
[12:00 19/10/2010 Bioinformatics-btq526.tex] Page: 2803 2803–2810

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 22 2010, pages 2803–2810
doi:10.1093/bioinformatics/btq526

Sequence analysis Advance Access publication September 21, 2010

SeqEM: an adaptive genotype-calling approach for
next-generation sequencing studies
E. R. Martin∗, D. D. Kinnamon, M. A. Schmidt, E. H. Powell, S. Zuchner and R. W. Morris
John P. Hussman Institute for Human Genomics and the Dr. John T. Macdonald Foundation Department of Human
Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Next-generation sequencing presents several statistical
challenges, with one of the most fundamental being determining an
individual’s genotype from multiple aligned short read sequences
at a position. Some simple approaches for genotype calling
apply fixed filters, such as calling a heterozygote if more than a
specified percentage of the reads have variant nucleotide calls.
Other genotype-calling methods, such as MAQ and SOAPsnp, are
implementations of Bayes classifiers in that they classify genotypes
using posterior genotype probabilities.
Results: Here, we propose a novel genotype-calling algorithm that,
in contrast to the other methods, estimates parameters underlying
the posterior probabilities in an adaptive way rather than arbitrarily
specifying them a priori. The algorithm, which we call SeqEM,
applies the well-known Expectation-Maximization algorithm to an
appropriate likelihood for a sample of unrelated individuals with next-
generation sequence data, leveraging information from the sample to
estimate genotype probabilities and the nucleotide-read error rate.
We demonstrate using analytic calculations and simulations that
SeqEM results in genotype-call error rates as small as or smaller
than filtering approaches and MAQ. We also apply SeqEM to exome
sequence data in eight related individuals and compare the results to
genotypes from an Illumina SNP array, showing that SeqEM behaves
well in real data that deviates from idealized assumptions.
Conclusion: SeqEM offers an improved, robust and flexible
genotype-calling approach that can be widely applied in the next-
generation sequencing studies.
Availability and implementation: Software for SeqEM is freely
available from our website: www.hihg.org under Software Download.
Contact: emartin1@med.miami.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recent technological advances in massively parallel, high-
throughput DNA sequencing, commonly called next-generation
sequencing, are producing an unprecedented volume of sequence
data. The next few years are likely to see public databases, such as
the Short Read Archive at the National Center for Biotechnology
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Information, filled with hundreds of thousands of terabases of
human sequence data. Next-generation sequencing promises to be a
powerful tool for discovery of genetic variation contributing to risk
of complex diseases by providing rapid and complete sequencing of
a set of candidate genes, the entire exome or even the whole genome
(Ng et al., 2010; Tucker et al., 2009).

Current next-generation sequencing technologies are shotgun
approaches that produce base sequences for multiple, individual
DNA molecules which, depending upon the sequencing technology,
range from 30 to 350 bp in average length. Once aligned to a
reference genome, the number of reference nucleotides and the
number of variant (non-reference) nucleotides among multiple
sequences overlapping a given DNA site can be counted. Apart from
sequencing error, an individual homozygous at the site would yield
either all reference or all variant nucleotides. However, because of
random sampling of homologous base pairs in heterozygotes and
sequencing or alignment errors, the raw counts do not directly
identify the genotype at that site. This uncertainty requires a
genotype-calling algorithm to determine the latent genotype of an
individual from multiple aligned sequence reads.

Two primary methods are currently implemented for genotype
calling: (i) a filtering method based on a fixed number of
observed variant nucleotides and (ii) a probabilistic method based
on posterior genotype probabilities. Commercial software (e.g.
Roche GSMapper, CLC and Lasergene) employs simple filters to
distinguish heterozygotes from reference homozygotes by calling
an individual heterozygous if more than a prespecified number or
proportion of variant reads are seen at a position. The difficulty
with an arbitrary threshold for determining genotypes is that it does
not explicitly take into account the number of aligned sequences
(read depth) or information about allele frequency or nucleotide-
read error. It also does not quantify the uncertainty of the call.
A related approach determines filter thresholds for genotype calls
empirically using results from known genotypes (Hedges et al.,
2009). Probabilistic approaches, which assign genotype calls based
on the maximum posterior genotype probability given the read data,
have been implemented in programs such as MAQ and SOAPsnp
(Li et al., 2008; Li,J.B. et al., 2009; Li,R. et al., 2009). These use
fixed prior values for heterozygote probabilities and nucleotide-read
error probabilities, which may not be representative for a given
sample, in calculating posterior probabilities.

