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Abstract

Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is
becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we
proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random
forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information
from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring
matrix. The proposed method, called DBPPred, used Gaussian naı̈ve Bayes as the underlying classifier since it outperformed
five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with
polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the
highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the
training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model
trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder,
DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of
0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large
non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality
when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the
proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non
DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective
predictor for large-scale determination of DNA-binding proteins.
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Introduction

DNA-binding proteins play key roles in a wide variety of

molecular functions, including recognizing specific nucleotide

sequences, maintenance of cellular DNA, transcriptional and

translational regulation, DNA replication, and DNA damage

repair [1–3]. Currently, both computational and experimental

techniques have been developed to identify the protein-DNA

interactions. The experimental techniques such as filter binding

assays [4], ChIP-chip [5], genetic analysis [6] and X-ray

crystallography [7] can provide a detailed picture about the

binding, however, they are both time-consuming and expensive

[3]. Thus, it is highly desired to develop automated computational

methods for identifying the DNA-binding proteins from the

extremely fast increased amount of newly discovered proteins [8].

So far, a number of predictors of DNA-binding proteins have

been proposed. These methods can be divided into two categories,

structure based modeling [9–18] and sequence based prediction

[8,19–30]. Since the protein structure could directly reveal its

function mechanics, the availability of structure information about

a given protein is believed to contribute towards predicting its

function and to provide higher performance than sequence based

methods. However, the pitfall of various structure-based methods

for predicting DNA-binding function is that they are all limited to

a relatively small number of proteins for which high-resolution

three-dimensional structures are available. In a contrast, sequence

based methods have the main advantage with no need for known

structures and thus can be applied to large-scale datasets and

genomics targets. For instance, Szilágyi and Skolnick [24] used

logistic regression to predict the DNA-binding proteins from the

amino acid composition. Kumar et al. [23] utilized support vector

machine and coded the features from evolutionary profiles for the

prediction of DNA-binding proteins. Another group, Kumar et al.

[22], proposed DNA-Prot method for the classification of the

DNA-binding proteins using random forest. Gao and Skolnick

[19] proposed a threading-based method which required only the

target protein sequence to identify the DNA-binding domains

based on a template library composed of DNA-protein complex

structure. Lin et al. [8] developed a DNA-binding protein

predictor using random forest by integrating the features into
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the general form of pseudo amino acid composition with grey

model. The latest work by Zou et al. [20] provided a comprehen-

sive feature analysis using support vector machine for the

prediction of DNA-binding proteins. As a summary, sequence

based prediction methods for DNA-binding proteins have been

investigated with several classifiers such as logistic regression [24],

random forest [8,22], support vector machine [20,21,23,25–30],

and threading based method [19], using various features including

(pseudo) amino acid composition [8,20,22–30], physicochemical

properties [20–22,28], predicted secondary structure [20,22,28],

predicted solvent accessibility [28], evolutionary profile [20,23],

and their various transformations.

The aim of this work is to propose a new predictor for

determination of the DNA-binding proteins based on the features

composed of sequence, predicted solvent accessibility, predicted

secondary structure, and evolutionary profiles. The size of the

feature set was reduced by ranking the features using random

forest and furthermore by a wrapper based feature selection using

best-first forward search strategy based on Gaussian naı̈ve Bayes.

The differences between this work and the previous studies are

reflected mainly in four aspects: (1) we designed new features

concerning the hybrid forms of the amino acid composition,

predicted solvent accessibility and predicted secondary structure,

the auto-correlation coefficients of the position specific scoring

matrix (PSSM), and the percentile values of PSSM scores; (2) we

applied random forest to rank the feature importance and

subsequently performed wrapper based feature selection based

on best-first forward search strategy; (3) we compared the

prediction performance of several classifiers including Gaussian

naı̈ve Bayes, logistic regression, decision tree, random forest, k-

nearest neighbor and support vector machines under the proposed

framework and found that Gaussian naı̈ve Bayes outperformed

other considered machine learning methods; (4) we conducted a

much more complete fair comparison of the proposed model

tested on several different independent datasets with the existing

sequence-based methods that have web server or standalone

software version, which include iDNA-Prot [8], DNA-Prot [22],

DNAbinder [23], DNABind [24] and DBD-Threader [19], to our

best knowledge. The results show that the proposed method, called

DBPPred, is an improved and alternative method for identifying

the DNA-binding proteins.

Materials and Methods

2.1. Datasets
DNA-binding protein sequences comprising the training dataset

and the independent dataset were extracted from Protein Data

Bank (PDB) [31] by searching the mmCIF keyword of ‘DNA

binding protein’ through the advanced search interface. The entire

set after removing the chains with length of less than 60 and

character of ‘X’ was subsequently clustered with NCBI’s

BLASTCLUST [32] at 25% sequence identity. A dataset, called

PDB390, was created by selecting one chain in each cluster and

was finally composed of 390 protein chains with local 25%

pairwise sequence identity. Furthermore, DBP390 was divided

into two datasets, the training dataset in which the sequences were

deposited in PDB before Jan, 2011 and the remaining independent

dataset. As a result, the training dataset, named as DBP297, is

composed of 297 protein chains, and the independent set, called

DBP93, comprises 93 protein chains deposited in PDB after Jan,

2011. Such division based on the deposition date is to avoid the

sequence intersection and similarity as much as possible with the

training sets used in the existing methods including iDNA-Prot [8],

DNA-Prot [22], DNABinder [23], DNABind [24] and DBD-

Threader [19], since these methods were published before or in

2011. Thus the blind test can be performed on the independent

dataset for a relatively fair comparison with the existing methods.

