
RESEARCH ARTICLE Open Access

Sequence-based prediction of protein-
protein interactions using weighted sparse
representation model combined with
global encoding
Yu-An Huang1, Zhu-Hong You2*, Xing Chen3*, Keith Chan4 and Xin Luo4

Abstract

Background: Proteins are the important molecules which participate in virtually every aspect of cellular function

within an organism in pairs. Although high-throughput technologies have generated considerable protein-protein

interactions (PPIs) data for various species, the processes of experimental methods are both time-consuming and

expensive. In addition, they are usually associated with high rates of both false positive and false negative results.

Accordingly, a number of computational approaches have been developed to effectively and accurately predict

protein interactions. However, most of these methods typically perform worse when other biological data sources

(e.g., protein structure information, protein domains, or gene neighborhoods information) are not available.

Therefore, it is very urgent to develop effective computational methods for prediction of PPIs solely using protein

sequence information.

Results: In this study, we present a novel computational model combining weighted sparse representation based

classifier (WSRC) and global encoding (GE) of amino acid sequence. Two kinds of protein descriptors, composition

and transition, are extracted for representing each protein sequence. On the basis of such a feature representation,

novel weighted sparse representation based classifier is introduced to predict protein interaction class. When the

proposed method was evaluated with the PPIs data of S. cerevisiae, Human and H. pylori, it achieved high prediction

accuracies of 96.82, 97.66 and 92.83 % respectively. Extensive experiments were performed for cross-species PPIs

prediction and the prediction accuracies were also very promising.

Conclusions: To further evaluate the performance of the proposed method, we then compared its performance

with the method based on support vector machine (SVM). The results show that the proposed method achieved a

significant improvement. Thus, the proposed method is a very efficient method to predict PPIs and may be a useful

supplementary tool for future proteomics studies.

Background
Protein-protein interactions play a key role in various as-

pects of the functional organization of the living cell and

take place in the signal transduction of any organism.

Therefore, understanding PPIs is very important for the

investigation of biological processes such as intercellular

signaling pathways and modeling protein complex struc-

tures. Because of its significant status, the protein-

protein interaction networks have been dawning increas-

ing attention. Most of the protein-protein interaction

data was collected by experimental methods like yeast

two-hybrid (Y2H) screens [1, 2], tandem affinity purifi-

cation (TAP) [3], mass spectrometric protein complex

identification (MS-PCI) [4] and other high-throughput

biological techniques for PPIs detection. A number of

databases such as MINT [5], BIND [6] and DIP [7] have

been established to store protein interaction informa-

tion. However, these experimental methods are time-
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consuming and cost a lot. What’s worse, they can only

identify a small number of interactions and fail to reach low

rates of both false positive and false negative results. For

these reasons, an increasing number of researchers are try-

ing to develop a computational method for predicting PPIs.

Much effort has been devoted to propose computa-

tional approaches for detecting PPIs based on various

data types, such as genomic information, protein domain

and protein structure information. For example, Yu et al.

[8] proposed a method based on secondary structures

for inferring PPIs, and found that helix and disordered

structures account for most of interacting regions. Simi-

larly, Cai et al. [9] presented a SVM-based model which

considers protein secondary structures, and yielded good

prediction accuracy of 88.01 % when predicting PPIs of

Yeast dataset. However, with the exponential growth of

newly discovered protein sequences, there is a widening

gap between the growing rate of protein sequences and

that of protein structure data. For the sake of utilizing

this wealth of protein sequence data, we develop effect-

ive sequence-based computational methods for predict-

ing PPIs.

The existing computational methods for PPIs predic-

tion from amino acid sequences mainly depend on the

information of protein homology or interaction marks of

the protein partners. Because of slow evolutionary diver-

gence, homolog may still have the same or similar struc-

tures and functions. Based on this assumption, a

number of methods based on the prior biological know-

ledge have been proposed. Zhao et al. [10] proposed a

model based on position specific scoring matrix and

auto covariance for predicting bioluminescent proteins

and yield a high test accuracy of 90.71 %. Liu et al. [11]

presented a protein feature extraction method consider-

ing the hydropathy profile of amino acids, and found it

effectual for protein representation. However, these

methods won’t work when detecting homolog with low

sequence similarity. In addition, due to the similarity be-

tween the protein and its homolog decreases, it would

be more difficult to use sequence homology recognition

methods to solve the problem of predicting PPIs. Earlier

studies [12] indicate that knowledge of the amino acid

sequence alone might be sufficient to estimate the inter-

acting propensity between two proteins. In this context,

it is of great significance to develop computational

methods by only using protein sequence information for

predicting protein-protein interactions.