These approaches make genotype calls for a single individual at a
time, and thus do not utilize information from additional individuals
in the sample. Anticipating that most resequencing studies will
produce data for multiple individuals, we recognized that there
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is information about sample allele frequency and nucleotide-read
error in the data. Consequently, genotype-calling algorithms could
be improved by incorporating this information. Accordingly, we
propose a novel approach for genotype calling using next-generation
sequencing data from multiple unrelated individuals. Our approach
(SeqEM) seeks to provide a principled statistical framework that
is adaptive in that it does not rely on prespecified or known
allele frequency information. Our approach leverages information
from next-generation sequence data for multiple individuals by
using the Expectation-Maximization (EM) algorithm to numerically
maximize the observed data likelihood with respect to genotype
frequencies and the nucleotide-read error rate. Using maximum
likelihood point estimates of these parameters, we compute the
posterior probabilities of each genotype given the read data and
classify an individual’s genotype as the one with the largest posterior
probability. This is a Bayes classification procedure that can be
expected to minimize the overall genotype misclassification rate (i.e.
genotype-call error). Here, we describe our approach and compare
its genotype misclassification rate to different filtering algorithms
and the MAQ algorithm, both theoretically and with simulated data.
Finally, we compare the performance of alternative methods using
validated SNP genotypes in a real dataset of eight related individuals
with exome capture data.

2 METHODS

2.1 Statistical model for genotype-calling in
next-generation sequence data

There are many levels of data in next-generation sequencing, from image
data to aligned sequences. Genotype calling is concerned with the endpoint
following base calling and sequence alignment. For a given reference base
position, we have a variable number of short-read sequences that overlap the
reference position (Fig. 1). We refer to that number as read depth (N). At
each reference position, a nucleotide is called from each aligned short read. In
practice, this nucleotide read is observed with error, which is a combination
of base-call error and alignment error. Consequently, the number of variant
reads observed (X) at a position depends on the true genotype, read depth
and nucleotide-read error.

A probability model for next-generation sequence data can be described
as follows. For a diploid individual (i), a specific biallelic base position is
sampled at random Ni times (i.e. Ni reads) from a large pool of sequences. We
observe Xi copies of nucleotide V (a variant nucleotide) and Ni −Xi copies

Fig. 1. Schematic of 10 aligned next-generation sequencing reads
(R = reference nucleotide, V = variant nucleotide) for a single base position.
N is read depth. X is variant count.

of nucleotide R (the reference nucleotide; Fig. 1). For simplicity, we assume
that the probabilities that V is falsely called R and R is falsely called V are
equal, and denote the probability of this error α. Given the true genotype
(Gi) and independent observations, the nucleotide V count (Xi) follows a
binomial distribution:
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Under a symmetric error assumption, if an individual is heterozygous and
homologous sites are represented with equal probability, then the conditional
probability that we observe an allele V is 1/2, regardless of the error rate, in
which case Xi ∼ Binomial (Ni, 1/2). Thus, for a heterozygote, the binomial
distribution of the variant count is symmetric and depends only on the
observed read depth. On the other hand, if an individual is homozygous
VV then Xi ∼ Binomial (Ni,1−α) or if an individual is homozygous RR
then Xi ∼ Binomial (Ni,α). Thus, for homozygotes the binomial distribution
depends on the nucleotide-read error rate as well as on read depth.

2.2 Genotype-calling algorithms
The problem of genotype calling is to identify the latent true genotype
from the observed next-generation sequence data {Ni, Xi}. Intuitively, if an
individual has all variant reads (i.e. Xi =Ni) then the genotype is likely to
be a VV homozygote. On the other hand, if half of the reads are variant
and half of the reads are reference, then the genotype is likely to be a
heterozygote. However, the randomness associated with sampling multiple
reads in heterozygotes and the inherent error in base calling and alignment
makes calling genotype based on less extreme observations ambiguous. A
decision procedure based on fixed cutoffs {cl , cu} for the number of variant
reads observed (Xi) with a total read depth Ni can be defined as follows:

If Xi ≤ cl , the assignment is RR.
If cl < Xi < cu, the assignment is RV.
If Xi ≥ cu, the assignment is VV.

The problem is to choose cl and cu to minimize genotype misclassification.
One approach used in commercial software (e.g. GS Analyzer from

Nimblegen/Roche Genome Sequencer FLX System) is to apply a simple
filter for the number or proportion of variant reads at a site to determine
genotype. For example, GS Analyzer specifies that if >30% of the reads
are variant calls, then the genotype is called a heterozygote, otherwise it is
called a reference homozygote. Implicitly, this assumes that the variant allele
is rare so that variant homozygotes are unlikely, but an upper bound can be
specified to allow for the presence of individuals homozygous for the variant
allele.