Similarly, 390 non DNA-binding proteins were randomly

selected from a set that was deposited in PDB between Jan,

2011 and Dec, 2012 and was clustered with BLASTCLUST [32]

at 25% sequence identity. The set was furthermore divided into

two datasets based on the deposition dates of the sequences. These

two sets are respectively called NDBP297 composed of 297 chains

for training and NDBP93 consisting of 93 chains for independent

blind test, where the deposition dates of the sequences in NDBP93

are newer than NDBP297. Accordingly, the benchmark dataset,

called PDB594, consists of 594 chains by combining DBP297 and

NDBP297, and the independent set, named as PDB186, comprises

186 chains by merging DBP93 and NDBP93. The PDB IDs of

PDB594 and PDB186 together with the information concerning

primary sequence and deposition date in PDB are listed in Dataset

S1 and Dataset S2, respectively.

The small number of DNA-binding proteins as compared to the

enormous number of proteins deposited in PDB demonstrates that

DNA-binding proteins are only a fraction of all proteins. We

collected an independent set composed of a few hundreds of totally

non-DNA binding proteins, in order to investigate the false

positive rates of the proposed work and the relevant existing

methods. This set includes sequences that were deposited in PDB

between Jan. 2011 and Nov. 2013 and that contain no DNA

binding proteins and no ‘X’ characters. Next, BLASTCLUST

with the local identity threshold at 25% was applied to the union

of this set, PDB594 and PDB186. The independent non-DNA

binding protein set was constructed by selecting one chain with

length .60 from each cluster that contains no sequences from

PDB594 and PDB186. Consequently, this dataset, called

NDBP4025, includes 4025 non-DNA binding proteins that have

local identity of at most 25% with each other and also with the

protein chains from PDB594 and PDB186.

Moreover, another similar issue, i.e. the prediction of RNA-

binding proteins, has been focused on by recent several studies [33–

36]. We examined the ability of the proposed method and several

other existing predictors to distinguish RNA and DNA binding

proteins. Two datasets including only RNA-binding proteins, RB-

C174 and RB-IC257 used in [34], were used to test the ability for

separating DNA and RNA-binding proteins. One sequence in RB-

IC257 was removed since it contains ‘X’ characters. These two

datasets are renamed RB174 and RB256, which include 174 and

256 RNA-binding proteins, respectively, and their union is denoted

by RB430. The RB430 dataset includes 430 sequences that have

local identity of at most 25% with each other described in [34].

Similarly as NDBP4025, the sequences in RB430 should be

regarded as non-DNA binding proteins, which are examined to

compute the false positive rates of considered methods.

2.2. Features
One of the steps for designing predictor is to convert the input

protein sequence into a set of numerical features that are fed into

the classifier to generate prediction of the DNA-binding proteins.

The features in this study are coded from primary sequence,

predicted secondary structure (PredSS), predicted relative solvent

accessibility (PredRSA), position specific scoring matrix (PSSM)

generated by PSI-BLAST [32]. They are divided into four

categories, secondary structure based, average RSA based, amino

acid (AA) composition based, and PSSM score based (see Table 1).

The raw features concerning PredRSA and PredSS are derived by

SPINE-X program [37], which was evaluated with high quality

outcomes for predicting secondary structures and RSA values.

Sequence Based Prediction of DNA-Binding Proteins
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Meanwhile, SPINE-X provides the PSSM outputs generated by

PSI-BLAST [32].

The motivation for using PredSS comes from several studies

that have shown the benefit to the protein function predictions,

including protein folding rate [38] and kinetic type [39], binding

residues [40] and catalytic sites [41]. SPINE-X predicts three types

of secondary structures, i.e. helix (H), strand (E), and coil (C). The

SS based features are coded by the secondary structure content in

total number of 3.

The relative solvent accessibility (RSA) is defined as the solvent

accessible surface area (ASA) of a given residue normalized by the

ASA of this residue in an extended tripeptide, Ala-X-Ala,

conformation [42]. The RSA values are often used to distinguish

between the interior and the surface of proteins by setting a cutoff.

For a given cutoff h, the residue with RSA$h are considered to be

solvent exposed; otherwise, they are assumed to be buried. We

followed our previous work [39] for the determination of protein

folding kinetic types and computed average RSA (AveRSA) values

over the residues with certain AA type, with a given predicted

secondary structure conformation, and with certain AA type and

predicted secondary structure conformation.

The AA composition based features include the composition of

the 20 AA types in the input sequence, the composition of the

residues of certain AA type in a given predicted secondary structure

conformation, the composition of the residues of certain AA type

which are either buried or exposed based on different RSA cutoffs,

and the composition of the 400 dipeptide types (see Table 2).

