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Abstract
Sepsis is a clinical entity in which complex inflammatory and physiological processes are
mobilized, not only across a range of cellular and molecular interactions, but also in clinically
relevant physiological signals accessible at the bedside. There is a need for a mechanistic
understanding that links the clinical phenomenon of physiologic variability with the underlying
patterns of the biology of inflammation, and we assert that this can be facilitated through the use
of dynamic mathematical and computational modeling. An iterative approach of laboratory
experimentation and mathematical/computational modeling has the potential to integrate cellular
biology, physiology, control theory, and systems engineering across biological scales, yielding
insights into the control structures that govern mechanisms by which phenomena, detected as
biological patterns, are produced. This approach can represent hypotheses in the formal language
of mathematics and computation, and link behaviors that cross scales and domains, thereby
offering the opportunity to better explain, diagnose, and intervene in the care of the septic patient.
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I. INTRODUCTION: THE SIGNIFICANCE AND PUZZLE OF SEPSIS
Sepsis is a significant may account for nearly 10% of total U.S. deaths.1–4 It can be argued
that for most infections, death, despite antibiotics, occurs primarily through the final
common pathway of sepsis-induced multiple organ dysfunction syndrome (MODS). When
viewed thus, sepsis is the tenth leading cause of death overall in the United States.2,5 Sepsis
affects persons of all ages groups,6 and is the second leading cause of morbidity and
mortality for patients admitted to an intensive care unit (ICU).1,7–10 Sepsis also substantially
reduces the quality of life of many of those who survive.2,11,12 As the population ages, and
the increasing preponderance of complex medical comorbidities expected in that population,
the impact of sepsis would be expected to increase.1,2,6,13

Despite a large body of scientific literature concerning individual mechanisms that are
involved in sepsis—ranging from disordered endothelial activation, public 14,15 organ
dysfunction due to epithelial cell fail-health concern that ure,16,17 to dysregulated
inflammation and the associated complement and coagulation networks18,19—the primary

© 2012 Begell House, Inc.
*Address all correspondence to: Yoram Vodovotz, Department of Surgery, University of Pittsburgh, W944 Biomedical Sciences
Tower, 200 Lothrop St., Pittsburgh, PA 15213: Tel.: 412-647-5609; Fax: 412-383-5946; vodovotzy@upmc.edu.

NIH Public Access
Author Manuscript
Crit Rev Biomed Eng. Author manuscript; available in PMC 2013 April 11.

Published in final edited form as:
Crit Rev Biomed Eng. 2012 ; 40(4): 341–351.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



challenge in the management of sepsis is the effective integration and characterization of
multiple abnormal configurations of all these factors, and the identification of which patients
set of disorders. This challenge is manifest not only among individuals (i.e., patient
heterogeneity), but also during the course of disease within a single patient (temporal
heterogeneity). The heterogeneous nature of the sepsis patient population has made it
difficult to parse that population into sufficiently precise, molecularly defined
pathophysiologic subgroups. The field has progressed from a recognition of the basic
clinical features of sepsis in antiquity20 through the germ theory (in which pathogens were
the sole causes),21–23 to the development of various sets of fairly rigid diagnostic and
evolving guidelines and scoring systems developed in part in response to the inability to
curb sepsis solely through therapy aimed at the pathogen.22,24–26 However, recent advances
in the analysis and modeling of high-dimensional, dynamic data (physiologic, genomic, and
proteomic) on acutely ill patients (discussed below) suggest that the field is heading toward
multidimensional characterization of the state of individual patients, rather than rigid
diagnoses.27–29