Current computational systems for predicting PPIs

usually consist of two parts, feature extraction and ma-

chine learning model. As the first step of computational

methods, feature extraction aims to mine useful infor-

mation from original samples and represent them as

normalized feature vectors of the same size. Effective

feature extraction method usually helps the prediction

system improve its performance. In this work, we adopt

a method based on a global description of amino acid

sequence and consider the physiochemical property of

proteins in the process of feature extraction. This

method would first classify 20 kinds of amino acids into

6 classes (e.g., C1 = {A, V, L, I, M, C}) and then gets 10

combinations each of which contains three different

classes (e.g., {C1, C2, C3} vs {C4, C5, C6}). Based on

these 10 combinations, a given protein sequence can be

transformed into 10 binary characteristic sequences.

Each characteristic sequences would be further divided

into specific numbers of subsequences according to a

partition method. Finally, two descriptors, composition

and transition, would be extracted from these subse-

quences to depict the global composition of every pro-

tein sequence and form the final feature vectors.

Sample classification is the second step of computa-

tional models for predicting PPIs. Most of current com-

putational methods are based on the traditional classifier

such as support vector machine [13, 14] and neural net-

work [15]. Although these classifiers have strong classifi-

cation ability, they need much labor and time to adjust

corresponding parameters for the best performance. Re-

cently, sparse representation based classifier (SRC) is

earning reputation for its powerful classification per-

formance in the fields of signal processing, pattern rec-

ognition and computer vision. So it would be a good

trial to explore it for building prediction systems for

PPIs. Besides, SRC needs few parameters to adjust. In

this study, we build a computational model by employ-

ing weighted sparse representation based classifier

(WSRC), a variant of basic SRC, which integrates both

sparsity and locality structure data into conventional

SRC, and further improves the classification ability of

SRC.

In this paper, we present a computational model for

predicting PPIs by combining a novel global encoding

representation of proteins and weighted sparse represen-

tation based classifier. We first adjusted the correspond-

ing parameter (L) of global encoding method of protein

sequence and transformed every protein sequence sam-

ple into a 150 dimensional vector. Secondly, we com-

bined every two corresponding protein feature vectors

into one representing a protein pair and then used these

300-dimensional vectors as the inputs for classifier. Fi-

nally, we adopted WSRC to classify the samples. We ex-

plored our proposed method to predict PPIs from three

different dataset: Yeast, Human and H. pylori. To further

estimate the performance of the proposed method, we

compared it with the method based on the state-of-the-

art classifier, support vector machine. In addition, in

order to evaluate the generational ability of our pro-

posed method, extensive experiments are performed to

predict the PPIs from six other species datasets.
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Results
In this section, we firstly evaluate the performance of

the proposed method for predicting three different

datasets: Yeast, Human and H. pylori by using different

evaluation measures including Receiver Operator

Characteristic (ROC). We then compare the classifica-

tion performances between WSRC and SVM by using

the same feature extraction method. In addition, we

also present the results of the experiments in which

we used Yeast PPIs samples as training set to predict

PPIs of other species datasets. Finally, we compare

the performance of the proposed method with the

previous existing methods.

Evaluation measures

To evaluate the performance of the proposed method,

we use the following criteria: the overall prediction

accuracy (Accu.), sensitivity (Sens.), precision (Prec.) and

Matthews’s correlation coefficient (MCC) were calcu-

lated. They are defined as follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
ð1Þ

Sensitivity ¼
TP

TP þ FN
ð2Þ

PE ¼
TP

TP þ FP
ð3Þ

MCC ¼
TP � TN−FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þ
p

ð4Þ

where true positive (TP) denotes the number of true

samples which are predicted correctly; false negative

(FN) is the number of samples predicted to be non-

interacting pairs incorrectly; false positive (FP) is the

number of true non-interacting pairs predicted to be

PPIs falsely, and true negative (TN) is the number of

true non-interacting pairs predicted correctly. Further-

more, the ROC curve was also calculated to evaluate the

performance of proposed method. Summarizing ROC

curve in a numerical way, the area under an ROC curve

(AUC) was computed.