PSSM generated by PSI-BLAST has been widely used to

represent the evolutionary information of a protein sequence, which

was proved to be highly effective in a variety of prediction areas in

protein structure bioinformatics, including the prediction of DNA-

binding proteins [20,23] and sites [43], function sites [41,44],

contact map [45,46], disordered region [47], domain boundary

[48,49], solvent accessibility [37], to name just a few. The PSSM is a

L620 matrix, where L is the length of the protein sequence and 20 is

the number of amino acid types. The score values are first

normalized by using the following standard logistic function:

f (x)~
1

1z exp ({x)
: ð1Þ

Next, we computed the average score of the residues with

respect to the column of certain AA type, the average score of the

residues of certain AA type with respect to the column of some AA

type, the percentile value of the PSSM scores along with the

column of certain AA type according to percent thresholds, and

auto-correlation coefficient (AutoCC) of scores along with the

column of certain AA type according to various lag values. The

percent thresholds for the percentile statistics are set to be {0, 25,

50, 75, 100}. For a threshold t, the percentile statistics is the top

(1002t)% value of scores in one column. Thus, threshold value 0

corresponds to the minimum score in one column of certain AA

type, and threshold value 100 is actually associated with the

maximum score in the column. The auto-correlation coefficient

with certain lag can be calculated as follows:

AutoCC(lag,j)~

Pn
i~1

(Si,j{
1

n

Pn
i~1

Si,j)|(Sizlag,j{
1

n

PL
i~1zlag

Si,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Si,j{
1

n

Pn
i~1

Si,j)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i~1zlag

(Sizlag,j{
1

n

PL
i~1zlag

Si,j)
2

s :
ð2Þ

Table 1. Summary of the considered features, where x, x9 = {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} denotes the 20 AA
types, y = {C, H, E} denotes the three secondary structure states, h = {0.1, 0.2, 0.3, 0.4, 0.5} denotes the cutoff used to categorize the
buried/exposed residues based on their relative solvent accessibility, t = {0, 25, 50, 75, 100} denotes the ratio for computing the
percentile values, and m = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} denotes the lag for calculating the auto-correlation coefficients.

Category Feature description Abbreviation
No. of
features

SS based Content of the residues with secondary structure type y Con_SSy 3

Average RSA based Average RSA of the residues with AA type x AveRSA_Resx 20

Average RSA of the residues with secondary structure type y AveRSA_SSy 3

Average RSA of the residues with AA type x and secondary structure type y AveRSA_Resx_SSy 60

Amino acid
composition based

Composition of the residues with AA type x AAC_Resx 20

Composition of the residues with AA type x and secondary structure type y AAC_Resx_SSy 60

Composition of the residues with AA type x and RSA value$h (i.e., the residue
is assumed exposed)

AAC_Resx_Exh 100

Composition of the residues with AA type x and RSA value,h (i.e., the residue
is assumed buried)

AAC_Resx_Buh 100

Composition of dipeptide with the left AA type x and right AA type x9 DIC_Resxx9 400

PSSM score based Average PSSM score of the residues along with the column of amino acid type x AvePscore_AAx 20

Average PSSM score of the residues with AA type x9 along with the column of
amino acid x in the PSSM matrix

AvePscore_AAx_Resx9 400

Percentile of the PSSM scores according to the percent threshold t along with
the column of amino acid x

Pscore_AAx_Pt 100

Auto-correlation coefficient of scores with lag m along with the column of
amino acid x

AutoCC_AAx_Lagm 200

doi:10.1371/journal.pone.0086703.t001
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where n is equal to L-lag, L is the length of the protein sequence,

and Si,j is the PSSM score corresponding to the element in the i-th

row and the j-th column in the matrix. The usage of AutoCC

features was motivated by the wide-spread application of auto

covariance to various fields of bioinformatics [50–52]. Here,

AutoCC is actually a variant of auto covariance that the former is

standardized between 21 and 1 while the later is not.

2.3. Random Forest and Gaussian Naı̈ve Bayes
Random forest (RF) has been widely used for pattern

recognition in bioinformatics [53]. It can provide not only the

high prediction performance [8,22] but also information on

variable importance [53–55] for classification task. The algorithm

of random forest is based on the ensemble of a large number of

decision trees [56], where each tree gives a classification and the

forest chooses the final classification having the most votes (over all

the trees in the forest). In the most commonly used type of random

forests, split selection is performed based on the so-called decrease

of Gini impurity. In this study, the random forest is used to rank

the features using Gini importance that is implemented with the

machine learning platform scikit-learn [57].

