
SeqIndex: Indexing Sequences by Sequential Pattern Analysis∗

Hong Cheng Xifeng Yan Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

{hcheng3, xyan, hanj}@cs.uiuc.edu

Abstract

In this paper, we study the issues related to the de-
sign and construction of high-performance sequence in-
dex structures in large sequence databases. To build
effective indices, a novel method, called SeqIndex, is
proposed, in which the selection of indices is based on
the analysis of discriminative, frequent sequential pat-
terns mined from large sequence databases. Such an
analysis leads to the construction of compact and ef-
fective indexing structures. Furthermore, we eliminate
the requirement of setting an optimal support thresh-
old beforehand, which is difficult for users to provide
in practice. The discriminative, frequent pattern based
indexing method is proven very effective based on our
performance study.

1 Introduction

Sequential pattern mining is an important and active
research theme in data mining [3, 9, 11, 4], with broad
applications. However, with the diversity of searching
and mining requests and daunting size of datasets, it
is often too slow to perform mining on-the-fly but it
is impossible to mine and store all the possible results
beforehand.

A powerful but long-lasting alternative to this min-
ing dilemma is to build a good sequence index structure
which may serve as a performance booster for a large
variety of search and mining requests. A sequence in-
dexing structure will not only make data mining more
flexible and efficient but also facilitate search and query
processing in sequence databases.

Given a sequence database, there are in general two
kinds of indexing structures that can be constructed
for subsequence search: consecutive vs. non-consecutive
subsequence indices. There are a number of consec-

∗ The work was supported in part by the U.S. National Science
Foundation IIS-02-09199, IIS-03-08215. Any opinions, findings,
and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of
the funding agencies.

utive sequence indexing methods developed for time-
series data [1, 2, 5, 7, 12] and DNA sequences [8, 6].
Euclidean distance, dynamic time warping (DTW) and
discrete fourier transform (DFT) are commonly used
tools for indexing and similarity search in time-series
data. DNAs is another kind of consecutive sequence.
Since it is consecutive, suffix-tree and multi-resolution
string (MSR) are developed for DNA indexing.

To the best of our knowledge, there is no non-
consecutive sequence indexing method studied before.
Nonconsecutive sequence mining and matching is im-
portant in many applications, such as customer transac-
tion analysis, various event logs, sensor data flows, and
video data. Indexing non-consecutive sequence poses
great challenges to research. First, there exist an explo-
sive number of subsequences due to the combination of
gaps and symbols. Second, such an indexing mechanism
cannot be built on top of the existing consecutive se-
quence indexing mechanisms. For example, models like
suffix-tree or those based on time-series transformation,
such as DFT and DTW, are no longer valid because se-
quences under our examination are not consecutive any
more.

In this paper, we propose a new indexing method-
ology, called discriminative, frequent sequential pattern-
based (DFP) indexing, which selects the best indexing
features, based on frequent sequential pattern mining
and discriminative feature selection, for effective index-
ing of sequential data. The study extends the recent
work on graph indexing by Yan et al. [10] and examines
the applicability of DFP in sequence databases.

Although the general framework of using frequent
patterns as indexing features has been exposed in graph
indexing [10], it is not obvious whether this framework
can be successfully applied to sequences. In fact, there
exists an inverted index based method to do sequence
indexing. For each item, there is an id list associated
with it. To process a query, just intersect the id lists.
We call this algorithm ItemIndex. In this work, we
compare ItemIndex and SeqIndex from multiple angles
to explore the boundaries of these two algorithms.

The remainder of the paper is organized as follows.
Section 2 introduces the basic concepts related to se-
quence indexing and some notations used throughout
the paper. Section 3 presents the algorithm to deter-
mine the size-increasing support function. Section 4
formulates the SeqIndex algorithm. We report and an-
alyze our performance study in Section 5 and conclude
our study in Section 6.