Alternative approaches are based on the Bayes classifier (Mitchell, 1997).
This approach assigns the genotype with maximum posterior probability to
an individual, given sequence data {Ni, Xi}, prior genotype frequencies and
the nucleotide-read error rate (α). For the model described above, the joint
probability of the V nucleotide count and the latent genotype for an individual
is as follows:
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where θ ={α,pVV ,pRV } is a vector of parameters in which {pVV ,pRV }
are prior genotype frequencies for VV and RV. The posterior probabilities
given the observed data are proportional to these joint probabilities;
hence, for an individual with data Xi and Ni and a vector of known
parameters θ , the Bayes classifier assigns the genotype with the greatest
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joint (and therefore posterior) probability. With true parameter values for
prior genotype frequencies and nucleotide-read error, genotype assignment
using the maximum posterior probability gives an optimum classifier, defined
by the minimum total genotype-call error (Mitchell, 1997). In most studies,
however, we will not know the true prior genotype frequencies or error
rates and may not have good estimates for many variants. MAQ (Li
et al., 2008), which bases its calls on the Bayes classifier, requires the
user to specify the heterozygous genotype frequency and then sets the
two homozygote genotype frequencies equal (pVV =pRR = (1−pRV )/2).
The author’s recommendation for the heterozygous genotype frequency is
either pRV = 0.001 or 0.2 depending on whether the user is searching for
novel or known variants, respectively. Estimation of nucleotide-read error is
based on base-quality and mapping-quality scores from image analysis and
alignment.

2.3 An EM approach to parameter estimation: SeqEM
Our proposed algorithm takes advantage of sample information to obtain
estimates of prior genotype frequencies and the nucleotide-read error rate.
Suppose that we have a sample of reads from S unrelated (i.e. independent)
individuals. The observed data log-likelihood has the following form:

�
(
θ;X,N

)=
S∑

i=1

ln

⎛
⎝∑

{Gi}
P
(

Xi,Gi|Ni,θ
)
⎞
⎠ (2)

The parameter estimates that maximize this likelihood are consistent and
asymptotically efficient estimates of the parameters θ ={α,pVV ,pRV } (Casella
and Berger, 2002). However, direct maximization of (2) is difficult because a
sum over unobserved individual genotypes is required to obtain the marginal
likelihood of the observed data. Therefore, we employ the EM algorithm
(Dempster et al., 1977) to maximize (2) with respect to θ by successive
maximizations of the expected value of the more tractable complete-data
log-likelihood:

�
(
θ;X,G,N

)=
S∑

i=1

lnP
(

Xi,Gi|Ni,θ
)

(3)

Starting with initial guesses of the parameter values and iterating through
the algorithm (detailed in Supplementary Methods) until successive EM
parameter estimates differ by no more than some small absolute amount
(e.g. 10−8) provides maximum likelihood estimates of the parameters θ =
{α,pVV ,pRV }. These estimates can then be substituted into the probabilities
in (1), and, using the Bayes classifier, genotype calls can be made for each
individual in the sample as the genotype with highest estimated posterior
probability.

The model above is expressed in terms of genotype parameters (two
prior genotype frequencies). Instead, we could assume Hardy–Weinberg
equilibrium (HWE), allowing genotypes to be expressed in terms of a
single allele frequency parameter p, such that pVV =p2, pRV =2p

(
1−p

)
and

pRR =(
1−p

)2
. The effect of reducing the number of genotype parameters

from two to one on genotype misclassification is discussed below.
We note that it is necessary to restrict the parameter space to α<0.5,

otherwise we may encounter datasets in which the likelihood does not
have a unique global maximum. For example, suppose that we have a
sample of four individuals with data {Ni, Xi}: {10, 1}, {10, 5}, {10, 5}
and {10, 9}. For this sample, there are two sets of parameter values that
yield the same maximum likelihood value: {α,pVV ,pRV }={0.10,0.25,0.50}
and {0.90,0.25,0.50}. For the first set, individual 1 would be called RR,
individuals 2 and 3 would be called RV and individual 4 would be called
VV. For the second set of parameter values, the genotypes of individuals
1 and 4 would be reversed. Restricting the error rate to a reasonable range,
α<0.5, removes this ambiguity. This restriction can be justified based on our
prior knowledge; α of 0.5 or more is an unreasonable value for a nucleotide
read error rate on any platform, so we would eliminate solutions in this
region of the parameter space a priori. Sites with true errors in this range are

expected to be detected as experimental failures by quality control metrics
before genotype calling. Note that the algorithm is allowed to reach absorbing
parameter values on the boundaries (p = 0 or 1, α = 0) because these could
be legitimate maximum likelihood estimates.

3 RESULTS

3.1 The Bayes classifier versus the filtering approach
We begin by comparing the performance of the simple filtering
approaches to what would be expected if we used the Bayes
classifier based on the probabilities in (1) with the true parameter
values. We derived expected values for genotype-call error from
the filtering approach and the approach using the Bayes classifier
(see Supplementary Methods), given values for the nucleotide-read
error and allele frequency, {α,p}, for model (1) assuming HWE.
The expectation was taken with respect to all possible values of the
number of variant reads in an individual, Xi, given the read depth (Ni)
and parameters. We defined genotype-call error as the proportion of
genotypes that were assigned an incorrect genotype by the calling
algorithm. Figure 2 shows a comparison of the expected genotype
call errors for nucleotide-read error rates α=0.1,0.01 and 0.001
and allele frequencies p = 0.05 and 0.5, assuming HWE and various
read depths. For the filtering approach, we considered symmetric
30% and 20% filters, such that if Xi ≤0.3∗Ni (0.2 for 20% filter)
the genotype is called RR, if Xi ≥0.7∗Ni (0.8 for 20% filter) the