Naı̈ve Bayes (NB) is a set of supervised learning algorithms that

apply Bayes’ theorem with the ‘‘naive’’ assumption of indepen-

dence between every pair of features [58]. A NB classifier

calculates the probability that a given instance (example) belongs

to a certain class. Given an instance X, described by its feature

vector (x1,…, xn), and a class target y, Bayes’ theorem allows us to

express the conditional probability P(y|X) as a product of simpler

probabilities using the naı̈ve independence assumption:

P(yDX )~
P(y)P(X Dy)

P(X )

~
P(y)Pn

i~1 P(xi Dy)

P(X )

ð3Þ

Since P(X) is constant for a given instance, the following rule is

used to classify the sample:

ŷy~ arg max
y

P(y) P
n

i~1
P(xi Dy) ð4Þ

Maximum a posteriori (MAP) estimation is commonly used to

estimate the parameters in the naı̈ve Bayes model, including P(y)

and P(xi|y); the former is the frequency of samples with class y in

the training set. Moreover, Gaussian naı̈ve Bayes (GNB) imple-

ments the classification by assuming the likelihood of the features

to be Gaussian:

P(xi Dy)~
1ffiffiffiffiffiffiffiffiffiffi

2ps2
y

q exp ({
(xi{my)2

2ps2
y

), ð5Þ

where the parameters sy and my are estimated by maximum

likelihood. Due to its simplicity and being extremely fast compared

to more sophisticated methods, GNB has been also widely applied

to prediction problems in bioinformatics [59–61]. Here, GNB was

used to train the prediction model of DNA-binding proteins and to

perform the wrapper-based feature selection. On the other hand,

our computational experiments in this work showed that GNB

exhibited better performance than other classifiers, including

logistic regression (LogR), decision tree (DT), k-nearest neighbor

(KNN), and support vector machine (SVM). All of the machine

learning methods were implemented in scikit-learn [57].

2.4. Performance Evaluation
Prediction performance is assessed using four quality indices

including sensitivity (the ratio between the number of correct

predictions for DNA-binding proteins and the total number of the

actual DNA-binding proteins), specificity (the ratio between the

Table 2. Comparison of the prediction performance of the Gaussian naı̈ve Bayes (GNB)-based wrapper, logistic regression (LogR)-
based wrapper, decision tree (DT)-based wrapper, k-nearest neighbor (KNN)-based wrapper, and two support vector machine
(SVM)-based wrappers with the RBF and polynomial kernels (denoted as SVM-RBF and SVM-Poly respectively).

Wrapper method Five-fold CV (average of 10 runs) Jackknife test

Sen Spe Acc MCC Sen Spe Acc MCC

GNB 0.81560.010 0.76760.009 0.79160.007 0.58360.014 0.828 0.781 0.805 0.610

DT 0.71660.019 0.70460.025 0.71060.011 0.42160.021 0.684 0.700 0.692 0.384

LogR 0.80160.008 0.69960.005 0.75060.006 0.50260.012 0.805 0.704 0.754 0.511

KNN 0.71660.015 0.77060.010 0.74360.008 0.48760.016 0.721 0.771 0.746 0.492

SVM-Poly 0.86760.008 0.66860.011 0.76860.009 0.54760.019 0.855 0.687 0.771 0.550

SVM-RBF 0.83060.013 0.74660.006 0.78860.008 0.57860.016 0.848 0.754 0.801 0.605

Note: The CV tests were based on ten runs and the averages and the standard deviations are shown. The highest values are shown in bold.
doi:10.1371/journal.pone.0086703.t002

Figure 1. The flowchart of the proposed method.
doi:10.1371/journal.pone.0086703.g001
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number of correct predictions for non DNA-binding proteins and

the total number of the actual non DNA-binding proteins), the

overall accuracy, and Matthews correlation coefficient (MCC) [62]:

Sensitivity~
TP

TPzFN
|100%

Specificity~
TN

TNzFP
|100%

Accuracy~
TPzTN

TPzTNzFPzFN
|100%

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)(TPzFP)(TNzFP)(TNzFN)
p

where true positives (TP) and true negatives (TN) correspond to

correctly predicted DNA-binding and non DNA-binding proteins,

respectively, false positives (FP) denote non DNA-binding proteins

predicted as DNA-binding proteins, and false negatives (FN) denote

DNA-binding proteins predicted as non DNA-binding proteins.

The MCC measure ranges between 21 and 1, where 21

corresponds to all incorrect predictions, 0 to random predictions,

and 1 to all correct predictions.

The performance is tested using n-fold cross validation (nCV)

with multiple runs (to improve validity of the results) on PDB594

dataset. In the nCV, chains are randomly divided into n subsets

with the same numbers of sequences, and the test is repeated n

times, each time using one subset to test the prediction model and

the remaining n21 subsets to establish the model. Execution of

one nCV is called a run and the n subsets for the run are named a

seed. In the wrapper-based feature selection, we performed five-

fold cross validation (5 CV), but we executed ten runs using ten

different randomly created seeds. The sensitivity, specificity,

accuracy and MCC are computed for each run and then averaged

over the ten runs. The jackknife test (JKT), also called the leave-

one-out test, is actually a nCV, where n is the total number of

sequences in the dataset. We also performed the jackknife test but

executed the only one run since each run would give the same

result.

2.5. Feature Selection
The designed feature set is composed of 1486 descriptors. We

performed feature selection since some of these features could be

irrelevant to the prediction/characterization of DNA-binding

proteins. Two stages were utilized in the wrapper based feature

selection: (1) feature rank performed using random forest; (2)

feature selection by forward best-first search combined with GNB

classifier. In the first stage, top 300 features according to the Gini

importance of random forest are selected. While in the second

stage, feature selection is performed limited to this subset that is

composed of 300 important features. The feature sets that lead to a

higher average MCC are selected by performing the forward best-

first search scheme. The computation of the MCC involves out-of-

sample tests on the training set PDB594. More specifically, we

execute ten random seeds of five-fold cross validation (5 CV) and

use the average MCC to rank features. We start one feature that

gives the largest MCC and then add the second feature (among the

remaining 299 features) which results in the best average MCC.