2 Preliminary Concepts

Let I = {i1, i2, . . . , ik} be a set of all items. A
sequence s = 〈ij1 , ij2 , . . . , ijn〉 (ij ∈ I) is an ordered
list. We adopt this sequence definition to simplify the
description of our indexing model. A sequence α =
〈a1, a2, . . . , am〉 is a sub-sequence of another sequence
β = 〈b1, b2, . . . , bn〉, denoted as α v β (if α 6= β,
written as α @ β), if and only if ∃j1, j2, . . . , jm, such
that 1 6 j1 < j2 < . . . < jm 6 n and a1 = bj1 , a2 =
bj2 , . . . , and am = bjm

. We also call β a super-sequence
of α, and β contains α.

A sequence database, D = {s1, s2, . . . , sn}, is a set
of sequences. The support of a sequence α in a sequence
database D is the number of sequences in D which
contain α, support(α) = |{s|s ∈ D and α v s}|. Given
a minimum support threshold, min sup, a sequence is
frequent if its support is no less than min sup. The set
of frequent sequential pattern, FS, includes all the
frequent sequences.

Definition 2.1. (Subsequence Search) Given a se-
quence database D = {s1, ..., sn} and a query sequence
q, it returns the answer set Dq = {si|si ∈ D, q v si}.

In sequence query processing, the major concern is
query response time, which is composed of the time of
searching, the time of fetching the candidate set from
the disk and the cost to check the candidates. We want
to minimize the search time since a query could have
a lot of subsequences in the index. If searching in the
index structure is very inefficient, a large amount of time
would be wasted on intersecting some id lists which do
not shrink the candidate answer set a lot. So we need
an efficient algorithm to search in the “right” direction.
In addition, the I/O part also plays an important role.

3 Determine the Size-increasing Support
Function

The first step is to mine frequent patterns from se-
quence database. As pointed out in [10], the purpose of
size-increasing support constraint is to make the min-
ing tractable. Meanwhile, the overall index quality may
be optimized. This constraint is effective in keeping
a compact index size while providing high-quality in-
dices. An interesting question is how to determine the

size-increasing support function in a systematic way?
Instead of using heuristic functions, a novel solution is
to use the discriminative ratio as a guide to select the
appropriate threshold. It becomes a data mining prob-
lem. In this setting, we not only need to mine frequent
sequential patterns with min sup but also have to de-
cide what min sup is.

Let ψ(l) be the size-increasing support function.
The automated setting of ψ(l) is as follows. Given a
discriminative threshold γmin and a sequence database
D, we first set the support of all length-1 patterns
to be 1. Then we determine ψ(l) in a level wise
manner. When we decide for length k ≥ 2, we set
ψ(k) = ψ(k − 1). Under this support, we mine a set of
frequent length-k patterns. For every length-k pattern
x , we calculate its discriminative ratio with respect to
patterns that have already been selected,

(3.1) γ =
|⋂ϕi:fϕi

@x Dfϕi
|

|Dx|
If γ ≥ γmin, we say this pattern is discriminative.

Let Sk be the set of length-k frequent patterns. Suppose
the lowest support and the highest support in Sk is t0
and th respectively. For every possible support value t,
t0 ≤ t ≤ th, we may calculate the number of patterns
in Sk whose support is above t and of these patterns,
how many of them have discriminative ratio great than
γmin.

Eventually we get a cut point t∗ where p percentage
of discriminative patterns are retained. ψ(k) is then set
at t∗. Using the above process, a user need not set the
optimal support threshold any more.

We call the algorithm, shown in Figure 1, Auto-
Support. AutoSupport only needs two parameters set
by users, a discriminative ratio and a percentage cut-
off. It will automatically adjust the support function
according to the data distribution and the percentage
cutoff. AutoSupport increases the support function to
the extent where p percentage of discriminative patterns
remain. This can reduce the number of patterns, espe-
cially those non-discriminative patterns substantially.

4 SeqIndex: A Sequence Indexing Algorithm

In this section, we present the SeqIndex algorithm.
The algorithm can be divided into four steps: (1)
discriminative feature selection, (2) index construction,
(3) search, and (4) verification.