Parameter selection

For the sake of fairness, the corresponding parameters

of weighted sparse representation based classifier

would be set the same when explored in three different

dataset—Yeast, Human and H. pylori. In this paper, we set

σ = 1.5 and ε = 0.00005 when using the weighted sparse

representation based classifier. As the parameter L is the

unique parameter of the feature extraction method, the

optimization of selection of L is of great importance for

the model prediction performance. To search the best

value of L, several experiments were performed by explor-

ing Yeast PPIs dataset in the framework of 5-fold cross

validation. The results are recorded in Table 1.

It can be observed from Table 1 that the average

accuracy gains an improvement reaching 96.82 %

when L increases from 4 to 5. The reason is that,

with a larger value of parameter L, GE descriptors

can obtain more effective information. However, with

the increase of the parameter L, the average predic-

tion accuracy keeps a slight falling trend from 96.82

down to 96.16 %. The increase of L could also in-

crease the complexity for computation, which may

decrease the accuracy. Finally, we chose L = 5 in our

experiments.

Assessment of prediction ability

In order to evaluate the prediction ability of the proposed

method, we explore Yeast and H. pylori dataset in this

section. 5-fold cross validation is also used in our experi-

ments in order to avoid the overfitting of the prediction

model and test the performance stability. Specifically, one

dataset was experimented for 5 times and we divided the

whole dataset into five subsets in each time. Four of the

subsets would take turns to be used for training and the

rest one subset was used for testing. Here, we list the

prediction results of the experiments in which we used

the proposed model to predict PPIs of Yeast and H. pylori

datasets (see Tables 2 and 3).

It can be observed that when predicting the PPIs of

Yeast dataset, the prediction accuracies are ≥96.20 %, the

precisions are all 100 %, and the sensitivities are ≥93.63 %.

Table 3 shows that when predicting the PPIs of H. pylori

dataset, the prediction accuracies are ≥92.28 %, the preci-

sions are ≥96.13 %, and the sensitivities are ≥89.32 %.

Further, we can see that the standard deviations of

these criteria are relative low. For the experiments on

the Yeast dataset, the standard deviations of accuracy,

precision and sensitivity are 0.43, 0.00 and 0.87 %.

When exploring the H. pylori dataset, they come to

be 0.41, 1.75 and 2.33 % respectively. To better quan-

tify the prediction performance, Matthews correlation

coefficient (MCC) and the AUC values of the ROC

curves are also calculated. The averages of MCC and

Table 1 Comparison among different L parameter values on

Yeast dataset

L Dimension Acc. (%) Prec. (%) Sen. (%) MCC (%)

4 120 96.09 ± 0.33 100.00 ± 0.00 92.18 ± 0.72 92.47 ± 0.62

5 150 96.82 ± 0.43 100.00 ± 0.00 93.63 ± 0.87 93.83 ± 0.81

6 180 96.66 ± 0.30 100.00 ± 0.00 93.32 ± 0.56 93.52 ± 0.56

8 240 96.39 ± 0.16 100.00 ± 0.00 92.78 ± 0.20 93.02 ± 0.28

12 360 96.28 ± 0.43 100.00 ± 0.00 92.57 ± 0.81 92.82 ± 0.80

16 480 96.16 ± 0.51 100.00 ± 0.00 92.32 ± 1.00 92.59 ± 0.95
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AUC values of experiments on Yeast dataset are

93.83 and 96.88 % respectively (see Fig. 1). For the

experiments on H. pylori dataset, the proposed

method yielded an average MCC and AUC value of

86.65 and 93.75 % (see Fig. 2).

The promising results show that the composition and

transition descriptors in global encoding feature extrac-

tion sufficiently retain useful information from the ori-

ginal protein sequences. Considering the high accuracies

and low standard deviations, the proposed method is

feasible, effective and robust.

Comparison with SVM-based method

There are various kinds of machine learning models hav-

ing been proposed for predicting protein-protein inter-

actions and one of the most prevalent classifiers is

support vector machine (SVM). In order to evaluate the

selected classification model of the proposed method,

we further use support vector machine classifier to deal

with an additional dataset, Human PPIs dataset, by using

the same feature extraction method. A grid search

method was used to optimize two corresponding param-

eters of SVM c and g. Here, we set c = 0.5 g = 0.5.

Table 4 shows the result comparison between WSRC

and SVM classifier on Human dataset. It can be ob-

served that WSRC yielded good results with averages of

accuracy, precision, sensitivity and MCC as high as

97.66, 99.81, 95.28 and 95.41 % respectively. However,

when using the SVM classifier, we obtained relatively

poor results with the averages of accuracy, precision,

sensitivity and MCC of 91.62, 97.05, 85.05 and 84.43 %

respectively. The ROC curves of the experiments are

also computed and shown in Figs. 3 and 4. It can be ob-

served that the average AUC value performed by WSRC

is 97.80 % higher than that performed by SVM classifier,

which is 96.12 %. In addition, it should be noticed that

the standard deviations of accuracy, precision, sensitivity

and MCC yield by WSRC model are as low as 0.35, 0.12,

0.65 and 0.68 %, lower that those yield by SVM classifier

which are 0.57, 0.59, 0.73 and 0.94 % respectively.

