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September Arctic sea-ice minimum predicted by

spring melt-pond fraction

David Schréder*, Daniel L. Feltham, Daniela Flocco and Michel Tsamados

The area of Arctic September seaice has diminished from about
7 million km? in the 1990s to less than 5 million km? in five of
the past seven years, with a record minimum of 3.6 million km?
in 2012 (ref. 1). The strength of this decrease is greater than
expected by the scientific community, the reasons for this
are not fully understood, and its simulation is an on-going
challenge for existing climate models?3. With growing Arctic
marine activity there is an urgent demand for forecasting Arctic
summer sea ice*. Previous attempts at seasonal forecasts of
ice extent were of limited skill*°. However, here we show that
the Arctic sea-ice minimum can be accurately forecasted from
melt-pond area in spring. We find a strong correlation between
the spring pond fraction and September sea-ice extent. This
is explained by a positive feedback mechanism: more ponds
reduce the albedo; a lower albedo causes more melting; more
melting increases pond fraction. Our results help explain the
acceleration of Arctic sea-ice decrease during the past decade.
The inclusion of our new melt-pond model promises to
improve the skill of future forecast and climate models in Arctic
regions and beyond.

Ponds form on Arctic sea ice from the accumulation of surface
melt during spring and affect the heat and mass balances of the ice
cover, mainly by decreasing the value of the mean surface albedo
by up to 20% (refs 10,11). Although observations have shown an
increase in melt-ponds on Arctic sea'’, little is known about the role
of melt-ponds in controlling the sea-ice mass balance and none of
the current climate and forecast models use a physically based melt-
pond model. We have developed a new melt-pond model suitable
for forecasting the evolution of melt-ponds' and incorporated this
model into the widely applied Los Alamos sea-ice model called
CICE (ref. 12). We studied the temporal and spatial evolution
of ponds (Figs 1 and 2) from a 35-year-long CICE simulation
(1979-2013) for the pan-Arctic region forced with atmospheric
NCEP_Reanalysis-2 data®. (See Methods for a description of the
pond model and the set-up of our simulation.) Our simulations
show that melt ponds start to form in May, a maximum extent of
18% is reached in the climatological mean at mid-July, and there
are hardly any exposed ponds left by mid-August. The strong inter-
annual variability and the positive trend are striking. Whereas in
1996, the year with the highest September ice extent since 1979, the
maximum pond fraction reaches only 11%, in 2012, the year with
the lowest September ice extent, up to 34% of the sea ice is covered
by ponds. Locally the maximum monthly means (of more than 40%
in 2012) occur in the border zone between the Arctic Basin and the
Laptev Sea, East Siberian Sea and Chuckchi Sea, as well as in Baffin
Bay (Fig. 2). The results of our CICE simulation are consistent with
in situ observations'*"® and pond statistics for the period 2002-2011
based on MODIS satellite data'®.
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Figure 1| Temporal variability of Arctic melt-pond area. a, Annual cycle of
Arctic mean fraction of sea-ice area covered by exposed melt-ponds in our
CICE simulation. The grey-shaded area shows the range of pond fraction
simulated over the 35-year period. b, Time series of normalized pond
fraction (mean over the period from 25 June to 25 July).

To quantify the relationship between melt-pond fraction and the
sea-ice minimum in the subsequent September, we calculate the
correlation between the 35-year time series (1979-2013) of mean
Arctic September sea-ice extent (from SSM/I; ref. 1) with the time
series of mean Arctic pond area fraction from our CICE simulation.
On the basis of the full data sets we calculate weights for each grid
point based on the correlation coefficient between the local pond
area and the Arctic September ice extent (see Fig. 2 for an example
and Methods for details). It is important to state that all time series
had been de-trended beforehand. Previous studies™ show a strong
correlation between absolute time series of ice and ocean variables
with September ice extent, but no skill in predicting de-trended sea-
ice extent for lead times of three months and longer. Figure 3 reveals
that there is a highly significant correlation (p-values < 0.005)
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Figure 2 | Spatial distribution of Arctic melt-pond area. Mean pond area
over the period from 25 June to 25 July for 1996 (a) and 2012 (b). The
purple line is the September ice extent of the same year from our CICE
simulation, and the black line is the ice extent from SSM/I. Crosses mark
those grid points where mean pond area (1 May to 25 July) is strongly
correlated with SSM/| September ice extent (correlation coefficient