II. PATTERNS OF PHYSIOLOGY AND INFLAMMATION IN SEPSIS
Two, heretofore parallel, approaches have evolved over time in an attempt to address sepsis
diagnosis and therapy from a systems perspective, both of which utilize patterns of
information. One area of active research involves the analysis of physiological signals
retrievable from bedside monitoring devices, dealing with the processing and interpretation
of complex physiological signals. Twenty years of research in this area30 have led to the
identification of metrics representing loss of complexity of physiologic variability in heart
rate and breathing patterns; these metrics are finally being used for the diagnosis of sepsis in
a limited fashion.31,32 These descriptive methods have been used in an attempt to elucidate
more precise and potentially predictive metrics associated with clinical manifestations of
sepsis/MODS; the hope is that these metrics will also provide some mechanistic insight into
the control systems responsible for their output. For instance, organ dysfunction in sepsis
has been viewed as a decoupling of the oscillatory systems manifest in intact organ-to-organ
feedback.33 Both experimental and clinical studies have suggested that one measure of this
disrupted oscillatory coupling is reduced variability (or increased regularity) in various
physiologic signals, chief among them being heart rate (Fig. 1).34–36 Time-domain analysis
of heart rate variability (HRV) has subsequently evolved as a potentially noninvasive
diagnostic modality for sepsis.37 Using sophisticated physiological signal-processing
techniques, various studies have reported that a decrease in HRV indices may be potentially
diagnostic of higher morbidity and mortality in critically ill patients.35,38–45 In addition to
HRV, examination of other physiologic parameters from a complex systems approach has
also yielded valuable insights into the physiology of sepsis.46,47 The rising interest in the
diagnostic utility of metrics of HRV in the setting of trauma and sepsis43,48 was highlighted
at the recent Ninth International Conference on Complexity in Acute Illness.49

However, despite the demonstrated validity and usefulness of these types of physiological
signal analyses, these methods remain primarily phenomenological and diagnostic in nature
—in essence, connecting biological pattern with clinical outcome through the use of
statistical methods.50 The clinical management of sepsis/MODS is significantly hampered in
both diagnostics and therapeutics; therefore, any cohesive attempt to deal with the challenge
of sepsis needs to connect phenomenology with mechanism in order to attack both needs
simultaneously. There have been some attempts to establish anatomic correlates to the
control systems involved in organ-to-organ oscillatory coupling: HRV data have been used
indirectly to detect variability attributed to sympathetic and parasympathetic branches of the
autonomic nervous system as well as other physiological processes that affect heart rate,
including respiration, blood pressure, and temperature.37 However, in order to design and
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develop therapeutics in a rationally directed manner, a precise dynamic characterization of
the cellular and molecular mechanisms responsible for generating the sepsis phenotype is
required.

Toward this end, the other parallel track of complex systems analysis in the study of sepsis
invovles dynamic mathematical and computational modeling at the cellular and molecular
level. It is well appreciated that inflammation is both a communication mechanism for, and
the primary driver of, the cascading organ dysfunction characteristic of sepsis and MODS51

(Fig. 1). Inflammation in trauma/hemorrhage and sepsis manifests in patterns evident at the
genomic,50–53 proteomic,28,56,57 and metabolomic28,58 levels. The complexity of dynamic
patterns in inflammation is potentially daunting, and multiple groups have approached
characterizing this critical generative process through pattern-oriented analyses.59–66 Such
analyses may suggest principal drivers of inflammation and MODS, and may define the
interconnected networks of mediators and signaling responses that underlie the pathobiology
of critical illness.

III. A TRANSLATIONAL SYSTEMS BIOLOGY APPROACH TO CRITICAL
ILLNESS

Despite these advanced pattern-oriented methods, the knowledge necessary to both decipher
the complexity of acute inflammation and MODS may require going beyond patterns toward
mechanism, using the tools of mathematical modeling.29,67–75 The pathogenesis of sepsis is
dynamic and involves tissue-level cellular activation resulting in the release of inflammatory
mediators such as cytokines; the activation of neutrophils, monocytes, and microvascular
endothelial cells; triggered involvement of neuroendocrine mechanisms; and activation of
the complement, coagulation, and fibrinolytic systems76,77(Fig. 1). The innate immune/acute
inflammatory response recognizes the presence of invading pathogens, acts toward initial
containment, recruits additional cells to eliminate the pathogens, and, concurrently, involves
feedback mechanisms that serve to limit and restrict the proinflammatory component such
that homeostatic dynamic equilibrium can be reestablished.78 These factors function in a
series of interlinked and overlapping networks that function at multiple scales, suggesting
that “inflammation is communication.”79 As in any situation that involves communication,
the content, tone, and context are of critical importance. For instance, an appropriately
robust inflammatory response is necessary to survive trauma/hemorrhage, both in the very
short and long terms,66,80 a finding that contradicts the driving dogma of trauma/sepsis from
the 1980s and 1990s.81,82