Comparison with 2-MER feature extraction method

Different kinds of feature descriptors have been pro-

posed for representing protein sequences. In this section,

we further compare the performance of 2-MER feature

descriptor with global encoding. 2-MER is a typical fea-

ture descriptor which records the frequencies of sub-

strings of length 2. Specifically, we combine 2-MER

descriptor with WSRC to predict the PPIs of H. pylori

dataset in the frame work of 5-fold cross validation. For

Table 2 5-fold cross validation result obtained in predicting

Yeast PPIs dataset

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

1 96.20 100.00 92.34 92.66 96.62

2 97.23 100.00 94.32 94.59 97.11

3 96.74 100.00 93.55 93.68 96.67

4 96.69 100.00 93.40 93.59 96.83

5 97.23 100.00 94.56 94.61 97.15

Average 96.82 ± 0.43 100.00 + 0.00 93.63 ± 0.87 93.83 ± 0.81 96.88 ± 0.24

Table 3 5-fold cross validation result obtained in predicting

H. pylori PPIs dataset

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

1 93.14 97.05 89.15 87.19 94.64

2 92.80 95.73 89.97 86.62 93.60

3 92.28 97.34 87.07 85.69 93.14

4 93.31 93.24 92.91 87.50 94.49

5 92.64 97.30 87.50 86.27 92.89

Average 92.83 ± 0.41 96.13 ± 1.75 89.32 ± 2.33 86.65 ± 0.72 93.75 ± 0.79

Fig. 1 ROC from proposed method result for Yeast PPIs dataset

Fig. 2 ROC from proposed method result for H. pylori PPIs dataset
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fair evaluation, the parameters were set to be the same as

other experiments in this work (σ = 1.5 and ε = 0.00005).

The comparison results are listed in Table 5. We can

see that 2-MER feature extraction yielded relatively poor

results with averages of accuracy, precision, sensitivity

and MCC of 84.88, 83.23, 87.40 and 74.27 % respect-

ively. For further evaluation, the ROC curves and AUC

values are also computed. (see Fig. 5 and Table 5). The

average AUC value yielded by adopting 2-MER feature

extraction method was 89.61 %, lower than that yielded

by the proposed model.

Performance on independent dataset

As the proposed model yielded good performance on

the PPIs data of Yeast, Human and H. pylori, extensive

computational analyses were performed in which we ex-

plored our method on six datasets of other species. In

these experiments, we used all 11188 samples of yeast

PPIs dataset for training and six different PPIs dataset of

other species were used for testing. Here, parameters σ

and ε were set to be 1.5 and 0.00005, the same as prior

experiments. When predicting the PPIs on datasets of

D. mela, E. coli, C. elegans, H. sapien, H. pylori and

M. musculus, the accuracies are 89.35, 72.92, 88.99,

88.81, 85.77 and 83.39 % respectively. (see Table 6)

Predicting five of these species, we obtained promising

results with average accuracies of over 83 % while E. coli

dataset got a relatively low accuracy which still reaches

72.92 %. When predicting the PPIs of datasets of D. mela,

C. elegans and H. sapien, the accuracy even reach ≥88.8 %.

Comparison with other methods

Various kinds of computational methods have been pro-

posed for predicting PPIs. To further evaluate the per-

formance of the proposed method for predicting protein

interactions, we compare it with the existing methods

on Yeast and H. pylori datasets. Table 7 shows the re-

sults performed by six other existing methods on Yeast

Table 4 5-fold cross validation result obtained in predicting Human PPIs dataset

Classification model Testing set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

