
RESEARCH ARTICLE

SeqKit: A Cross-Platform and Ultrafast Toolkit

for FASTA/Q File Manipulation

Wei Shen1, Shuai Le1, Yan Li2*, Fuquan Hu1*

1 Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, 30#

Gaotanyan St., Shapingba District, Chongqing, China, 2 Medical Research Center, Southwest hospital,
Third Military Medical University, 29# Gaotanyan St., Shapingba District, Chongqing, China

* liyan.com@gmail.com (YL); hufuquan2009@aliyun.com (FH)

Abstract

FASTA and FASTQ are basic and ubiquitous formats for storing nucleotide and protein

sequences. Common manipulations of FASTA/Q file include converting, searching, filter-

ing, deduplication, splitting, shuffling, and sampling. Existing tools only implement some of

these manipulations, and not particularly efficiently, and some are only available for certain

operating systems. Furthermore, the complicated installation process of required packages

and running environments can render these programs less user friendly. This paper

describes a cross-platform ultrafast comprehensive toolkit for FASTA/Q processing. SeqKit

provides executable binary files for all major operating systems, including Windows, Linux,

and Mac OSX, and can be directly used without any dependencies or pre-configurations.

SeqKit demonstrates competitive performance in execution time and memory usage com-

pared to similar tools. The efficiency and usability of SeqKit enable researchers to rapidly

accomplish common FASTA/Q file manipulations. SeqKit is open source and available on

Github at https://github.com/shenwei356/seqkit.

Introduction

FASTA and FASTQ are basic and ubiquitous text-based formats for storing nucleotide and

protein sequences. FASTA was introduced first in FASTA software [1], and FASTQ was origi-

nally developed at the Wellcome Trust Sanger Institute [2]. Commonmanipulations of

FASTA/Q files include converting, cleaning, searching, filtering, deduplication, splitting, shuf-

fling, and sampling. The simplicity of the FASTA/Q formats makes them easy to be parsed

and manipulated with programming languages like Python and Perl. However, researchers,

especially beginners, repeatedly write scripts for common purposes such as extracting

sequences by using an identifiers (IDs) list file. Most of these scripts are not well organized or

documented and are not reusable by other researchers. Many tools are available for the

manipulation of FASTA/Q files, including fasta_utilities [3], fastx_toolkit [4], pyfaidx [5], seq-

magick [6] and seqtk [7]. However, most of these programs implement only some of the

above functions necessary for common manipulation and are not efficient for large files.

Moreover, some tools require dependencies or running environments for installation or are

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 1 / 10

a11111

OPENACCESS

Citation: ShenW, Le S, Li Y, Hu F (2016) SeqKit: A

Cross-Platform and Ultrafast Toolkit for FASTA/Q

File Manipulation. PLoS ONE 11(10): e0163962.

doi:10.1371/journal.pone.0163962

Editor: Quan Zou, Tianjin University, CHINA

Received:May 23, 2016

Accepted: September 16, 2016

Published: October 5, 2016

Copyright: © 2016 Shen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Natural Science Foundation of China (grant No.

81373133 to YL and No. 31570173 to FH). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

https://github.com/shenwei356/seqkit
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163962&domain=pdf
http://creativecommons.org/licenses/by/4.0/


only available for specific operating systems, which render them less user friendly. With the

increasing number of sequences being produced, processing efficiencyhas become critical.

Here, we introduced SeqKit toolkit to address the need for efficient and facile manipulations

of FASTA/Q files.

Method

In this work, we present a novel FASTA/Q command-line toolkit, SeqKit, which is imple-

mented in the Go programming language, which makes it available for most popular operating

systems includingWindows, Linux, Mac OS X and FreeBSD. SeqKit is lightweight and can be

used out-of-the-box without any dependencies or configurations, which makes it user friendly.

Program organization

The SeqKit toolkit adopts the structure of “command subcommand”, i.e., users access func-

tions of SeqKit from single entrance, “seqkit,” and specify a detailed functionwith subcom-

mand name. Many subcommands share similar options (called flags in SeqKit), so these

options are refactored as global options/flags. This structure benefits both potential developers

and users learning the functionality of SeqKit.

SeqKit consists of nineteen subcommands (Table 1) that provide completely independent

functions. All subcommands support plain or gzip-compressed inputs and outputs from either

standard streams or local files. Therefore, SeqKit can be easily combined in a command-line

pipe to accomplish complex manipulations.

FASTA/Q format parsing

In most cases, file I/O (input and output) is the performance bottleneck of sequencemanipula-

tion tools. SeqKit uses the self-implemented lightweight and high-performance bioinformatics

Table 1. Subcommands of SeqKit toolkit.

