confidence estimation via auxiliary models,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 10, pp. 6043–6055, 2022.

[33] Y. Zou, Z. Yu, X. Liu, B. V. K. V. Kumar, and J. Wang, “Confidence
regularized self-training,” in ICCV, 2019, pp. 5982–5991.

[34] N. Araslanov and S. Roth, “Self-supervised augmentation consis-
tency for adapting semantic segmentation,” in CVPR, 2021, pp.
15 384–15 394.

[35] H. Ma, X. Lin, Z. Wu, and Y. Yu, “Coarse-to-fine domain adaptive
semantic segmentation with photometric alignment and category-
center regularization,” in CVPR, 2021, pp. 4051–4060.

[36] P. Zhang, B. Zhang, T. Zhang, D. Chen, Y. Wang, and F. Wen,
“Prototypical pseudo label denoising and target structure learning
for domain adaptive semantic segmentation,” in CVPR, 2021, pp.
12 414–12 424.

[37] Y. Wang, J. Peng, and Z. Zhang, “Uncertainty-aware pseudo label
refinery for domain adaptive semantic segmentation,” in ICCV,
2021, pp. 9092–9101.

[38] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for
domain adaptation of semantic segmentation,” in CVPR, 2019, pp.
6936–6945.

[39] T. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “DADA: depth-
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