It is important to note that organs obtained from sepsis patients postmortem do not exhibit
histological damage;83 however, these organs are nonetheless dysfunctional through various
functional defects identified at the cellular/molecular level in both epithelial84 and
endothelial cells.14,15 This dysfunction may evolve from and help maintain disordered
positive feedback loops, in which inflammation induced by pathogen-derived signals leads
to the release from epithelial and endothelial cells of molecular messengers of tissue
damage, namely, damage-associated molecular pattern (DAMP) molecules. These alarm/
danger signals recruit and stimulate inflammatory cells to produce more inflammatory
mediators, leading to a further release of DAMPs, resulting in a self-maintaining
inflammatory cycle, even after the pathogen has been cleared. The body is equipped to
suppress inflammation and promote the healing of cells, tissues, and organs both through the
production of anti-inflammatory mediators as well as through an inherent suppression of
proinflammatory signaling (referred to as tolerance or desensitization). In sepsis, these anti-
inflammatory influences are either insufficient to suppress self-maintaining inflammation, or
are overproduced and lead to an immunosuppressed state.78,85–87 Given the complexity of
these feedback relationships, it not surprising that, despite promising results at the basic
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science and preclinical level, large-scale trials of therapies targeted at inhibiting specific
inflammatory mediators have generally failed to improve survival.88

Inflammatory pathways and the organ-level physiology to which they are coupled exhibit
nonlinear behavior, significantly limiting the intuitive extrapolation of mechanistic
knowledge derived from basic science to clinically relevant effects at the level of the whole
patient.89–93 Reductionism, the primary approach in biomedical research, has been
successful when applied to systems whose behavior can be reduced to a “linear” (i.e., single
direct relationship) representation such that the results of various independent experiments
can be aggregated additively to obtain and predict the behavior of the system as a whole.89

However, systems that have multiple positive and negative feedback loops, and therefore
display nonlinear behavior such as the acute inflammatory response, require more
sophisticated mathematical representation for their characterization. It is now recognized
that such an approach is necessary to understand complex biologic processes.89,91,94–98

Systems biology provides some methods and approaches that move in the appropriate
direction.95,99 In silico (i.e., computer-based) research consisting of the use of dynamic
mathematical and computational models has been suggested as a necessary step in
untangling complex biological processes such as the acute inflammatory response by both
the NIH in its Roadmap Initiative100 and the FDA in its “Critical Path” document.99

Dynamic mathematical and computational models characterize the evolution of variables
(corresponding to observable properties in the real world) over time, and thus account for
the temporal dimension in the description of a biological phenomenon/system. Therefore,
the purpose of such computational models is predictive description—to provide entailment
and insight into the future state of the system given knowledge of the current state of the
system. This property suggests that dynamic mathematical and computational models can be
considered testable hypotheses. When such a model predicts measurable behavior that
matches the corresponding metrics experimentally observed in the system under study, one
can reasonably infer that the model has captured potentially useful interrelations.89

Conversely, when model and experiment disagree, the assumptions/hypotheses represented
in the model must be reassessed (it should be noted that this process is not limited to
mathematical models).

Transparency in model construction is critical, insomuch that the assumptions underlying a
particular model must be able to be examined in detail so that the iterative process of model
refinement (essentially a proxy for the scientific method) can be executed.101,102

Furthermore, the formal process of creating and executing in silico models can provide
useful frameworks for integrating hypotheses and dealing with the uncertainties associated
with the calibration of experimental data, given behavioral nonlinearities, high-dimensional
parameter spaces, and sparse sample points.103

Mechanistic in silico models of acute inflammation have been applied successfully to sepsis,
trauma, and wound healing, leading to the concept of translational systems biology of
inflammation.29,67,70–75,104,105 In terms of theory, simple models of acute inflammation
have suggested that morbidity and mortality in sepsis may arise from diverse insult- and
patient-specific circumstances, 106 and have given basic insight into properties of molecular
control structures and sufficient levels of representation.107,108 Dynamic mathematical and
computational models have been used to characterize inflammatory signal-transduction
cascades, and these studies may help drive mechanism-based drug discovery.109–111 Other
computational models were used to yield insights into the acute inflammatory response in
diverse shock states,112–117 as well as the responses to anthrax,118 necrotizing
enterocolitis,119 and toxic-shock syndrome.120 In silico modeling has helped define and
predict the acute inflammatory responses seen in both experimental animals112,115,121–123
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and humans.124 Initial translational successes of dynamic mathematical and computational
models involved the ability to reproduce (and suggest improvements to) clinical trials in
sepsis,98,125 and these successes have been extended to the design of prospective clinical
trials.67,71,72,74,75 An in silico clinical trial environment, consisting of a multiscale,
equation-based mechanistic simulation that encompasses dynamic interactions among
multiple tissues, immune cells, and inflammatory mediators, has been augmented with a
“virtual clinician” in order to better reproduce the clinical environment of critical
care.61,71,72,74,75