Categories Subcommands Description

Basic operations seq Validating and transforming sequences

subseq Getting subsequences by region/GTF/BED

sliding Sliding sequences

stat Simple statistics

faidx Creating FASTA index files

Format conversion fx2tab Converting FASTA/Q to tabular format with extra information

tab2fx Converting tabular format to FASTA/Q format

fq2fa Converting FASTQ format to FASTA

Searching grep Searching sequences by patterns/IDs/motifs

locate Locating subsequences/motifs

Set operations rmdup Removing duplicated sequences by ID/name/seq

common Finding common sequences of multiple files by ID/name/seq

split Splitting sequences into files by ID/seq region/size/parts

sample Sampling sequences by number or proportion

head Printing the first N FASTA/Q records

Edit replace Editing name/sequence by regular expression

rename Renaming duplicated IDs

Ordering shuffle Shuffling sequences

sort Sorting sequences by ID/name/sequence/length

doi:10.1371/journal.pone.0163962.t001

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 2 / 10



package bio [8] for FASTA/Q parsing, which exhibits high performance similar to the widely

used klib (kseq.h) [9] (Fig 1). SeqKit seamlessly supports both FASTA and FASTQ formats,

and file type is automatically detected. All subcommands, with the exception of "faidx", can

handle both formats. The two-pass mode of some commands (i.e., "subseq, "split", "sort" and

"shuffle"), which utilize a FASTA index to improve processing performance for large files, only

supports the FASTA format. When input files are plain or gzip-compressed FASTA files, a

FASTA index would be optionally used for rapid access of sequences and to reduce memory

usage. To restore the original FASTA header information, SeqKit uses a full sequence header as

the sequence identifier (ID). Therefore, the FASTA index file (".seqkit.fa") created by SeqKit is

slightly different from the ".fai" file created by SAMtools [10]. SeqKit also supports custom IDs

using regular expressions, which allows users to customize their experience.

Sequence type (DNA/RNA/Protein) is automatically detected by the leading subsequences

of the first record. User can also specify sequence type to validate letters of sequences using

subcommand “seq”.

Fig 1. Performance comparison for FASTA/Q file parsing.Dataset A consists of 67,748 DNA sequences
with average length of 41 Kb; dataset B is the human genome with 24 chromosomes, one mitochondrial
sequence and 169 scaffolds and dataset C contains 9,186,045 Illumina SE reads. All tests were repeated
five times, and the average time or memory usage was computed. See supplementary data for details of test
data and commands.

doi:10.1371/journal.pone.0163962.g001

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 3 / 10



Performance optimization

To utilize the multi-CPU environment of modern computers, most CPU-intensive processes

are parallelized by multiple Goroutines in the Go programming language, which are similar to,

but lighter weight than, threads. Parallelized processes include 1) validation of sequence letters;

2) computation of reverse complementary nucleotide sequences for long sequences; 3) parsing

pattern and GTF/BED files; and 4) converting tabular format to FASTA/Q format.

To improve processing efficiency, SeqKit uses some customized data structures and algo-

rithms. For example, the sequence parsing algorithm uses a custom buffered file reading algo-

rithm instead of the Go standard library “bufio”, which is not memory-efficient for large

sequences. This change increased the speed and significantly lowered the memory usage. Addi-

tionally, the computation of the reverse complementary sequence utilizes map in Go (also

called hash table or dictionary in some other programming language) and is usually used to

store the mapping relations of nucleotide bases and their complementary bases. However, the

built-in map data structure of Go is inefficient because the key and value data types are bytes,

which is actually uint8 (unsigned 8-bit integer). Instead, we use the slice data structure (similar

to array in Perl and list in Python) to store complementary sequences with the ASCII code of

the byte as the indexing key (Algorithm 1). This algorithm resulted in a ~20× speedup relative

to the strategy of map (Table A in S1 File). The memory usage is also very low since the size of

base alphabet is limited.

Algorithm 1: Fast reverse complementary sequence

Function1: byte2int(b)
Input:Byte b
returnASCII value of byte b
Function2: ReverseComplementarySeq(A,S)
Input:An array of bytes containingalphabetletters:A and an array of

bytes:S
Output:Reversecomplementarysequenceof S: RC
Step 1: Creatingmappingarray L
L Initializingan array of 256 bytes with value of null characters('\0')
for b in A do
L[byte2int(b)] Complementarybase of b

end
Step 2: Computingreversecomplementarysequence
RC Reversearray of S
for i = 1 to (lengthof S) do
b S[i]
if byte2int(b)> 256 or L[byte2int(b)]= '\0'
raise error

else
RC[i] L[byte2int(b)]

end
end
returnRC
Most subcommands of SeqKit do not load all FASTA/Q records in to memory. Some

manipulations, such as removing duplicate sequences by sequence content, do need to store

whole sequences in memory. SeqKit uses a MD5 digest to represent sequence content, which

greatly reduces memory usage. Some subcommands can either read all records in memory, but

others, including "sample", "split", "shuffle" and "sort", read the files twice in two-pass mode.