Fig. 2. Expected values for genotype-call error rates (−log10-scaled) under
HWE for the Bayes classifier (BC) using true parameter values compared
with the filtering approach with 20 and 30% thresholds. Higher values on the
−log10 scale correspond to lower error rates. We considered nucleotide-read
error rates of α=0.001, 0.01 and 0.1, read depths of N =5, 10, 25, 50 and
100 and allele frequencies of p=0.5 (a; top) and 0.05 (b; bottom).
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genotype is called VV, otherwise the genotype is called RV. Figure 2
and the following figures show −log10 (genotype-call error rate),
with higher values indicating lower error rates.

The results in Figure 2 show that, as predicted by theory, the
Bayes classifier always has an expected genotype-call error rate
as small as or smaller than that of the filtering approach. For
both approaches, genotype-call error decreases as read depth (N)
increases and nucleotide-read error (α) decreases. If nucleotide read
error is not too large, even loci with low read depth can provide
reliable genotype calls. For example, with α < 0.01 we obtained
genotype-call errors of <6% with a read depth of 5 and <1.5% for
read depth of 10 for the Bayes classifier and 20% filter. In general,
the 30% threshold is preferable to 20% when nucleotide-read error is
high and the 20% threshold preferable to the 30% when nucleotide-
read error is low. Importantly, however, for read depths of 10 or
greater and low nucleotide-read error, the Bayes classifier is capable
of genotype-call error rates that are orders of magnitude lower than
a filtering approach.

3.2 The effect of parameter specification in the Bayes
classifier: MAQ and SeqEM

While the Bayes classifier is optimal when the true parameter values
are given, in practice genotype frequencies and nucleotide-read
error are unknown. As described above, MAQ (Li et al., 2008)
uses fixed values for heterozygous genotype frequency (pRV ) and
bases its estimate of nucleotide-read error on mapping quality score.
Figure 3 shows the expected error probabilities for MAQ using the
true error (α=0.01) and either pRV = 0.2 or 0.001, as recommended
for common and rare variant analyses, respectively, compared to
the Bayes classifier based on the probabilities in (1) using the true
parameter values. As expected, we find for all cases that the Bayes
classifier with true values had genotype-call error equal to or smaller
than MAQ. These results show that for common alleles, MAQ
specifying a heterozygote frequency of 0.2 results in genotype call
errors close to the Bayes classifier with true parameter values, but for
lower frequency variants using true parameter values in the Bayes
classifier dominates.

Unlike MAQ, SeqEM estimates genotype/allele frequencies
and nucleotide-read error rates from a sample of S>1 unrelated

Fig. 3. Expected values for genotype-call error rates (−log10-scaled) under
HWE for the Bayes classifier (BC) using true parameter values compared
with MAQ using the true nucleotide-read error rate and MAQ’s assumed
heterozygote proportions of 0.2 and 0.001. Higher values on the -log10 scale
correspond to lower error rates. We considered a nucleotide-read error rate
of α=0.01, read depths of N =5, 10, 25, 50 and 100 and allele frequencies
of p=0.5 and 0.05.

individuals, each with next-generation sequence data. For large
samples, we expect SeqEM to perform close to the Bayes classifier
using true parameter values as studied above. However, for small
samples, there is additional variability in genotype calls due to
the estimation of parameters from the sample. To study the effect
of sample size on error, we conducted simulations with various
sample sizes (S =10, 50, 100 and 500), and applied the SeqEM
algorithm to call genotypes. Figure 4 shows the estimated genotype
call error rates from these simulations (with α=0.01 and p=0.5 and
0.05, assuming HWE). The error of SeqEM rapidly approaches the
expected value of the Bayes classifier for fixed read depth as sample
size increases. Sample sizes of 50 or greater provide nearly optimal
genotype-call error for all read depths, and smaller samples can be
tolerated without large increases in error provided read depth is not
too small. Importantly, even for small samples and low read depth,
SeqEM has lower genotype-call error than the expected values
calculated for MAQ (Fig. 3) for low-frequency variants (p=0.05).