We first mine the frequent patterns, and use a dis-
criminative ratio γmin to filter out those redundant pat-
terns. The output is a set of discriminative sequential
patterns that will be used as indexing features. After
that, we construct an index tree T , which is a prefix
tree, to store and retrieve those features.

Algorithm AutoSupport
Input: A sequence database D,

discriminative threshold γmin,
a percentage cutoff p,
maximum subsequence length L.

Output: ψ(k), size-increasing support function.

1: ψ(1) = 1;
2: for length k from 2 to L
3: ψ(k) = ψ(k − 1) ;
4: do
5: Mine the frequent length-k patterns

with ψ(k);
6: for each length-k pattern, calculate γ;
7: Calculate pattern distribution under

different support t;
8: Find a support t∗ that p% of all

discriminative patterns remain;
9: ψ(k) = t∗;
10: end for
11: return ψ(k);

Figure 1: Determine Size-increasing Support Function

The most important part is the search algorithm,
since an efficient search algorithm can improve the query
processing time substantially. We discuss it in the
following.

4.1 Search. Given a query q, SeqIndex enumerates
all its subsequences within the maximum subsequence
length L and searches them in the index tree. For those
subsequences found in the index tree, SeqIndex inter-
sects their id lists to get a set of candidate sequences.

There could be a large number of subsequences
contained in a given query q. To optimize the search
process, we should try to reduce the number of subse-
quences that need to be checked.

Two optimization techniques [10] are studied exten-
sively in SeqIndex to reduce the search space. One is
Apriori pruning and the other is maximum discrimina-
tive sequential patterns. With these two optimization
techniques in consideration, we propose an efficient al-
gorithm for searching the index tree efficiently. We tra-
verse the index tree in a depth first search manner. At
each node p, we check the sequence from the root to
p and label it as a candidate if it is a subsequence of
query q. Then we visit its child nodes recursively. The
reason we just label it but not intersect its id list im-
mediately is that we want to check whether there is a
maximum discriminative sequential pattern. If there is,
it is unnecessary to intersect the id list of node p. On

Algorithm DFS Search
Input: A sequence database D,

Index tree T , Query q,
maximum subsequence length L.

Output: Candidate set Cq.

1: Let Cq = D;
2: DFS Traverse index tree T {
3: Check the sequence from the root to node p
4: if (it is a subsequence of q)
5: Label it and visit its child node;
6: else
7: Skip p and its subtree;
8: Once arriving at a leaf node OR

before skipping a subtree, do
9: Find the deepest labelled node p′

along this path;
10: Cq = Cq ∩Dp′ ;
11: if (|Cq| < minCanSize)
12: Early termination;}
13: return Cq;

Figure 2: DFS Search and Candidate Set Computation

the other hand, if the sequence from the root to node
p is not a subsequence of q, node p and its subtree can
be pruned according to Apriori pruning. Once reach-
ing a leaf node, or before skipping a node, we need to
find out the deepest labelled node, which is the maxi-
mum discriminative sequential pattern along this path.
Only its id list should be intersected with Cq while other
“smaller” subsequences on this path can be skipped.
The algorithm using the DFS search is shown in Figure
2.

Further optimization can be explored by the fol-
lowing intuition. When more and more intersections
are executed, the candidate answer set becomes smaller
and smaller. At some point of the traversal, we may
find that Cq is already small enough compared with a
user-specified threshold minCandSize. We can decide
at this point to stop traversing the index tree. The can-
didate set C ′q so obtained is a superset of the optimal
candidate set Cq which can be obtained by searching
the whole tree. If the tree is large, C ′q may be accept-
able since the savings in traversing the remaining part of
the tree would outweigh the reduction of Cq by further
intersections. We call this technique early termination.

Besides the DFS search method introduced above,
we developed an alternative search algorithm that per-
forms better for dense datasets. Instead of traversing
the index tree in a depth-first search manner, at each
level, we visit the node that has the smallest id list.

Since we choose a highly selective node to follow, the
size of Cq will be reduced very quickly. After traversing
a path, we can start over from the root, pick the second
smallest child node and perform the same operation un-
til we get an answer set with acceptable size. We call
this search method MaxSel since we always greedily se-
lect the path with the highest selectivity.