R < —0.3) over the period 1979-2013.

between simulated pond fraction and SSM/I September ice extent.
The highest correlation coefficient of R=—0.80 occurs for ice extent
if the pond area is integrated from 1 to 31 May. Extending the
integration time period does not improve the correlation. Although
the pond area integrated from 1 to 31 May contains only around 1%
of the annually integrated pond area (Fig. 1), the melt-pond fraction
in May seems to have the strongest impact on the sea-ice state in
the subsequent September. Our results confirm that the early melt
season is decisive for the strength of the summer ice retreat"’.
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Figure 3 | Correlation between pond and thin-ice fraction with September
sea-ice extent. The mean Arctic pond and thin-ice fraction are integrated
from 1 May until the day given. The Arctic September ice extent is from
SSM/I. a, Pearson'’s correlation coefficient R and p-values for de-trended
time series. The vertical lines indicate the integration periods shown in

Fig. 4. b, Scatter plot for the May pond fraction and September ice extent.
Anomalies are given as a percentage of the mean value. A linear function
has been fit to the data (red line).

The September ice extent is known to depend both on the state
of the ice in spring (for example, amount of thin ice) and on the
atmospheric conditions in the Arctic during summer (for example,
wind direction; refs 18,19). To place our results for melt-ponds in
context we calculated the correlation between the fraction of thin
ice (lowest two ice categories in the model; that is, ice thinner than
1.4 m) with September ice extent using the same integration time
periods. The correlation is strongly significant, but the coefficients
are lower for thin-ice fraction than for pond area fraction using
integration periods up to the end of June (Fig. 3a). Note that there
is no significant correlation between the May and June ice area and
September ice extent (Supplementary Fig. 1).

Why is there such a strong correlation between pond area
fraction in spring and the state of September sea ice? The albedo of
ponded sea ice (varying between 0.15 and 0.45) is considerably lower
than the albedo of snow-covered or bare ice (generally between 0.50
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Figure 4 | Verification of predicted September sea-ice extent. Predicted ice extent (anomaly from the trend line in a and b and absolute values in c) is
verified by use of SSM/| data for the period 1979-2013. Hindcasts (a) and forecasts (b) are based on three different integration periods for pond fraction:
1 May-31May (pond31), T May-25 June (pond56) and 1 May-25 July (pond86) and one for fraction of thin ice: 1 May-25 June (ice56). oterr and operr are
the prediction and the forecast error in million kmZ. The given skill values S are with respect to the variance of the de-trended climatology. See Methods

for details.

and 0.95; refs 10,17). Ponds cause a strong increase of melting, and
that increase in melt water leads to an increase in pond fraction.
The degree of increase depends on the ice conditions: the same
amount of melt water can cover a larger area over level first-
year ice than over rough multi-year ice. This positive feedback
mechanism, substantiated with high-resolution process modelling
studies®, gives a physical explanation as to why the amount of
ponds, in particular in the early melt season, contributes to the
amount of summer ice melt and consequently the amplitude of the
minimum ice extent. Furthermore, in our model simulation the
location of ponds and pond fraction depend mainly on the location
and amount of thin first-year ice and on the heat balance at the air-
ice/snow surface. Therefore, pond fraction encompasses important
elements of the pre-conditioning of the ice state in late spring with
respect to the September ice extent.