This read mode uses the FASTA index for rapid access of sequences and reduces memory

usage.

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 4 / 10



Reproducibility

Reproducibility is very important in scientific tools. The results from all subcommands could

be reproduced with the same dataset and arguments across different operating system. The

subcommands "sample" and "shuffle" in SeqKit use random functions, so the configurability of

the random seed guarantees that the results can be reproduced in different environments using

the same data and commands.

Results and Discussion

To address the needs for efficient and easy-to-usemanipulations of FASTA/Q files, we present

SeqKit here.

Functions and features

With nineteen subcommands (Table 1), SeqKit provides functions covering most aspects of

FASTA/Q (mainly FASTA) manipulation. SeqKit provides more comprehensive features com-

pared to other tools (Table 2). For example, shuffling is a necessary process before splitting

FASTA files for the cross-validation of machine learning algorithms. Although the GNU tool

“shuf” provides a shuffling function for list files, more shell commands are needed to shuffle

FASTA files. In contrast, the subcommand “shuffle” of SeqKit provides an efficient and cross-

platform way to achieve this objective. Similarly, no tools provide functions for locating

Table 2. Overview FASTA/Q processing tool features.

Categories Features seqkit fasta_utilities fastx_toolkit pyfaidx seqmagick seqtk

Formats supports Multi-line FASTA Yes Yes – Yes Yes Yes

FASTQ Yes Yes Yes – Yes Yes

Multi-line FASTQ Yes Yes – – Yes Yes

Validating sequences Yes – Yes Yes – –

Supporting RNA Yes Yes – – Yes Yes

Functions Searching by motifs Yes Yes – – Yes –

Sampling Yes – – – Yes Yes

Extracting sub-sequence Yes Yes – Yes Yes Yes

Removing duplicates Yes – – – Partly –

Splitting Yes Yes – Partly – –

Splitting by seq Yes – Yes Yes – –

Shuffling Yes – – – – –

Sorting Yes Yes – – Yes –

Locating motifs Yes – – – – –

Common sequences Yes – – – – –

Cleaning bases Yes Yes Yes Yes – –

Transcription Yes Yes Yes Yes Yes Yes

Translation – Yes Yes Yes Yes –

Filtering by size Indirect Yes – Yes Yes –

Renaming header Yes Yes – – Yes Yes

Other features Cross-platform Yes Partly Partly Yes Yes Yes

Reading STDIN Yes Yes Yes – Yes Yes

Reading gzipped file Yes Yes – – Yes Yes

Writing gzip file Yes – – – Yes –

doi:10.1371/journal.pone.0163962.t002

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 5 / 10



sequencemotifs and identifying common sequences betweenmultiple files, which are both

commonmanipulations in research analyses.

For common functions also provided by other tools, SeqKit offers more practical controls

with more options. For example, fasta_utilities, seqmagick and SeqKit all support searching

sequences by pattern (i.e., regular expression), but SeqKit supports searching with sequence

motifs containing degenerate sequences (e.g., TTSAA, the digest site of the restriction enzyme

AgsI, is equal to the regular expression TT[CG]AA). SeqKit provides practical extended posi-

tioning strategies for obtaining subsequences by region (position range). In addition, for com-

mon range notation such as “1:20”, SeqKit can choosemore advanced regions. For example,

the last 12 bases can be identified using “-12:-1” and the whole sequence by “1:-1”. SeqKit can

also extract up-stream and down-stream flanking sequences in GTF/BED files.

As a command-line tool, all subcommands of SeqKit support plain or gzip-compressed

input and output from either standard stream or local files. Therefore, it can be easily com-

bined in command-line pipes to accomplish complex manipulations. SeqKit also provides

functions for converting FASTA/Q to and from tabular format, which can be conveniently

manipulated with other tabular format tools including “cut”, “sort”, and “awk”.

Computational time and memory usage

Computational efficiencyand memory usage are critical with the increasing scale of sequencing

data. Sequence records parsing is the main bottleneck in the manipulation of FASTA/Q files.