The reason that two search algorithms are proposed
is that we expect that their performance is correlated
with data distribution. If the dataset has a small num-
ber of distinct items, the tree becomes very “thin” with
a small branching factor and each node is associated
with a long id list. In this case, MaxSel algorithm can
easily find the most selective path and reduce the size
of Cq quickly by skipping those nodes with a long list.
On the other hand, if the dataset has a large number
of distinct items, the tree becomes very “wide” with a
large branching factor and each node is associated with
only a small id list. In this case, MaxSel will spend a
lot of time at each level searching for the node with the
smallest id list. Thus, DFS search with early termina-
tion will perform better. We will compare these two
algorithms to verify our reasoning in the experiments.

5 Experimental Results

In this section, we report our experimental results that
validate the effectiveness and efficiency of SeqIndex. We
compare SeqIndex with ItemIndex.

5.1 ItemIndex Algorithm ItemIndex builds index
for each single item in the sequence database. For
an item i, keep every occurrence of i in the sequence
database with a tuple 〈seq id, position〉. Therefore, the
index of an item i contains a list of such tuples.

Given a query q = i0i1...in, ItemIndex will compute
the intersection of all pairs of adjacent items in the
query q. When intersecting the index list of ij and ij+1,
if a pair of tuples from the two lists match in the seq id
part, we will further check if position in ij list is smaller
than position in ij+1 list. If so, we know that ij and
ij+1 occur in the same sequence and ij precedes ij+1 in
that sequence.

We compare the performance of SeqIndex and Ite-
mIndex in terms of CPU time and I/O costs. The data
is generated by a synthetic data generator provided by
IBM1. More details are referred to [3].

5.2 SeqIndex vs. ItemIndex We compare SeqIn-
dex and ItemIndex in terms of CPU time and I/O costs.
Since we proposed two search algorithms – DFS Search
and Maximum Selectivity Search, we will test SeqIndex

1http://www.almaden.ibm.com/cs/quest

with these two alternatives. In the following figures,
we use DFS to denote SeqIndex with DFS search and
MaxSel to denote SeqIndex with maximum selectivity
search.

We first test how the execution time of SeqIndex
and ItemIndex changes when we vary the number of
distinct items in the sequence database. The sequence
database has 10,000 sequences with an average of 30
items in each sequence. The number of distinct items is
varied from 10 to 1000. The result is shown in Figure
3(a).

When the number of distinct items is very small,
e.g. 10, MaxSel is the fastest, DFS stands in the middle
while ItemIndex is the slowest. This is because the data
distribution is very dense with a small number of items.
MaxSel is effective by picking the most selective path,
as we analyzed in the previous section.

As the number of items increases, CPU time of
ItemIndex decreases dramatically and that of DFS also
decreases but more slowly. When the number of items is
500, both DFS and ItemIndex run faster while MaxSel
starts to slow down. This is due to sparser data and
shorter id lists. On the other hand, the index tree
of MaxSel turns to be bulky with lots of nodes at
each level. Searching the most selective path involves
visiting many nodes, thus becomes very inefficient. In
this case, DFS turns out to be very efficient. This
also gives us a hint – when the data is very dense, we
can employ SeqIndex with maximum selectivity search;
when the data is very sparse, we can switch to SeqIndex
with DFS search. The “hybrid” SeqIndex will perform
uniformly well while ItemIndex is quite sensitive to the
data distribution.

The second experiment is to test the performance of
SeqIndex and ItemIndex with varied size of queries. We
test a database with 10,000 sequences. Each sequence
has 30 items on average. The number of distinct items
is 10. We vary the query length from 5 to 50. The result
is shown in Figure 3(b).

Figure 3(b) shows that MaxSel performs very well
as the query length increases. MaxSel first searches the
index tree and produces a candidate set. Then it verifies
those candidate sequences. When the query length
is small, e.g. 5, there are more candidate sequences
since it is usually easier to satisfy a short query. As
the query length increases, the size of candidate set
decreases since it is harder to satisfy a long query. That
is why the performance of MaxSel improves as the query
length increases. On the other hand, the performance
of ItemIndex degrades as the query length increases.
Since the number of intersections executed in ItemIndex
is proportional to the query length, the execution time
increases roughly linearly as the query length increases.