To investigate the potential of pond fraction as a predictor for
Arctic September sea ice, we first used the whole data period
to derive the linear regression between spring pond fraction and
September ice extent and applied the regression line to calculate
September ice extent from spring pond fraction (hindcast mode).
Figure 4a shows that our predicted September ice extent captures
the inter-annual variability of the observations well. Our prediction
error, Oy, = 0.33 million km?, for a prediction based on pond
fraction in May is remarkably low. It is fundamentally impossible to
determine the September ice extent from the spring pond fraction
perfectly, because the impact of the atmospheric and oceanic
conditions in July-September are not accounted for refs 8,19. To
quantify the dominant impact of the wind forcing (dependence of
minimum ice extent on ice dynamics; refs 18,19), for each of the
35 years we performed sensitivity studies starting on 26 June and
applied the wind forcing of each year. The resulting variance of
September ice extent amounts to 0.15 million km?. Thus, the impact
of the wind forcing alone can explain almost 50% of the prediction
error for ice extent.

The low error values in the hindcast of September ice extent
do not guarantee that pond fraction can be used for real forecasts
of Arctic September sea ice, because for a forecast only data of
previous years are available to calculate the weights and linear
regression. Using only data from all previous years, we developed
a forecast method based on the correlation between pond fraction
and September ice extent (see last paragraph of Methods for details).
The forecast skill S is determined relative to a reference value:

NATURE CLIMATE CHANGE | VOL 4 | MAY 2014 | www.nature.com/natureclimatechange

S=1— 042 /0,2, where o, =0.57 million km?® is the square root
of the variance of de-trended observed ice extent and oy, is the
forecast error variance. Figure 4b,c shows that the error of our
predicted September ice extent is larger for the forecast mode than
for the hindcast. Nevertheless, our error value of o¢,, = 0.44 million
km? (forecast based on pond fraction from 1 May to 25 June) and
our skill value of $=0.41 are remarkable in comparison to negative
skill values for statistical forecasts reported in the literature®. The
corresponding anomaly correlation coefficient ACC =0.65 is even
higher than the value of 0.60 for seasonal September ice forecast
with a global climate model-based prediction system that accounts
for the atmospheric conditions between June and September’. Note
that we are able to predict the observed September ice area with a
similar degree of skill as the observed ice extent (Supplementary
Fig. 2). The choice of the applied SSM/I algorithm (NASA Team
or Bootstrap) does not materially affect our results (Supplementary
Figs 2 and 3).

A forecast based on the amount of thin ice has a lower skill
(§=0.29, Fig. 4b) than that based on pond fraction (S=0.41).
However, the fact that there is any skill at all using thin ice confirms
that our model simulation is realistic with the inclusion of the
melt-pond model. The differences between simulated and observed
sea-ice extent are small (Fig. 2 for 1996 and 2012). If we use the
pond statistics based on MODIS satellite data', we get a similar
correlation by integrating over the period May until July, but the
period for which MODIS is available (since 2002) is too short to
draw statistically valid conclusions.

The CICE simulation in this study uses NCEP_Reanalysis-2
data' for the atmospheric forcing which are available with a delay
of less than one day. Therefore, we can carry out a CICE simulation
to obtain the pond fraction and to forecast the September ice extent
with an accuracy of 0.50 million km? by the beginning of June (May
pond fraction) and with an accuracy of 0.44 million km* by the
end of June. For September 2013 we forecast a mean ice extent of
5.5540.44 million km?, which is closer to the observed mean value
of 5.35 million km? than any of the 23 statistical, model and heuristic
predictions presented at the Arctic Sea Ice Outlook webpage®' in July
(median value of 4.0 million km?).

The World Climate Research Programme CMIP5 climate
modelling study reveals that the spread of Arctic September sea
ice between the individual members is considerable (for example,
September 2000 ice extent varies between 2 and 12 million km?)
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and that the observed downward trend is still not fully captured®.
Statistical predictions of ice extent cannot take into account
the coupled interactions and feedbacks between sea ice and
atmosphere®®. For operational forecasts of seasonal sea ice, a
coupled atmosphere-sea-ice-ocean model-based prediction system
that accounts for these interactions seems to be best suited. Our
calculations show that the increase of melt-ponds (4%/decade in
July) results in the observed decrease in summer albedo (3%/decade
in July/August; ref. 22). The results of this study demonstrate
that the inclusion of our melt-pond model promises to improve
the prediction of Arctic September ice extent substantially. We
conclude that the inclusion of a realistic melt-pond model will
transform future forecast and climate models in the Arctic regions
and beyond.