Proposed method 1 98.22 100.00 96.30 96.50 98.03

2 97.73 99.73 95.47 95.54 98.17

3 97.55 99.87 95.04 95.20 97.94

4 97.30 99.73 94.61 94.72 97.30

5 97.49 99.73 94.97 95.08 97.57

Average 97.66 ± 0.35 99.81 ± 0.12 95.28 ± 0.65 95.41 ± 0.68 97.80 ± 0.36

SVM 1 91.79 96.70 85.84 84.75 96.43

2 91.97 97.63 85.12 84.99 95.30

3 90.63 96.21 83.86 82.78 95.90

4 91.97 97.51 85.37 85.02 96.55

5 91.73 97.20 85.05 84.60 96.44

Average 91.62 ± 0.57 97.05 ± 0.59 85.05 ± 0.73 84.43 ± 0.94 96.12 ± 0.52

Fig. 3 ROC from proposed method result for Human PPIs dataset Fig. 4 ROC from SVM-based method result for Human PPIs dataset
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dataset and it can be observed that none of these

methods obtains better result than that performed by

the proposed method, which yielded the highest average

accuracy of 96.82 %. In addition, considering the rela-

tively low standard deviations of accuracy, precision, and

sensitivity which are 0.43, 0.00 and 0.87 %, the proposed

method is more stable than the other existing methods.

Table 8 shows the results performed by other five exist-

ing methods on H. pylori dataset. The accuracies yielded

by other methods are between 75.80 and 86.60 %, all of

whom are lower than 92.83 %, the accuracy performed

by the proposed method.

Discussion

The feature extraction of the proposed model is mainly

based on the assumption that whether two proteins

interact can be greatly influenced by their physicochemi-

cal characteristics such as residues’ hydrophobic prop-

erty and charged property [16–21]. Adopting the

concept of Local Binary Patterns (LBP), Global encoding

uses a binary mapping strategy and global description to

retain the information of physicochemical characteristics

as well as the protein sequence information [22–26].

Two kinds of feature descriptor, composition and

transition, are proposed based on this binary mapping.

Composition descriptor aims to retain the distribution

information and transition descriptor is used for record-

ing the neighbour influence. To appropriately combine

with global encoding which refers to the concept of LBP,

we use a state-of-the-art classifier in the field of face rec-

ognition, WSRC, in the second step of model design.

It is worthwhile to highlight several aspects of the

proposed approach here: (1) Based on the results of

comparison experiments, we consider the selected

classification method, WSRC, superior to the SVM

classifier with higher accuracy and better stability.

There are two possible reasons for good performance

of our selected classification model. One reason lies

in the fact that weighted sparse representation based

classifier integrates both sparsity and locality structure

data into conventional SRC, which help improve the

prediction performance dealing with the global encod-

ing descriptor. The similarity of global encoding to

LBP descriptor may explain the superiority of WSRC,

and Vapnik-Chervonenkis dimension of WSRC which

is larger than SVM may lead to a fit with the global

encoding descriptor. In addition, WSRC needs little

manual intervention to adjust its corresponding pa-

rameters, which help us obtain good results without

much effort. (2) Interestingly, the outstanding results

of Table 5 show that yeast PPIs data is possibly suffi-

cient for predicting PPIs of other species and that our

proposed method is has a strong generational ability

and powerful to deal with cross-species PPIs predic-

tion. (3) It is known that ensemble classifier usually

achieves more accurate and robust performance than

Fig. 5 ROC yielded by combining 2-MER and WSRC

Table 6 Prediction results on five species based on our model

Species Test pairs Accuracy

D. mela 21975 89.35 %

E. coli 6954 72.92 %

C. elegans 4013 88.99 %

H. sapien 1412 88.81 %

H. pylori 1420 85.77 %

M. musculus 313 83.39 %

Table 5 Experimental results yielded by combing 2-MER and WSRC on H. pylori dataset

Classification model Testing set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%)

2-MER with WSRC 1 82.85 82.32 85.05 71.50 88.53

2 86.79 86.88 85.96 77.06 89.32

3 85.25 81.67 89.75 74.78 90.32

4 86.11 86.69 88.05 75.83 90.13

5 83.39 78.62 88.19 72.20 89.74

Average 84.88 ± 1.71 83.23 ± 3.53 87.40 ± 1.88 74.27 ± 2.37 89.61 ± 071

Proposed model Average 92.83 ± 0.41 96.13 ± 1.75 89.32 ± 2.33 86.65 ± 0.72 93.75 ± 0.79

Huang et al. BMC Bioinformatics  (2016) 17:184 Page 6 of 11



the methods using single classifier. However, when

predicting PPIs of Yeast and H. pylori dataset, our

proposed model even yields a better result than some

of existing method which are based on ensemble clas-

sifier such as boosting and ensemble of HKNN. From

these comparisons, we consider the WSRC-based

model combined with global encoding feature extrac-

tion method can significantly improve the prediction

accuracy. (4) Global encoding retains the information

of physicochemical characters and 2-MER descriptor

doesn’t. Therefore, global encoding is expected to be

superior to 2-MER for predicting PPIs and the results of

comparison experiment conform to this anticipation. The

results illustrate that physicochemical characters can help

improve the performance for predicting PPIs.