This is performed incrementally until adding an additional feature

without obvious average MCC improvement. Figure 1 shows the

flowchart of the proposed method.

In addition, other machine learning methods including LogR,

DT, KNN and SVM are also applied to the above feature

selection for a comparison. However, KNN needs set the number

of neighbors, and the SVM classifiers require parametrization of

the complexity constant C and the kernel function. The number of

neighbors for KNN was limited to the set {5, 7, 9, 11, 13}. For

each step of the above feature selection in which one feature was

added into the previous selected feature set, KNN was performed

over the all allowable numbers of neighbors and the one with the

highest prediction performance was kept. For SVM, we consider

two kernel types, radial basis function (RBF) K(xi,xj) = exp(2c||-

(xi,xj) = exp(2c||xi2xj||2) where c is the width of the RBF

function, and polynomial K(xi,xj) = (xi?xj)
d where d is the degree.

When d = 1, the polynomial K(xi,xj) = (xi?xj) is actually the linear

kernel. The SVM classifiers with these two types of kernels are

denoted as SVM-RBF and SVM-Poly, respectively. We performed

the grid search to optimize the parameters of SVM classifiers. For

the RBF kernel, C = {223, 222, …, 22, 23} and c= {223, 222, …,

22, 23}, and for polynomial kernel C = {223, 222, …, 22, 23} and

d = {1, 2, 3}. The parameterization is performed again each time

when an additional feature is added to the set of the selected

features.

Figure 2. The improvement of MCC values (y axis) along with
the increasing number of selected features (x axis) for the
performed wrapper based feature selection. A forward, best-first
search was executed using both 10 5 CV runs and jackknife tests on the
PDB594 dataset. The standard deviations of MCC values for the case of
5 CV with 10 runs are shown using error bar.
doi:10.1371/journal.pone.0086703.g002

Table 3. Comparison of DBPPred with the existing methods
based on independent blind tests on the same dataset
PDB186.

Method Reference Sensitivity Specificity Accuracy MCC AUC

DBPPred This work 0.796 0.742 0.769 0.5380.791

iDNA-Prot [8] 0.677 0.667 0.672 0.344 N/A

DNA-Prot [22] 0.699 0.538 0.618 0.240 N/A

DNAbinder [23] 0.570 0.645 0.608 0.216 0.607

DNABIND [24] 0.667 0.688 0.677 0.355 0.694

DBD-Threader [19] 0.237 0.957 0.597 0.279 N/A

N/A means that the data are not available.
doi:10.1371/journal.pone.0086703.t003

Sequence Based Prediction of DNA-Binding Proteins
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Results

3.1. Performance of the Proposed Method
The proposed method, called DBPPred, was implemented by

ranking features using random forest algorithm and selecting

features using forward best-first search strategy based on Gaussian

naı̈ve Bayes. Total of 300 features according to the feature rank

were input to the subsequent feature selection, and each step in the

forward best-first search by adding one remaining feature was

performed based on 5 CV with 10 runs. Therefore, the results

including sensitivity, specificity, accuracy and MCC were averaged

over the ten runs, and their standard deviations were also

reported. Figure 2 shows the improvement of MCC values along

with the increasing number of selected features in the procedure of

the forward, best-first search that was executed using 5 CV with

10 runs. The results from jackknife tests using the ranked features

derived by the feature selection based on 5 CV with 10 runs were

also shown in the figure. It can be observed that when the number

of features is 56, the corresponding average MCC value based on

5 CV with 10 runs achieves the highest. Meanwhile, the MCC

value derived by Jackknife test is also the highest.

Thus, the final feature set determined by the proposed method

is composed of 56 features. The corresponding average sensitivity,

specificity, accuracy and MCC values are 0.815, 0.767, 0.791 and

0.583, respectively, for 5 CV with 10 runs, and are 0.828, 0.781,

0.805 and 0.610, respectively, for jackknife test. Before the overall

MCC peak achieved with 56 features, the procedure of feature

selection provided in general improvement of MCC with the

increasing number of selected features, however, the MCC value

decreases a little bit when adding certain feature, such as the 16th

feature and the 21st feature. We emphasize that the combination

of all selected features contribute to the final improvement on

MCC value.

3.2. Comparison with Several Machine Learning Methods
Apart from GNB, several classifiers including DT, LogR, KNN,

SVM-Poly and SVM-RBF were also applied to the feature

selection procedure of the proposed method for a comparison.

Table 2 lists the prediction performance of considered methods

according to their MCC peaks achieved that are similar to the case

of GNB in Figure 2. The results for 5 CV with 10 runs and

Jackknife test are both reported. As shown in Table 2, for the case

of 5 CV with 10 runs, the SVM-Poly based wrapper generates the

highest average sensitivity of 0.867, and the KNN based wrapper

yields the best average specificity of 0.770 although it is very close

to the specificity of 0.767 achieved by GNB based wrapper.