Methods

The Los Alamos sea-ice model CICE (refs 12,23) is a dynamic-thermodynamic
sea-ice model designed for inclusion within a global climate model. We have
implemented two new processes into CICE: a prognostic model for melt-ponds'
and an elastic anisotropic-plastic (EAP) model that explicitly accounts for the
observed sub-continuum anisotropy of the sea-ice cover**. The principal
concept of our melt-pond model is that the melt water, formed as a result of snow
melt, ice melt and precipitation, runs downhill under the influence of gravity and
collects on sea ice starting at the lowest surface height'****”. Applying our
melt-pond model and our EAP model, we performed a stand-alone sea-ice
simulation for the pan-Arctic region (~40km grid resolution) over the period
1979 to September 2013 using NCEP_Reanalysis-2 (ref. 13) data as atmospheric
forcing. CICE contains a simple mixed-layer ocean model with a prognostic
ocean temperature. To account for heat transport in the ocean, we restore the
mixed-layer ocean temperature and salinity to climatological monthly means
from MYO-WP4-PUM-GLOBAL-REANALYSIS-PHYS-001-004 (ref. 28) with a
restoring timescale of 20 days. No ocean current is applied.

To investigate the impact of the wind forcing during summer on the
September ice extent, we performed 35 x 35 three-month-long sensitivity studies,
in which we replaced the wind forcing of the current year by the wind fields of all
other years (1979-2013) for the period 26 June to 30 September.

For making real forecasts, we carried out 30 further CICE simulations from
1 June to 30 September for the years 1984-2013. We generate forcing data for this
period by calculating five-year six-hourly, daily and monthly means from the
previous five years of NCEP forcing and take into account the trend from 1979 to
the year of forecast. The mean was calculated for all atmospheric forcing data
apart from the wind vector. Because averaging the wind velocity vector would
reduce the wind speed, we applied the wind forcing from 1983 (an average year
with respect to ice advection) for all further simulations. The simulated
September ice extent of these simulations is used only to calculate the spatial
weights for pond and thin-ice fraction.

We calculated the Pearson product moment correlation coefficient R for the
de-trended time series of pond and thin ice fraction with the de-trended time
series of September ice extent. The given p-values are based on an F test. To
determine the time series we integrate pond and thin-ice fraction over time and
space. We apply several temporal integration periods varying from 1 May to
16 May up to 1 May to 30 July. For the spatial integration, we first determine
weights for each grid point following the method described in ref. 5. The weights
are determined as the magnitude of R of the de-trended time series of pond and
thin-ice area for each grid point with the de-trended time series of total
September ice extent. Most of the grid points have a negative R. For grid points
with a positive R the weight is set to zero. As an example, grid points with
R < —0.3 (for pond fraction integrated from 1 May to 25 June) are marked by
crosses in Fig. 2a.

We used a linear regression model to forecast September ice extent f(y) using
the pond or thin-ice fraction as the predictor x(y). The regression equation is:
fly)=a+bx(y)+e(y), with y indicating the years from 1979 to 2013, ¢ the error,
with the constants a and b determined by a least squares procedure. For
verification, we distinguish between a hindcast and a forecast. For the hindcast,
we apply data from all years to calculate the weights, the linear regression and the
prediction error variance o,.,2. The weights are determined as the magnitude of
the local correlation coefficient R between the de-trended time series of pond
(and thin-ice) fraction with the de-trended time series of total September ice
extent. For the forecast, we use data only from previous years. To utilize the pond
(and thin-ice) information of the current spring for the September ice forecast,
we include for the calculation of weights the September ice extent from our CICE
simulation of the current year with atmospheric forcing from previous years.
Afterwards, data only from previous years are applied to calculate the linear
regression and the error of the forecast year (for 1984-2013). The forecast skill is
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S=1—0%.2 /02, Where 0, is the variance of the de-trended climatology and
Oz the forecast error variance.
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