In small samples, we observed that for some variant sites the
EM algorithm converged very slowly or converged to unrealistic
parameter values because of lack of identifiability (i.e. more than
one set of parameter values maximize the observed data likelihood).
This happens when there is not enough information in the data to
provide unique estimates of all parameters. Assuming HWE and

Fig. 4. Simulated genotype-call error rates (−log10-scaled) for SeqEM
assuming HWE in populations in HWE. Higher values on the −log10 scale
correspond to lower error rates. We considered a nucleotide-read error rate of
α=0.01, sample sizes of S = 10, 50, 100 and 500, read depths of N =5, 10
and 25 and allele frequencies of p = 0.5 (top) and 0.05 (bottom). Results are
presented for all variants as well as excluding variants flagged as potentially
poorly modeled by our heuristic (no EM convergence within 100 iterations
or nucleotide-read error rate estimate exceeding 0.1). Percentage exclusion
indicates the percentage of flagged variants. Expected genotype-call error
rates for the Bayes classifier (BC) using true parameter values (Fig. 3) are
also included as a sample size of BC.
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constraining the nucleotide-read error α<0.5, as discussed above,
reduces the dimension of and eliminates unrealistic regions of the
parameter space, improving identifiability in some situations. Yet,
we still encountered some variant sites for which EM convergence
was slow, suggesting lack of indentifiability of the model with the
observed data (Meng and Rubin, 1991). Failure of the EM algorithm
to meet the convergence criterion of 10−8 within 100 iterations or
convergence to a nucleotide-read error estimate >0.1 within 100
iterations was therefore taken as indicative of variants for which
the data provided insufficient information for accurate parameter
estimation or the model was misspecified.

We found that excluding these variants reduced the genotype-call
error rate by as much as 55%, while reducing the number of loci
called substantially only for very low read depths (N =5) and high
minor allele frequencies (p=0.50) (Fig. 4). Therefore, we propose
flagging potentially poorly modeled variants using this heuristic
as an important step in quality control. Variants flagged by this
procedure could then be reviewed and called by an alternate method.

We also examined the parameter estimates from SeqEM for the
examples in Figure 4. In variants not flagged as potentially poorly
modeled, the mean parameter estimates of nucleotide error were
close to the true parameter values, even in small samples, and
the variance of the estimates decreased with increasing S and N
resulting in narrower confidence intervals for larger sample sizes
and read depth (Supplementary Fig. 1). The only exception was
for conditions combining a very low read depth (N =5) with a
minor allele frequency of p=0.50, in which case the observed data
contain sparse information about the latent genotypes. Under these
conditions, the mean nucleotide-read error rate estimate was inflated
in small samples and converged slowly to the true value of 0.01
with increasing sample size. Estimates of allele frequency are also
close to true values and have decreasing variance with increasing
sample size S, but unlike estimates of nucleotide-read error, allele
frequency estimates are largely unaffected by read depth for the
examples considered.

3.3 Deviations from HWE
We evaluated the robustness of SeqEM to deviations from HWE
when HWE was assumed in the model. We first investigated the
performance of the Bayes classifier with true parameter values under
systematic departure from HWE in simulated data (Supplementary
Material). Estimates of genotype-call error rates are shown in
Supplementary Figure 2. We found that when HWE held (i.e.
f =0), genotype-call error rate estimates based on classification
assuming HWE were equivalent to those not assuming HWE. As
the true genotype distribution diverged from HWE, classification
based on the true genotype distribution had smaller genotype-
call error than classification based on HWE. For large positive
f values (excess homozygosity) or for large negative f values
(excess heterozygosity), the decrease in genotype-call error when
the true genotype distribution is used rather than assuming HWE
was sometimes substantial, decreasing by as much as ∼75% in
this example. The effect of deviation from HWE on genotype-
call error was especially pronounced with low allele frequencies.
However, such a scenario may be somewhat pathological because
departure from HWE requires that rare alleles be present mostly
in homozygotes rather in heterozygotes. Also, it is important to
note that, although better performance could be obtained using the

true genotype distribution, the genotype-call error rate assuming
HWE was largely invariant to deviations from HWE; that is, the
errors differ largely because assuming the correct model when there
are deviations from HWE tends to decrease the error, not because
assuming the wrong model increases the error.

Because SeqEM uses sample-based maximum likelihood
estimates of the parameters rather than true parameter values in
its Bayes classifier, a misspecified model for the sample genotype
frequencies means that these parameters may not be consistently
estimated. Consequently, we also examined the percentage of
flagged variants and the genotype-call error rate when HWE was
assumed but the true genotype frequencies deviated substantially
from HWE (Supplementary Fig. 3). In the case of substantial excess
homozygosity (f = 0.5), both the percentage of flagged variants and
genotype-call error rates were comparable to or better than those
when the population genotype frequencies conformed to HWE for
both p=0.05 and p=0.50. However, in the case of substantial excess
heterozygosity (f =−0.50) for p=0.50, more variants were flagged
and genotype-call error rates were worse than when the population
genotype frequencies conformed to HWE, especially for low read
depths. For p=0.05, though, excess heterozygosity had negligible
effect on the variant flagging and genotype-call error rates.