However, GNB based wrapper yields the highest average accuracy

of 0.791 and average MCC of 0.583 and also provides better

balance between sensitivity and specificity than SVM-Poly based

wrapper. Similarly for the case of Jackknife test, SVM-Poly based

wrapper outputs the highest sensitivity of 0.855, while GNB based

wrapper yields the highest specificity of 0.781, accuracy of 0.805,

and MCC of 0.610. It should be noted that the performance of

SVM-RBF based wrapper is very close to the GNB based

wrapper. Due to the simplicity of GNB when compared with

SVM, GNB was finally determined as the underlying method.

3.3. Comparison of Independent Tests with Existing
Methods

The independent dataset PDB186 was used to validate the

quality of predictions for sequences that share low identity (,25%)

with the training set. We performed blind test on PDB186 using

the GNB model that was trained on the entire PDB594 dataset.

We also compared the predictions of the proposed DBPPred on

PDB186 with those of several relevant existing methods that have

web server or standalone version concerning the sequence based

predictions of DNA binding proteins. These methods include

iDNA-Prot [8], DNA-Prot [22], DNAbinder [23], DNABIND

[24], and DBD-Threader [19], to our best knowledge.

Table 3 shows the performance comparison of the proposed

DBPPred with the five existing methods based on the PDB186

dataset. As shown in the table, the proposed DBPPred has the

highest sensitivity of 0.796, accuracy of 0.769, and MCC of 0.538,

and the secondly highest specificity of 0.742. The independent

predictions of DBPPred are improved by accuracy of 9.2% and

MCC of 0.183 when compared with the remaining best method,

i.e. DBDBIND. The next method is iDNA-Prot, whose perfor-

mance is very close to DBDBIND. DNA-Prot and DNAbinder are

two close methods that have lower prediction quality than

DBDBIND and iDNA-Prot. DBD-Threader was performed with

the lowest accuracy of all considered methods. More specially,

DBD-Threader achieved the lowest sensitivity of 0.237 and the

highest specificity of 0.957, which implies that this method

remarkably tends to predict a query protein as non DNA-binding

whatever it is actually DNA-binding or non DNA-binding. As a

result, DBD-Threader yields generates the lowest accuracy of

0.597. The reason may be due to the fact that DBD-Threader is

Figure 3. ROC curves for the predictions of DNA-binding
proteins on the PDB186 dataset. We compare the predictions of
DBPPred with DNABIND and DNAbinder that provide real-value
outputs.
doi:10.1371/journal.pone.0086703.g003

Table 4. List of false positive rates of the proposed DBPPred
and the existing iDNA-Prot, DNA-Prot, DNAbinder and
DNABIND on datasets NDBP4025, RB174, RB256 and RB430.

Method False positive rate

NDBP4025 RB174 RB256 RB430

DBPPred 0.254 0.534 0.527 0.530

iDNA-Prot 0.310 0.483 0.559 0.528

DNA-Prot 0.354 0.713 0.703 0.707

DNAbinder 0.325 0.672 0.652 0.660

DNABIND 0.299 0.741 0.727 0.733

doi:10.1371/journal.pone.0086703.t004
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Table 5. The mean values of the selected 56 features and the P values that quantify significance of the differences between DNA-
binding and non DNA-binding proteins for PDB594 dataset.