IV. SEPSIS: FROM PATTERN TO MECHANISM VIA TRANSLATIONAL
SYSTEMS BIOLOGY

Despite all of the aforementioned research into, and emerging translational applications of,
complex systems methods, there has been little success in mechanistically connecting
inflammation and physiologic variability. Our long-term goal is a systems understanding of
sepsis that will allow us to unify the pattern-based, diagnostically relevant use of
physiological waveforms with the increasingly detailed, mechanistic understanding of acute
inflammation in order to improve therapy for sepsis. At present, however, patterns of
physiologic signals and inflammatory mediators are, at best, statistically associated with
changes in organ function and overall health status.126 We suggest that these processes need
to be viewed from a dynamic, mechanistic standpoint, and that the missing ingredient in
many current research endeavors is the ability to connect multidimensional data with
underlying biological and physiologic mechanisms. In short, we are not satisfied with
associations and correlations between patterns of signals and disease state; we seek to
understand the generative processes by which those signals arise. We suggest that
translational systems biology is the path to representing this critical connectivity, an
approach that involves mechanistic mathematical modeling with a clinically translational
focus.67,71–75 We view both inflammation and physiologic variability from a “Goldilocks”
perspective, i.e., too little or too much of either is a hallmark of disease, and our engineering
focus104 has led us to suggest that we need to understand the control architecture involved in
balancing inflammation and physiologic demands. We hypothesize that breakdowns in the
control architecture and connectivity lead to the myriad derangements associated with
sepsis, and that these failure modes can be described and quantified in order to separate
critical signals from “red herring” signals that arise from the inherent system architecture
(Fig. 1). We suggest that future sepsis research would be greatly enhanced by developing
approaches to bridge the gap between cellular-molecular mechanism and clinically relevant
physiological phenomenon, hopefully leading to a solid mechanistic foundation to
diagnostically relevant changes in physiologic waveforms and patterns of inflammatory
mediators.

V. CONCLUSIONS AND FUTURE PROSPECTS
There can be little doubt about the potential future societal impact of sepsis.1,2,6,13 As with
virtually all aspects of sepsis, the difficulties clinicians face in the future are due, ironically,
at least to some degree to the prior successes of the very same clinical community: the
consequences of their successes are that people are now older and generally sicker when
they reach the ICU. The advances in mechanistic understanding associated with the
pathophysiology of sepsis are also impressive, but these advances, too, have often only
served to complicate matters: we now recognize that “sepsis” is not one clinical entity, but
rather a broad and heterogeneous spectrum of acute systemic inflammation. Any rational
approach to the challenge of sepsis and related disorders requires the ability to parse out the
clinical population into more mechanistically defined subgroups; it is only then that
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effective interventions might be designed and implemented with a nonrandom chance of
success (in contrast to the past 25 years of attempts at therapeutic intervention in sepsis).

Many research communities have recognized the importance of mathematical and
computational integration of knowledge in order to advance their science. Drawing on the
experience in physics,127 ecology,128 material science,129 geochemistry,130 and many other
scientific fields, we do not suggest that mathematical modeling is a substitute for
experiments performed in the real world. However, computational modeling of critical
illness and intervention is a means of leveraging the expertise in knowledge integration and
engineering present across scientific disciplines. Specifically related to critical illness and
sepsis, computational modeling serves at least two purposes. First, any model that predicts
behaviors closely corresponding to experiment and/or clinical observation reassures us that
the model has, in fact, captured the relevant components and their interactions.131 Second,
and perhaps most important, discordance between the model’s behavior and anticipated or
actual outcomes illuminates those areas where further experiments should focus.131

Ultimately, translational systems biology should continue to inspire both hope131 and
skepticism132 on the path to mechanism from biological and physiological patterns.
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FIGURE 1.
The effects of inflammation on organ function and accompanying physiologic variability
occur via a neuroendocrine control architecture. (A) In the healthy state, normal organ
function manifests in physiologic variability due to the actions of a neuroendocrine control
architecture. (B) Inflammation affects healthy physiologic variability, and defined changes
in physiologic variability are sensed via the neuroendocrine control architecture (that in turn
is itself affected by inflammation). This control system in turn induces further inflammation
in an attempt to restore healthy variability, but is most likely degraded in the face of
persistent inflammation, creating a positive feedback loop of inflammation → dysfunction
→ inflammation.
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