One important question is whether using the genotype calls from
SeqEM assuming HWE when the population deviates from HWE
yields biased genotype frequency estimates. We therefore examined
the mean and SD of the genotype frequencies estimated from
SeqEM’s calls under the HWE model when there was deviation
from HWE (Supplementary Fig. 4A). For p=0.05, we found that
there was minimal bias in estimated genotype frequencies for excess
heterozygosity and more bias for excess homozygosity at N =5.
For p=0.50, there was little bias for excess homozygosity and but
notable bias in the case of excess heterozygosity at N =5. For all
examples, the bias largely disappeared for N ≥10. Using the model
not assuming HWE also reduced the bias in all examples but still
showed some modest bias for N =5 due to the discreteness of the
data at low read depths (Supplementary Fig. 4B).

We compared the performance in terms of percentage of flagged
variants and genotype-call error between SeqEM assuming HWE
and not assuming HWE (Supplementary Fig. 5). With p=0.05,
the model not assuming HWE performed similarly to the model
assuming HWE under all scenarios except for excess homozygosity,
in which case it often performed better. With p=0.50, the
information content of the data is lower, and not assuming HWE
yielded similar performance for N ≥5 with the genotype frequencies
in HWE, slightly worse performance in the presence of excess
homozygosity and better performance in the presence of excess
heterozygosity.

3.4 Analysis of exome data
We analyzed a total of 23 500 variants in eight related individuals
from an extended pedigree. The average read depth over the 23 500
positions was 7.5. Details of exome sequence coverage are discussed
by Hedges et al. (2009). We compared genotypes called by SeqEM
with genotypes obtained from an Illumina GWAS in the same
individuals. Approximately 6% of calls were excluded because
they were at variants that exceeded the iteration threshold (100)
or nucleotide-read error threshold (0.1) and so were dropped from
further analysis. Figure 5 shows the estimated genotype-call error
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Fig. 5. Estimated genotype-call error rates (−log10-scaled) for SeqEM
assuming HWE based on Illumina genotype calls in exome sequence data for
an extended pedigree of eight individuals. Higher values on the −log10 scale
correspond to lower error rates. Errors are shown for variants with minimum
read depth of N = 1, 5, 10, 15, 20, 25 and 30. Results exclude variants flagged
as potentially poorly modeled by our heuristic (no EM convergence within
100 iterations or nucleotide-read error rate estimate exceeding 0.1). The
number of calls made, the number excluded and the percent excluded at
each minimum read depth are shown below the graph. The cross-hatched bars
indicate genotype-call error rates of 0%, which are infinite on the −log10
scale, for read depths of 25 and 30.

for SeqEM for various minimum bounds on read depth (e.g. N ≥5;
N ≥10; ...). In general the estimates of genotype misclassification
rates of SeqEM agree well with expected values of the Bayes
classifier and results from simulations shown above (Fig. 4). They
tend to be closer to the expected values and simulated error rates
for low frequency variants (e.g. p = 0.05), which seems appropriate
since the average allele frequency for the Illumina genotypes is
0.11. We expect that the genotype-call error rate estimates will
overestimate the true error rate due to the additional errors in
the Illumina data. In fact, six of the erroneous calls involved one
homozygote being called as the other homozygote; closer inspection
of these errors revealed that these likely resulted from incorrect
Illumina genotype calls rather than incorrect sequencing calls.

Unfortunately, neither MAQ (version 0.7.1) nor SOAPsnp
(version 1.0.3) could be run on these data because the short-
read lengths from the 454 GS FLX Titanium (Roche, Inc.) (mean
of 340 bp in our data) exceeded the maximum allowable read
lengths of 63 bp for MAQ (MAQ version 0.7.1 documentation)
and 45 bp for SOAPsnp (http://soap.genomics.org.cn/soapsnp.html).
However, we did compare the results from SeqEM to the empirical
method that we used previously (Hedges et al., 2009). We found that
SeqEM had lower genotype-call error estimates than the empirical
method. For example, for minimum read depths of N≥5, 10 and 15
the genotype-call error rates were 0.016, 0, 0.008 and 0.005 for the
empirical method and 0.015, 0.006 and 0.003 for SeqEM. Moreover,
SeqEM has the advantage of not requiring prior genome-wide
genotyping.

The program took only 2.11 s and 7.5 MB of RAM to conduct
the analysis of the exome dataset consisting of eight individuals
and 23 500 variants on a single thread of an Intel Xeon E5430
processor running at 2.66 GHz. Program I/O and EM complexity
are approximately O(mS), where m is the number of variants and
S the number of individuals, assuming that all EM iterations run

to the user-specified iteration limit. Further benchmarking of our
program on this platform confirmed that the time and memory usage
scale approximately linearly with m when S is constant and vice
versa. Scaling factors were approximately 1 for time and memory
with m and 1 for memory and 1.1 for time with S. Extrapolating to
whole genome sequencing studies being run on a similar platform,
for a sample of 500 individuals with 3 000 000 variants (allowing
for only 1% of sites in the genome to be polymorphic) the program
would require ∼60 GB of RAM and take ∼5.25 h on one thread.
Multithreading could reduce this time but only by about 10% with
each additional thread.