SeqKit adopts the authors’ high-performance bioinformatics package[8], which had been suc-

cessfully applied in a fast sequence processing tool [11], to parse FASTA and FASTQ files. To

test the comprehensive performance on FASTA and FASTQ format parsing, three different

datasets were used. Dataset A (file size: ~2.7 G) consists of 67,748 DNA sequences with average

length of 41 Kb, representing large FASTA files with average sized sequences. Dataset B (file

size: ~2.9 G) is the human genome with 24 chromosomes, one mitochondrial sequence and

169 scaffolds and serves as an example of large FASTA file with large sequence sizes. Dataset C

(file size: ~2.2 G) contains 9,186,045 Illumina SE reads as an example of typical FASTQ files

generated from next-generation sequencing. The benchmark results were compared to the

widely used high-performance FASTA/Q parsing C library klib (kseq.h)[9]. SeqKit outper-

formed seqtk using klib in processing time on the two scales of FASTA file parsing while main-

taining reasonable peakmemory usage. SeqKit archived approximately 85% speed of seqtk in

FASTQ file parsing (Fig 1).

SeqKit utilizesmultiple CPUs to accelerate computationally intensive processes (See

Method). To assess the performance improvement of multiple threads, five tests were per-

formed with a serial number of threads (Goroutine in Go) (Figure A in S1 File). The results

showed that two threads generally performed better than a single thread and that no further

significant improvements were obtained with three or more threads. Therefore, the default

number of threads for multi-core computers was two.

To assess the comprehensive performance of SeqKit, five tests of commonmanipulations

on FASTA/Q were performed using different tools on datasets A, B (Fig 2) and C (Figure B in

S1 File). For the computation of the reverse complement sequence (Fig 2A), one of the most

basic sequencemanipulations, the execution timemainly depends on the efficiencyof the

development language, the FASTA/Q parsing and the reverse complementary sequence com-

puting algorithm. In general, execution time inversely correlates with the speed of the program-

ming language. Generally, seqtk written in C, and SeqKit, written in Go, required the least

amount of time. The FASTA/Q parsing module of seqtk, klib [9], is highly optimized, which

makes it very efficient in terms of execution time and memory usage. Interestingly, while

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 6 / 10



SeqKit and the biogo package[12] were both written in Go, SeqKit was approximately 9~11

times faster than the biogo package for FASTA parsing, which indicates the efficiencyof the

SeqKit algorithm.

SeqKit required far less time than all other software with reasonable memory usage for

searching sequences by the ID list (Fig 2B). When a FASTQ file was used (Figure B in S1 File),

the performance of SeqKit did not change, while the performance of fasta_utilities and seqma-

gick decreased dramatically. When sampling by sequence number (Fig 2C and Figure B in S1

File), seqtk and Seqkit showed similar computational speeds. However, seqmagick used far

more memory than seqtk and SeqKit because it read the whole file into memory, which may

exhaust systemmemory when using larger datasets.

Only two software packages supported removing duplicate sequences by sequence content.

SeqKit ran much faster than seqmagick and used less memory (Fig 2D and Figure B in S1 File).

When getting subsequences from BED files, SeqKit and seqtk performed similarly in speed but

usedmore memory (Fig 2E).

Fig 2. Performance comparison on five manipulations of FASTA file.Dataset A consists of 67,748 DNA sequences with average length of 41 Kb
and dataset B is the human genome with 24 chromosomes, one mitochondrial sequence and 169 scaffolds. All tests were repeated three times, and
the average time or memory usage was computed. See supplementary data for details of test data and commands.

doi:10.1371/journal.pone.0163962.g002

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 7 / 10



Since SeqKit usedmore memory than seqtk in all cases, we assessed the memory usage of

SeqKit on different scales of data. To this end, four tests were performed on a series of files gen-

erated by repeating human chromosome 1 N times and renaming each sequence with unique

identifiers. In tests of computing reverse complementary sequences and removing duplicated

sequences by content, the memory usage increasedwith file size and stayed at approximately

780 Mb (Fig 3A and 3B). Similarly, when the FASTA index was used to access FASTA

sequences for shuffling and sorting, the peakmemory stayed at approximately 750 Mb. These

results showed that the peakmemory usage of SeqKit is determined by the length of the longest

sequence record. Considering the efficiencyboth in time and memory, SeqKit can meet the

need for efficientmanipulations of large FASTA and FASTQ files with the growth of data size.