Conclusions

In order to obtain more knowledge on protein-protein

interactions, developing effective computational methods

for PPIs prediction become increasing important. In

this work, we explore a novel prediction model for

PPIs by combing weighted sparse representation based

classifier and global encoding representation of pro-

teins. In the process of feature extraction, two kinds

of descriptors, composition and transition, are ex-

tracted from subsequences of global encoding. Weighted

sparse representation based classifier would be finally

used to deal with sample classification. The proposed

method performs well when predicting on no matter

one species data or cross-species data. Good results

imply that our proposed method is feasible, superior

and robust.

Methods

Gold standard datasets

We verify the proposed method on a high confidence

Saccharomyces cerevisiae PPIs data set. This dataset is

gathered from publicly available database of interacting

proteins (DIP). The protein pairs which have ≥40 %

sequence identity or whose lengths are less than 50

residues were removed. Consequently, we got the

remaining 5594 protein pairs and used them to con-

struct the positive data set. For the negative dataset,

we chose 5594 additional protein pairs of different

sub-cellular localizations. By doing this, the whole

data set is made up of 11188 protein pairs of which

half are from the positive samples and half are from

the negative samples.

To demonstrate the generality of the proposed

method, we also verify our approach on two other

types of PPIs data sets. We collected the first dataset

from the Human Protein References Database (HPRD).

Those protein pairs which have ≥25 % sequence iden-

tity were removed. Finally, to comprise the golden

standard positive dataset, we used the remaining 3899

protein-protein pairs of experimentally verified PPIs

from 2502 different human proteins. For gold stand-

ard negative dataset, following the previous work [27],

we assume the proteins in different subcellular com-

partments do not interact with each other and finally

obtained 4262 protein pairs from 661 different human

proteins as the negative dataset. As a result, the

Human dataset is constructed by 8161 protein pairs.

The second PPI dataset is constructed by 2916 helico-

bacter pylori protein pairs (1458 interacting pair and

1458 non-interacting pairs) as described by Martin et

al. [28].

Global encoding (GE) of amino acid sequence

The feature extraction method used in this work will be

described in this section. Protein sequences would be

Table 7 Performance comparison of different methods on the Yeast dataset

Model Test set Accu.(%) Prec.(%) Sen.(%) MCC(%)

Guos’ work [35] ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A

AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

Zhous’ work [36] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Yangs’ work [37] Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A

Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A

Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A

Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Proposed method WSRC 96.82 ± 0.43 100.00 + 0.00 93.63 ± 0.87 93.83 ± 0.81

Table 8 Performance comparison of different methods on the

H. pylori dataset

Model Accu.(%) Prec.(%) Sen.(%) MCC(%)

Phylogenetic booststrap [38] 75.80 80.20 69.80 N/A

HKNN [39] 84.00 84.00 86.00 N/A

Signature products [28] 83.40 85.70 79.90 N/A

Ensemble of HKNN [40] 86.60 85.00 86.70 N/A

Boosting [41] 79.52 81.69 80.37 70.64

Proposed method 92.83 96.13 89.32 86.65
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first changed into ten binary sequences in a novel way

and then we use two kinds of descriptors to extract fea-

tures from these numerical sequences considering the

distribution of all kinds of residues. To visually explain

the process of this method, we give a simple example for

illustration in Additional file 1: Figure S1. Global encod-

ing (GE) of protein sequences could be obtained by the

following steps.

Step 1. Transformation of protein sequence

Researches [29, 30] have pointed out that amino acids can

be classified into 6 different classes according to the physi-

cochemical characteristic such as residues’ hydrophobic

property, charged property and so on (see Table 9). For the

reduction of data complexity, we first encode the protein

sequence substituting every amino acid by its class accord-

ingly, and the substitution rules are presented in Table 10.