�

�

��

��

��

��

�� �� �� ��� ��� ����

����������	

�
�
�

��
�
��
��

���	
�

�
	

��
����
�

(a) varying item number

�

�

��

��

��

��

� �� �� �� �� ��

���������	
�

�

�
��
��
�
��
��

��	
��

�

��������	

(b) varying query length

�

��

��

��

���

���

���

���

���� ���� ����� ����� ������

�����������	
��

�

�
��
�	
�
��
��

���	
�

�
	

��
����
�

(c) varying sequence number

Figure 3: Performance study

We also test the performance of SeqIndex and
ItemIndex with varied database size. We vary the
number of sequences in the sequence database from
1,000 to 100,000 (number of distinct items is 50 and
the query length is 20). The result is shown in Figure
3(c). As we increase the number of sequences in the
database. MaxSel has the best scalability, DFS stands
in between and ItemIndex shows poor scalability.

We finally test how effective our algorithm Auto-
Support is. Experimental results show that the index
is more compact using AutoSupport in comparison with
the uniform-support method. The mining time of Auto-
Support also outperforms the uniform-support method
significantly. The figure is omitted due to space limit.

6 Conclusions

In this paper, we broaden the scope of sequential pat-
tern mining beyond the “narrowly defined” spectrum of
knowledge discovery. Our study is focused on the design
and construction of high-performance nonconsecutive
sequence index structures in large sequence databases.
A novel method, SeqIndex, is proposed, in which the
selection of indices is based on the analysis of discrim-
inative, frequent sequential patterns mined from large
sequence databases. Such an analysis leads to the con-
struction of compact and effective indexing structures.
The effectiveness of the approach has been verified by
our performance study.

References

[1] R. Agrawal, C. Faloutsos, and A.N. Swami. Efficient
Similarity Search In Sequence Databases. In Proceed-
ings of the 4th International Conference of Foundations
of Data Organization and Algorithms (FODO), pages
69–84, Chicago, Illinois, 1993.

[2] R. Agrawal, K.I. Lin, H.S. Sawhney, and K. Shim. Fast
similarity search in the presence of noise, scaling, and

translation in time-series databases. In Proc. 1995 Int.
Conf. on Very Large Databases, pages 490–501, 1995.

[3] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. 1995 Int. Conf. Data Engineering (ICDE’95),
pages 3–14, March 1995.

[4] J. Ayres, J. E. Gehrke, T. Yiu, and J. Flannick.
Sequential pattern mining using bitmaps. In Proc.
2002 ACM SIGKDD Int. Conf. Knowledge Discovery
in Databases (KDD’02), July 2002.

[5] K. Chan and A.W. Fu. Efficient time-series matching
by wavelets. In Proc. 15th IEEE Int. Conf. on Data
Engineering, pages 126–133, 1999.

[6] T. Kahveci and A.K. Singh. Efficient index structures
for string databases. In The VLDB Journal, pages 351–
360, 2001.

[7] E. Keogh. Exact indexing of dynamic time warp-
ing. In Proc. 2002 Int. Conf. Very Large Data Bases
(VLDB’02), Aug 2002.

[8] C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online
and accurate technique for local-alignment searches on
biological sequences. In Proc. 2003 Int. Conf. Very
Large Data Bases (VLDB’03), Sept 2003.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining se-
quential patterns efficiently by prefix-projected pattern
growth. In Proc. 2001 Int. Conf. Data Engineering
(ICDE’01), pages 215–224, April 2001.

[10] X. Yan, P.S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In Proc. 2004 Int.
Conf. on Management of Data (SIGMOD’04), pages
253–264, 2004.

[11] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60, 2001.

[12] Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. In Proc. 2003 Int.
Conf. on Management of Data (SIGMOD’03), pages
181–192, 2003.