Limitations

Although SeqKit seamlessly supports both FASTA and FASTQ format, most of the subcom-

mands were designed to handle commonmanipulations. Somemanipulations of FASTQ, such

Fig 3. Performance of SeqKit on different data sizes. The text label represents file size relative to the human
genome chromosome 1 (248,956,422 bp, file size: 241.4 Mb). All tests were repeated three times, and the
average time or memory usage was computed. See supplementary data for details of test data and commands.

doi:10.1371/journal.pone.0163962.g003

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 8 / 10



as trimming low-quality reads, were not included. SeqKit supports the inter-conversion of

three file types, including FASTQ-FASTA and FASTA/Q-tabular format. Other next-genera-

tion sequencing formats like BAM/SAM can be converted to FASTQ using tools like bamto-

fastq of bedtools [13], which then can be processed by SeqKit.

Supporting Information

S1 File. SeqKit supplementarydata 1. Benchmark details and results.

(PDF)

S2 File. SeqKit supplementarydata 2. All data supporting this article including source code,

documents, executable binary files, benchmark scripts and plotting scripts.

(ZIP)

Acknowledgments

The authors thank Lei Zhang (Github ID: jameslz) for testing SeqKit, Jim Hester, author of fas-

ta_utilities, for advice on early performance improvements for FASTA parsing and Brian Bush-

nell, author of BBMaps, for advice on naming SeqKit and adding accuracy evaluation in

benchmarks.We also thank Nicholas C.Wu from the Scripps Research Institute, USA for com-

menting on the manuscript and Guangchuang Yu from State Key Laboratory of Emerging

Infectious Diseases, The University of Hong Kong, HK for advice on the manuscript.

Author Contributions

Conceptualization:WS.

Data curation:WS SL.

Formal analysis:WS SL.

Funding acquisition: YL FH.

Investigation:WS SL.

Methodology:WS.

Project administration:WS YL FH.

Resources:WS SL.

Software:WS.

Supervision:YL FH.

Validation:WS.

Visualization:WS.

Writing – original draft:WS.

Writing – review& editing:WS YL FH.

References
1. Lipman DJ, PearsonWR. Rapid and sensitive protein similarity searches. Science. 1985; 227

(4693):1435–41. doi: 10.1126/science.2983426 PMID: 2983426.

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 9 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163962.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163962.s002
http://dx.doi.org/10.1126/science.2983426
http://www.ncbi.nlm.nih.gov/pubmed/2983426


2. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with
quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research. 2010; 38(6):1767–71.
doi: 10.1093/nar/gkp1137 PMID: 20015970; PubMed Central PMCID: PMC2847217.

3. Hester J. A collection of scripts developed to interact with fasta, fastq and sam/bam files. Available
from: https://github.com/jimhester/fasta_utilities.

4. FASTX-Toolkit, FASTQ/A short-reads pre-processing tools. Available from: http://hannonlab.cshl.edu/
fastx_toolkit/.

5. Shirley MD, Ma Z, Pedersen BS, Wheelan SJ. Efficient "pythonic" access to FASTA files using pyfaidx.
PeerJ Preprints. 2015; 3:e1196.

6. seqmagick. Available from: http://seqmagick.readthedocs.io/.

7. seqtk, Toolkit for processing sequences in FASTA/Q formats. Available from: https://github.com/lh3/
seqtk.

8. A lightweight and high-performance bioinformatics package in Go. Available from: https://github.com/
shenwei356/bio.

9. A standalone and lightweight C library. Available from: https://github.com/attractivechaos/klib.

10. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943; PubMed Central PMCID: PMC2723002.

11. ShenW, Li Y. A novel algorithm for detecting multiple covariance and clustering of biological
sequences. Scientific reports. 2016; 6:30425. doi: 10.1038/srep30425 PMID: 27451921.

12. Kortschak RD, Adelson DL. bı́ogo: a simple high-performance bioinformatics toolkit for the Go lan-
guage. BioRxiv Preprint. 2015. http://dx.doi.org/10.1101/005033.

13. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Current protocols in Bio-
informatics. 2014; 47:11 2 1–34. doi: 10.1002/0471250953.bi1112s47 PMID: 25199790; PubMed Cen-
tral PMCID: PMC4213956.

SeqKit: Ultrafast Toolkit for FASTA/Q Format

PLOSONE | DOI:10.1371/journal.pone.0163962 October 5, 2016 10 / 10

http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
https://github.com/jimhester/fasta_utilities
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://http://seqmagick.readthedocs.io/
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://github.com/shenwei356/bio
https://github.com/shenwei356/bio
https://github.com/attractivechaos/klib
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1038/srep30425
http://www.ncbi.nlm.nih.gov/pubmed/27451921
http://dx.doi.org/10.1101/005033
http://dx.doi.org/10.1002/0471250953.bi1112s47
http://www.ncbi.nlm.nih.gov/pubmed/25199790