Feature Category Mean±std P-value

DNA-binding Non DNA-binding

Pscore_AAQ_P75 PSSM score based 0.69660.095 0.62660.124 ,1023

AvePscore_AAY_ResK PSSM score based 0.16060.078 0.20760.093 ,1023

AveRSA_ResG Average RSA based 0.31060.076 0.27160.061 ,1023

AvePscore_AAP PSSM score based 0.23260.049 0.25560.058 ,1023

DIC_ResKS AA composition based 0.00560.006 0.00460.005 0.019

AvePscore_AAR_ResG PSSM score based 0.22760.124 0.22460.096 0.765

AutoCC_AAN _Lag7 PSSM score based 20.01460.106 0.01060.095 0.003

AvePscore_AAG_ResR PSSM score based 0.17060.094 0.20760.103 ,1023

AvePscore_AAL PSSM score based 0.32360.057 0.32960.048 0.117

AvePscore_AAK_ResG PSSM score based 0.27660.122 0.26660.100 0.272

AvePscore_AAQ PSSM score based 0.42260.040 0.39660.051 ,1023

AvePscore_AAR_ResM PSSM score based 0.25060.164 0.22960.124 0.080

AAC_ResR_Ex0.2 AA composition based 0.09260.043 0.08060.037 ,1023

AvePscore_AAT PSSM score based 0.37760.037 0.38760.040 0.001

AAC_ResD_Bu0.3 AA composition based 0.01860.019 0.02460.016 ,1023

AAC_ResV_Ex0.1 AA composition based 0.03960.022 0.04560.019 ,1023

AutoCC_AAR _Lag7 PSSM score based 0.00860.091 0.03160.100 0.004

AAC_ResN AA composition based 0.03860.021 0.04360.022 0.003

AvePscore_AAC_ResN PSSM score based 0.14160.140 0.13660.096 0.644

AutoCC_AAI _Lag7 PSSM score based 20.01560.092 0.00960.097 0.002

AAC_ResD_Bu0.2 AA composition based 0.01260.018 0.01660.015 0.004

AvePscore_AAG_ResK PSSM score based 0.19760.090 0.23260.107 ,1023

AvePscore_AAR_ResE PSSM score based 0.49360.100 0.47860.085 0.044

AutoCC_AAI _Lag8 PSSM score based 20.01060.105 20.00560.076 0.511

AAC_ResA_Ex0.1 AA composition based 0.06260.035 0.06860.037 0.04

AAC_ResT_Ex0.3 AA composition based 0.04460.028 0.05560.033 ,1023

AutoCC_AAP _Lag7 PSSM score based 20.01160.110 0.02160.096 ,1023

AutoCC_AAE _Lag4 PSSM score based 0.10660.120 0.10060.125 0.524

AAC_ResE_Ex0.1 AA composition based 0.09360.032 0.08860.035 0.049

AutoCC_AAI _Lag3 PSSM score based 0.02960.092 0.00760.085 0.003

AutoCC_AAK _Lag7 PSSM score based 0.02160.101 0.04160.105 0.018

AvePscore_AAR _ResR PSSM score based 0.93060.086 0.89260.121 ,1023

AutoCC_AAR_Lag9 PSSM score based 20.02160.110 20.00760.079 0.084

AAC_ResL_Bu0.5 AA composition based 0.11160.038 0.10260.031 0.003

AvePscore_AAR_ResW PSSM score based 0.12460.200 0.16760.202 0.008

Pscore_AAR _P75 PSSM score based 0.66160.154 0.58460.152 ,1023

AAC_ResT_Ex0.4 AA composition based 0.03560.033 0.04460.036 0.002

AvePscore_AAI_ResD PSSM score based 0.08960.065 0.10860.059 ,1023

AvePscore_AAN_ResR PSSM score based 0.40260.106 0.41760.108 0.105

AutoCC_AAV _Lag8 PSSM score based 20.01560.099 20.00960.077 0.381

AvePscore_AAH_ResW PSSM score based 0.14560.202 0.21460.211 ,1023

AvePscore_AAR PSSM score based 0.38760.055 0.35760.055 ,1023

AvePscore_AAW_ResT PSSM score based 0.09460.083 0.14860.110 ,1023

AAC_ResN_Bu0.2 AA composition based 0.01160.016 0.01560.015 0.001

AutoCC_AAI _Lag4 PSSM score based 0.01460.106 20.01060.099 0.004

AvePscore_AAE PSSM score based 0.40760.043 0.39160.055 ,1023

DIP_ResDL AA composition based 0.00560.006 0.00560.005 0.687
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actually a threading based method that requires a template library

of DNA-binding proteins [19]. However, the size of the template

library may be not large enough.

Moreover, two methods, DNAbinder and DNABIND, provide

real-value outputs, which can be used to plot Receiver Operating

Characteristic (ROC) [63] curve. We performed ROC analysis to

further compare the prediction performance of the proposed

method DBDPred, DNAbinder and DNABIND. The ROC curve

shows the relation between true positive rate (sensitivity) and false

positive rate (1-specificity) for each threshold of the real-value

outputs. Figure 3 shows the ROC curves of the proposed DBPPred

base on GNB, the DNAbinder based on SVM, and the

DNABIND based on LogR. The areas under the ROC curves

(AUCs), which quantify the overall performance independently of

the threshold values, equal 0.791 for DBPPred, 0.607 for

DNAbinder, and 0.694 for DNABIND. This indicates that the

proposed DBPPred outperforms DNAbinder and DNABIND.

The prediction results of all methods in Table 3 as well as the real-

value outputs of the proposed DBPPred, DNAbinder and

DNABIND are listed in Information S1.

Table 4 lists the false positive rates of the proposed DBPPred,

iDNA-Prot, DNA-Prot, DNAbinder and DNABIND performed

on several non-DNA binding protein datasets, NDBP4025,

RB174, RB256 and RB430. We did not include the result of

DBD-Threader into the table, since its prediction output probably

tends to be negative (i.e. non-DNA binding protein) and the server

is not friendly for large number of sequences. As shown in the

table, DBPPred yields the smallest false positive rate of 0.254 (i.e.

the specificity is 0.746) when compared with other methods

including iDNA-Prot, DNA-Prot, DNAbinder and DNABIND,

which achieve the false positive rates of 0.310, 0.354, 0.325, and

0.299, respectively, based on the NDBP4025 dataset. The results

of all methods in Table 4 based on the dataset NDBP4025 are

close to the specificity values derived from the independent tests on

PDB186. In summary, DBPPred provides improved predictions of

DNA-binding proteins with a balance of sensitivity and specificity.

The prediction results of all methods in Table 4 performed on

NDBP4025 dataset are listed in Information S2.