4 DISCUSSION
For disease studies, we expect that researchers will want to
genotype a sample of individuals and make inferences about
the population of genotypes, often conditional on disease status.
For example, investigators often sequence samples of unrelated
affected and unaffected individuals for comparison. The availability
of next-generation sequence data from a sample of unrelated
individuals provides information to estimate nucleotide-read error
rate and genotype frequency parameters; our approach capitalizes
on such sample information to provide an improved genotype-
calling method. By accurately estimating these parameters based
on the likelihood of the sample data, we ensure consistent and
asymptotically efficient estimates of genotype frequencies and
the nucleotide-read error rate that should minimize genotype
misclassification. Because we maximize the observed data
likelihood using the EM algorithm to estimate parameters, we call
this approach SeqEM.

We stress that SeqEM should be run separately for cases and
controls or distinct racial and ethnic groups because the true model
parameters may differ among these groups. Running SeqEM on the
pooled sample will result in biased parameter estimates reflecting
mixtures of the true parameters in the distinct subgroups. For
example, in a case–control study, running SeqEM on a pooled
sample of cases and controls will assume a common prior genotype
frequency, which will then bias estimated posterior genotype
probabilities toward the null.

We also recommend that SeqEM be applied without assuming
HWE as a default. The average performance of this more complex
model was generally comparable to that of the model assuming
HWE, although it was better in cases of excess heterozygosity and
worse in cases of excess homozygosity with p = 0.50. Moreover, this
should reduce potential biases in genotype frequency estimates for
low read depths. For variants for which our heuristic indicates a lack
of model identifiability or misspecification, a second pass of SeqEM
could easily be made using the model assuming HWE.

Applying the model assuming HWE as a second pass should not
cause substantial problems even if the true genotype frequencies do
not conform to HWE. Our simulation results suggest that assuming
HWE in the Bayes classifier and the observed data likelihood
does not appreciably affect genotype-call error rates when there
is excess homozygosity. Although the same appears to hold in the
case of excess heterozygosity for the Bayes classifier using true
parameter values, it does not necessarily hold for SeqEM. SeqEM’s
performance in our simulations depended to a large extent on the
availability of homozygotes because, as noted earlier, heterozygotes
carry no information about nucleotide-read error rates. Thus, the
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tendency of deviations from HWE in the direction of excess
homozygosity to improve EM convergence and genotype-call error
rates can be explained by the information on the nucleotide-read
error rate provided by additional homozygotes outweighing the
effect of misspecifying the genotype frequency model. Likewise,
the worse EM convergence and genotype-call error rates when
deviations from HWE were in the direction of excess heterozygosity
reflects the dual negative effects on parameter estimation of model
misspecification and fewer homozygotes providing nucleotide-read
error rate information. That said, the percentage of flagged variants
and genotype-call error rates were still quite tolerable with read
depths of 10 or more and moderate sample sizes, even in the
presence of substantial excess heterozygosity. Furthermore, with
sufficient read depth, the sample genotype frequencies estimated
using the calls from SeqEM converged rapidly to the true values
with increasing sample size.

Not only does SeqEM provide a tool for improved genotype
calling, but employing a likelihood framework suggests how
to incorporate genotype classification uncertainty into disease-
association tests. Although one could simply use genotype calls
based on the above algorithm as observed genotypes in case–
control and/or family-based tests, this approach does not account
for uncertainty in genotype calls nor does it exploit the quantitative
nature of next-generation sequencing observations. Failing to
account for uncertainty in genotype calls can result in an association
test that is invalid (i.e. uncontrolled Type I error) and may reduce
power. The likelihood approach provides a natural framework for
incorporating the uncertainty in genotype calls into statistical tests
relating common and rare variants to phenotype. The same situation
is faced in haplotype-based analyses (Schaid et al., 2002) and
association tests in imputed data (Lin et al., 2008; Marchini et al.,
2007), in which we do not know the underlying data of interest with
certainty but do know the how to model the probability distribution
of these data. One possible solution, which has worked well in these
applications, is to incorporate the posterior genotype probabilities
into the association test. Such an approach would follow naturally
using the calculations from SeqEM.

Two practical issues that we faced using SeqEM were
convergence to local maxima on the boundaries of the parameter
space (p=0 or 1, α=0) and slow convergence. Parameter estimates
on the boundaries above cannot be discarded, as α>0.5 can, because
they are legitimate possible values for the parameters. However, the
EM algorithm may arrive at these absorbing points even when they
are not global maxima simply due to a poor choice of starting values.
Therefore, we suggest re-examining variants with final estimates on
these boundaries using multiple starting values for the EM algorithm
to increase the chance of finding the global maximum and possibly
further improve estimates and genotype-call error rates. We have
implemented this capability in our software.