In this way, every protein sequence is represented

by six symbols: C1, C2…C6. Based on this classifica-

tion, we can further divide these 6 classes into 2 sub-

sets each of which contains 3 different classes. By

doing this, ten modes can be obtained as follows:

{C1, C2, C3} vs {C4, C5, C6}, {C1, C2, C4} vs {C3, C5,

C6}, {C1, C2, C5} vs {C3, C4, C6}, {C1, C2, C6} vs

{C3, C4, C5}, {C1, C3, C4} vs {C2, C5, C6}, {C1, C3,

C5} vs {C2, C4,C6}, {C1, C3, C6} vs {C2, C4, C5}, {C1,

C4, C5} vs {C2, C3, C6}, {C1, C4, C6} vs {C2, C3, C5}

and {C1, C5, C6} vs {C2, C3, C4}. We then transform

every protein sequence into ten binary sequences

based on these ten modes correspondingly. Given a

protein sequence P = p1, p2,…,pn, let’s symbolize the

ten transformed sequences of P as S1, S2,…, S10. Here

we enumerate the first two numerical sequences, S1(pi)

and S2(pi), as Eqs. (1) and (2) respectively:

S1 pið Þ ¼
1 pi∈ A1;A2;A3f g
0 pi∈ A4;A5;A6f g

i ¼ 1…n

�

ð5Þ

S2 pið Þ ¼
1 pi∈ A1;A2;A4f g
0 pi∈ A3;A5;A6f g

i ¼ 1…n

�

ð6Þ

Where pi is the i-th amino acid of the given protein

sequence. Here we call Si as the i-th characteristic

sequence.

Step 2. Partition of characteristic sequences

In this step, every characteristic sequences are further

divided into subsequences of different lengths by a spe-

cial strategy. For any characteristic sequence Sn = s1,

s2,…,sn of length n, given a positive integer L, Sn will be

divided into L subsequences. We call the kth subse-

quence as SubSk (k = 1, 2,…, L) and SubSk is composed

of the first ⌊kn/L⌋ numbers of Sn. Here we present an

example to explain the process of characteristic se-

quence partition in Table 11. In this sample, the length

of the given sequence is 57 and parameter L is set to be

6. So the length of its subsequences is 9, 19, 28, 39, 47

and 57 respectively.

Step 3. Extraction of feature vectors

In the last step, feature vectors of composition and tran-

sition descriptors will be extracted from the subse-

quences produced in the prior step. The composition

descriptor describes the frequencies of ‘0’ and ‘1’ in each

subsequence. As a composition descriptor of one subse-

quence contains two frequency values, any characteristic

sequence would be represented by a 2*L dimensional

feature vector by the composition descriptor. Transition,

as the second descriptor, account for the switch fre-

quency between ‘0’ and ‘1’ in every subsequence. The

times where ‘0’ follows 1’ and ‘1’ follows ‘0’ happen are

counted independently. Here, we illustrate this method

with the example in Fig. 1.

Table 10 shows the process of descriptors’ extraction

from the subsequence 3 in the Table 11. The length of

example sequence is 28; the numbers of ‘0’ and ‘1’

Table 9 Amino acid classification

Amino acid classification

Aliphatic amino acid: C1 = {A,V,L,I,M,C}

Aromatic amino acid: C2 = {FW,Y}

Polar amino acid: C3 = {S,TN,Q}

Positive amino acid: C4 = {K,R}

Negative amino acid: C5 = {D,E}

Special conformations: C6 = {G,P}

Table 10 Example for the process of descriptors’ extraction

Subsequence: 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1

Position of ‘0’: 0 0 0 0 0 0 0 0 0 0 0 0

Position of ‘1’: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

‘1-0’ transition: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

‘0-1’ transition: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 11 Example for characteristic sequence partition

Sequence: Length

Sn: 10100111100110101010101100110
1011010010110110101000100010

57

SubS1: 101001111 9

SubS2: 1010011110011010101 19

SubS3: 1010011110011010101010110011 28

SubS4: 101001111001101010101011001101
01101001

38

SubS5: 101001111001101010101011001101
01101001011011010

47

SubS6: 101001111001101010101011001101
011010010110110101000100010

57
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are 12 and 16 respectively; the transition times of ‘1-0’ and

‘0-1’ are both 9. Therefore, two values of composition de-

scriptor are 12/28 = 42.86 % and 16/28 = 57.14 % respect-

ively. The value of transition descriptor is 9 + 9 = 18. In

this work, L is set to be 5 after adjusting for the best per-

formance. As a protein sequence would be first trans-

formed into 10 numerical sequences and each sequence

would further be partitioned by 5 subsequences which can

be represented by 3-dimension feature descriptors, the

length of the whole feature vector of a protein sequence is

10*5*3 = 150.

Weighted sparse representation based classification (WSRC)

In the recent years, major developments have taken

place in compressed sensing (CS) theory and linear rep-

resentation methods (LRBM). Based on these progresses,

sparse representation is earning increasing attention in

fields of signal processing, computer vision and pattern

recognition. In the sparse representation based classifica-

tion (SRC) [31], it is assumed sufficient to represent a

given test sample by samples from the sample subject.