In case of RNA-binding proteins, as shown in Table 4, all

methods show the limited ability to distinguish between DNA-

binding and RNA-binding proteins. For the results performed on

the three datasets RB174, RB256 and RB430, the smallest false

positive rate achieved by iDNA-Prot based on RB174 dataset is

0.483, which is far from the largest false positive rate of 0.354

achieved by DNA-Prot based on NDBP4025 dataset. However,

the false positive rate of the proposed DBPPred (0.530) is

comparable with iDNA-Prot (0.528) and is smaller than those of

DNA-Prot (0.707), DNAbinder (0.660) and DNABIND (0.733)

based on the RB430 dataset. Specifically, DBPPred has larger false

positive rate on RB174 and smaller false positive rate on RB256

when compared with iDNA-Prot, resulting in the comparable

results between DBPPred and iDNA-Prot based on the union of

RB174 and RB256, i.e. RB430. The prediction results of all

methods in Table 4 performed on the two datasets RB174 and

RB256 are listed in Information S3.

We conclude that the proposed DBPPred provides favorable

results, which should allow for building a well-performing DNA-

binding protein predictor. Additionally, a standalone software of

the proposed model that predicts the DNA-binding protein is

provided as Software S1.

3.4. Analysis of Selected Features
Table 5 lists the 56 features that are selected in the proposed

DBPPred. The features in the table have been already ordered

according to the feature addition procedure in the forward best-

first search strategy. Of all selected features, 38 out of 56 features

are PSSM score based, 17 out of 56 features are AA composition

based, and one out of 56 features is average RSA based. The

majority (38/56 = 67.9%) of the selected features are PSSM score

based, showing that the evolutionary information generated by

PSI-BLAST plays important roles in the prediction of DNA-

binding proteins.

Furthermore, we investigate statistical significance of the

differences of these feature values between the DNA-binding

and non DNA-binding proteins on the PDB594 dataset. Table 5

gives the P values of two-sided t tests. It can be observed that if the

statistically significant difference (SSD) between DNA-binding and

non DNA-binding proteins is at 0.05 level, 43 out of 56 (43/

56 = 76.8%) features have P values less than 0.05, and thus their

differences of the feature values of DNA-binding and non DNA-

binding proteins are statistically significant. As expected, the

results confirm that the majority of the selected features by the

proposed method have statistically significant differences between

the DNA-binding and non DNA-binding proteins.

It can be observed that the secondary structure based features

are not selected in the final model. However, we strengthen that

the high quality of the proposed method is attributed to the

combination of the selected features. In addition, an alternative

Table 5. Cont.

Feature Category Mean±std P-value

DNA-binding Non DNA-binding

AvePscore_AAN_ResI PSSM score based 0.10460.085 0.12960.080 ,1023

AutoCC_AAC_Lag7 PSSM score based 20.00260.103 0.02060.082 0.003

AutoCC_AAL _Lag7 PSSM score based 20.00560.101 0.01660.103 0.012

AvePscore_AAI_ResA PSSM score based 0.28560.100 0.28760.098 0.745

AAC_ResA_Bu0.2 AA composition based 0.09660.056 0.10260.050 0.158

AAC_ResE AA composition based 0.07460.025 0.06960.027 0.009

AutoCC_AAT_Lag2 PSSM score based 0.01160.101 0.05060.090 ,1023

AAC_ResT_Ex0.2 AA composition based 0.05260.027 0.06160.029 ,1023

AAC_ResC_SSC AA composition based 0.01160.023 0.01660.024 0.019

doi:10.1371/journal.pone.0086703.t005

Sequence Based Prediction of DNA-Binding Proteins

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e86703



reason may be due to that the secondary structures were predicted

from evolutionary information in SPINE-X program. When a

number of features associated with PSSM scores were already

selected, the predicted SS based features contributed no more

improvement to the prediction of DNA-binding proteins, and then

they were not selected.

Conclusion

In this work, we proposed a new method, called DBPPred, for

the prediction of the DNA-binding proteins, by performing the

feature rank using random forest and the wrapper-based feature

selection using forward best-first search strategy and Gaussian

naı̈ve Bayes as the underlying classifier. The features comprise

information from the primary sequence, the predicted secondary

structure, the predicted relative solvent accessibility, and the

position specific scoring matrix. The proposed method using GNB

as the underlying classifier was compared with other five classifiers

having the same cross validation procedures, including decision

tree, logistic regression, k-nearest neighbor, SVM with polynomial

kernel, and SVM with RBF kernel. As a result, the proposed

DBPPred performs the best according to the five-fold cross

validation with ten runs on PDB594 dataset. Moreover, indepen-

dent tests of the proposed DBPPred, which was trained on the

entire dataset PDB594, and other five existing methods including

iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-

Threader were performed on the PDB186 dataset, resulting in

that DBPPred yielded the highest prediction quality. All of the

experimental results, including additional tests on purely the non-

DNA binding protein dataset NDBP2045 and the RNA-binding

protein dataset RB430, indicate that the proposed DBPPred may

be an alternative perspective predictor for large-scale determina-

tion of DNA-binding proteins.
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outputs of three methods, DBPPred, DNAbinder and DNABIND,

are also provided.
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BIND on datasets RB174 and RB256. The file lists the

predicted values of the existing methods for each sequence in
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