Slow convergence generally indicates that the data provide
insufficient information for estimating all parameters in the model.
Under regularity conditions, each successive step of the EM
algorithm is guaranteed to increase the observed-data likelihood,
but the size of successive steps depends on the structure of
the observed-data likelihood as embodied in the observed-data
observed information matrix. EM steps leading to small increments
in this likelihood and thus requiring many iterations to traverse
the parameter space are indicative of a nearly singular observed-
data observed information matrix (Meng and Rubin, 1991), which

implies limited independent information about model parameters.
Consequently, we classify a variant that exhibits extremely slow
EM convergence, as evidenced by failure to achieve a standard
convergence criterion of 10−8 in 100 iterations, as uninformative
with respect to the model and thus likely to produce poor estimates
of the posterior genotype distribution. In our implementation, the
user may specify an alternate convergence tolerance and maximum
number of iterations to adjust the stringency of our proposed
heuristic.

Data for a variant may be uninformative for several reasons,
including low read depth, small sample size or, perhaps, a
misspecified model. Our experience calling genotypes using SeqEM
suggests that low read depth can play an important role in failure to
meet our convergence criterion. It is important to note that although
introducing multiple starting values for the EM algorithm (which is
recommended for markers converging to estimates on the boundaries
p=0 or 1 or α=0) is likely to improve the overall chance of locating
a global optimum, such a strategy still does not guarantee proper
estimates in uninformative data. An alternative to using our heuristic
that may recapture some lost variants that were slow to converge
in informative samples would be to use diagnostics for information
loss based on the observed-data observed information matrix such as
condition number or the spectral decomposition approach suggested
by Meng and Rubin (1991). However, estimation of this matrix
is very computationally intensive relative to EM optimization and
is therefore unlikely to be tractable in high-throughput genotype
calling.

SeqEM makes some simplifying assumptions. First, some
capture/enrichment methods for next-generation sequencing may
show allele bias; that is, one nucleotide may be observed
preferentially in reads from a heterozygous individual. Our method
assumes there is no allele bias at heterozygous sites so that the two
nucleotides are sampled with equal probability. Previous analysis of
the exome data analyzed herein shows no evidence of bias in these
data (Hedges et al., 2009); however, some capture methods could
show more substantial allele bias (Porreca et al., 2007). For biased
data examples, the model assumed by SeqEM is not appropriate. A
model with more parameters would be required to handle these more
complex situations, but such a model would require larger samples
or possibly a fully Bayesian approach with informative priors to
achieve identification.

Second, SeqEM assumes that the sample comprises independent,
unrelated individuals, which means that equations (2) and (3) are
appropriate log-likelihoods. In situations where individuals are
related, (2) and (3) are no longer appropriate log-likelihoods, so
standard results for the EM algorithm no longer apply. The good
performance of SeqEM in our data example, which uses a single
pedigree of eight individuals, provides some indication that SeqEM
does not break down when applied to related individuals, although
care should be taken in generalizing based on a single dataset.
Further work will be required to characterize fully the performance
of SeqEM in samples containing related individuals.

Finally, like other genotype-calling algorithms based on posterior
probabilities (e.g. MAQ), the model in SeqEM assumes that there are
at most two distinct nucleotides within an individual at any position
and in the sample as a whole. The exomes analyzed in our example
were preprocessed to include only the two most frequent nucleotides
aligned at a specific position within an individual (less frequent
nucleotides are assumed to be errors). So, within an individual, only
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two distinct alleles can be inferred. This assumption is reasonable
unless the variant is, for example, part of a variable duplicated
site, in which case an individual may actually carry three alleles.
Furthermore, our model assumes that there are at most two alleles
present at the position in the sample of individuals (i.e. the variant is
biallelic). It is possible with sufficient sample size that the likelihood
model could be extended to include additional genotype or allele
frequencies. However, the majority of variation in the human
genome will typically will be biallelic within a population based
on empirical observation and the infinite sites model of mutation
(Hartl and Clark, 2007).

It is important to point out that we attack the problem following
successful alignment of the sequence. SeqEM provides only one step
in the sequencing pipeline. We recognize that accurate sequence
alignment plays an important role in site-specific error rates, but
we anticipate that as technology moves toward larger numbers of
concurrently sequenced base pairs, sequence alignment should be
a decreasing source of site-specific errors. An advantage of our
approach is that it is not necessary to distinguish errors due to
misalignment and those due to erroneous base calls; an error rate
subsuming both sources of error is estimated from the sample
information in the single nucleotide-read error parameter.

In conclusion, our results demonstrate that approaches using
the Bayes classifier based on maximum posterior probabilities
outperform arbitrary filters and that the SeqEM approach we propose
provides a principled way to estimate the required parameters in
unrelated individuals. SeqEM is an adaptive approach that does
not require prior estimates of genotype frequencies or nucleotide-
read error but rather is driven by the data. We found that SeqEM
is comparable to MAQ for common variants when the parameters
are fixed close to their true values, but for rarer variants, SeqEM
results in improved genotype-call error rates. We believe that the
improved genotype-call error rate and tractable computability of
SeqEM make it a key genotype-calling step in the next-generation
sequencing pipeline.
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