Based on this theory, sparse representation based classi-

fier try to use a sparse representation matrix to reveal

this relation between the test sample and the whole

training set. In SRC, the sparse representation matrix

needs to be optimized. After obtaining this matrix and

calculating the reconstruction residuals of each class, the

test sample will be finally assigned to the class with the

minimum reconstruction residual. To specifically explain

the process of WSRC, we give a simple example for il-

lustration in Additional file 2: Figure S2. Given a training

set matrix X ∈ Rm × n representing n m-dimension train-

ing samples, SRC suppose that there are sufficient train-

ing samples belonging to kth class. The kth class

samples can construct a sub matrix Xk ¼ lk1; lk2…lknk½ �
where li denotes the class of ith sample and nkis the

number of sample belonging to kth class. So X can be

further rewritten as X = [X1 X2… XK] where K denotes

the class number of the whole samples. Given a test

sample, y Rm, SRC represents it with the linear com-

bination of training samples of k-th class:

y ¼ αk;1lk;1 þ αk;2lk;2 þ⋯þ αk;nk lk;nk ð7Þ

which can be further symbolized with the consideration

of the whole training set representation as follow:

y ¼ Xα0 ð8Þ

where α0 ¼ 0;⋯; 0; αk;1; αk;2⋯αk;nk ; 0;⋯; 0
� �T

. For the

reason that the nonzero entries in α0 are only associ-

ated with the kth class, when the class number of

samples is large, α0would come to be sparse. The key

of SRC algorithm is to search the αvector which can

not only satisfy Eq. (8) but also minimize the l 0-

norm of itself:

α̂0 ¼ argmin αk k0 subject to y ¼ Xα ð9Þ

Problem (9) is NP-hard problem which can be

achieved but hardly to be solved precisely. Theory of

compressive sensing [32, 33] shows that, when α is

sparse enough, it is feasible to solve the related convex

l1-minimization problem instead solving the solution of

l0-minimization problem directly:

α̂1 ¼ argmin αk k1 subject to y ¼ Xα ð10Þ

Dealing with occlusion, the Eq. (10) should be ex-

tended to the stable l1-minimization problem:

α̂1 ¼ argmin αk k1 subject to y−Xαk k≤ε ð11Þ

whereε > 0 denotes to the tolerance of reconstruction

error. Given the solution from Eq. (11), the SRC algo-

rithm assigns the label of test sample y to class c based

on the following rule:

min
c

rc yð Þ ¼ y−Xα̂c
1

�

�

�

�; c ¼ 1…K ð12Þ

Lu et al. [34] have recently proposed a variant of

traditional sparse representation based classifier called

weighted sparse representation based classifier (WSRC).

When dealing with classification problems, Nearest Neigh-

bor (NN) classifier considers the influence of the nearest

neighbor in the training set while SRC consider the linearity

structure of data. Researches have shown that locality is

more essential than sparsity in some case. For this reason,

weighted sparse representation based classifier (WSRC) in-

tegrates the locality structure of data into basic sparse rep-

resentation. Specifically, WSRC would first compute the

Gaussian distance between the sample and the whole train-

ing samples and use these distances as the weights of each

training samples. The Gaussian distance between two sam-

ples, s1 and s2, can be described as follow:

dG s1; s2ð Þ ¼ e− s1−s2k k2=2σ2 ð13Þ

where σ means the Gaussian kernel width. By this way,

the locality structure of data can be retained. WSRC

would then turn to solve the following problem:

α̂1 ¼ argmin Wαk k1 subject to y ¼ Xα ð14Þ

and specifically,

diag Wð Þ ¼ dG y; x11
� �

;…; dG y; xknk

	 
h iT

ð15Þ

where W is a block-diagonal matrix of locality adaptor

and nk is the sample number of training set in class k.
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Dealing with occlusion, we would finally solve the fol-

lowing stable l1-minimization problem:

α̂1 ¼ argmin Wαk k1 subject to y−Xαk k≤ε ð16Þ

where ε > 0 is the tolerance value.

The WSRC algorithm can be summarized as following

steps:

Additional files

Additional file 1: Figure S1. Example for illustrating the process of

global encoding (TIF 781 kb)

Additional file 2: Figure S2. Example for illustrating the process of

weighted sparse representation based classifier. (TIF 1088 kb)
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