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Abstract

The type III secretion system (TTSS) is a key mechanism for host cell interaction used by a variety of bacterial pathogens and
symbionts of plants and animals including humans. The TTSS represents a molecular syringe with which the bacteria deliver
effector proteins directly into the host cell cytosol. Despite the importance of the TTSS for bacterial pathogenesis,
recognition and targeting of type III secreted proteins has up until now been poorly understood. Several hypotheses are
discussed, including an mRNA-based signal, a chaperon-mediated process, or an N-terminal signal peptide. In this study, we
systematically analyzed the amino acid composition and secondary structure of N-termini of 100 experimentally verified
effector proteins. Based on this, we developed a machine-learning approach for the prediction of TTSS effector proteins,
taking into account N-terminal sequence features such as frequencies of amino acids, short peptides, or residues with
certain physico-chemical properties. The resulting computational model revealed a strong type III secretion signal in the N-
terminus that can be used to detect effectors with sensitivity of ,71% and selectivity of ,85%. This signal seems to be
taxonomically universal and conserved among animal pathogens and plant symbionts, since we could successfully detect
effector proteins if the respective group was excluded from training. The application of our prediction approach to 739
complete bacterial and archaeal genome sequences resulted in the identification of between 0% and 12% putative TTSS
effector proteins. Comparison of effector proteins with orthologs that are not secreted by the TTSS showed no clear pattern
of signal acquisition by fusion, suggesting convergent evolutionary processes shaping the type III secretion signal. The
newly developed program EffectiveT3 (http://www.chlamydiaedb.org) is the first universal in silico prediction program for
the identification of novel TTSS effectors. Our findings will facilitate further studies on and improve our understanding of
type III secretion and its role in pathogen–host interactions.
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Introduction

Many Gram-negative bacteria with symbiotic or parasitic

lifestyles modulate their environment, the eukaryotic host cell,

by the secretion of bacterial proteins into the host cell through

the type III secretion system (TTSS) [1]. The unique role of

type III mediated transport for establishing as well as maintaining

infection makes it a key mechanism for bacterial pathogenesis

[2–4]. While much progress on resolving the structure of the

TTSS itself has been made recently [5], the identity and function

of only few effector proteins is so far understood well. These

include different virulence factors, which interact with cell

signaling pathways to suppress immune response by inducing

apoptosis in macrophages as the Yersina effector YopJ or the

Salmonella effector SipB [6,7]. Other known effectors manipulate

the cytosceleton by actin re-arrangements as described for the

Salmonella effector SipA [8]. The arsenal of known effectors varies

widely between different bacterial species due to adaptation to

different hosts and different survival strategies [9] and even

between different strains of the same organism as shown for

Pseudomonas syringae [10].

Experimental identification of novel effectors relies on translo-

cation assays using fusion proteins of a putative effector with a

reporter gene [11–14] or detection of effectors in the culture

supernatant [11]. In many of these studies, prior information is

derived computationally from the genome or from protein

sequences to create candidate lists of putative effectors before

testing them in an appropriate assay. Homology to known effector

proteins has been used in a screen for effectors in the pathogenic

Escherichia coli strain O157 [11]. Chromosomal co-localization of

putative effectors with TTSS related chaperons has been used in

Bordetella bronchiseptica [15]. Common transcriptional regulation

with elements of the TTSS has been exploited to detect putative

effectors in P. syringae [13,16]. In the same organism, an unusual

amino acid composition in the N-termini of effectors has been

identified as a characteristic of effector proteins and used for their

identification [16–18].

In all these approaches, the computational analysis successfully

limited the amount of candidates which had to be included in

experimental analyses in order to find novel effectors. However,

none of these methods is either exhaustive or generally applicable.

Homology based approaches can only detect effectors which are
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members of known effector families, and these are mostly specific

for certain well-known bacterial species. Approaches using

transcriptional co-regulation need knowledge about a TTSS

effector specific promoter which has not yet been described for

most bacteria possessing a TTSS. The unusual amino acid

composition in the effector N-termini has to date only been

described and exploited in screens in P. syringae. Chromosomal co-

localization is only applicable if effectors and TTSS related

proteins or chaperones are clustered in genomic proximity as

described for the pathogenicity islands in Salmonella [19]. However,

these pathogenicity islands are absent in other bacteria known to

harbour a TTSS such as the Chlamydiae, where the genes encoding

known effectors are scattered around the genome [20,21].

In order to create a general method for the prediction of type III

secreted proteins, the most straightforward way would be the

identification of a general molecular signal which leads to specific

recognition of effector proteins by the TTSS. The molecular

structure of such a secretion signal is, however, so far unknown.

The binding of specific chaperons has been shown to be necessary

in some cases [22] but does not seem to be a general prerequisite.

Several studies indicate a signal in the N-terminus either encoded

in the underlying mRNA [23,24] or in the peptide [12,25,26].

Subtil et al., for example, successfully screened for TTSS effectors

using fusion proteins consisting of a chlamydial N-terminus and a

reporter gene in a heterologous Shigella flexneri assay [12]. This

experiment showed that the first 15 amino acids are sufficient for

the secretion of several chlamydial effectors.

In this work we demonstrate that information derived from N-

terminal peptides is universally applicable to successfully predict

type III secreted proteins. We have implemented EffectiveT3, the

first general prediction software for type III effector proteins. This

software is based on a machine learning approach and can be

applied to single proteins as well as complete proteomes. We

investigate the molecular shape (i.e., length, position, composition)

of the signal captured by the EffectiveT3 software and demon-

strate that the signal is taxonomically universal. We applied the

EffectiveT3 software to 739 prokaryotic proteomes and discuss the

sizes of predicted secretomes.

Results/Discussion

Common features of known effector proteins
To comprehensively investigate the nature of the TTSS signal,

we compiled a database of known effector proteins from members

of the phylum Chlamydiae and the genera Escherichia, Yersinia and

Pseudomonas by an exhaustive mining of literature. These ‘‘animal

pathogen’’ and ‘‘plant symbiont’’ sets consist exclusively of

proteins with individual experimental evidence for type III

mediated transport and comprise 100 proteins including 48

effectors from animal pathogens/symbionts and 52 effectors from

plant symbionts (Table S1). 39 of them can be clustered by

sequence similarity into 15 distinct orthologous groups (see Table

S2). These orthologous groups, however, turned out to be

restricted to their respective taxon. Their members have no

counterparts with significant homology over the major part of

their sequences in other organisms included in this study.

To investigate whether predicted functional interactions based

on genomic context methods [27] could be used for the prediction

of TTSS effectors, we analyzed all known effectors using the

STRING database [28]. A few cases of conserved chromosomal

neighbourhood of effectors with structural TTSS proteins or

chaperones could be observed, whereas most effectors do not co-

evolve with the TTSS (Table S3). The genomic neighbourhood of

known effectors has been further examined by statistical analysis of

all co-localized proteins. Components of the TTSS are signifi-

cantly enriched in the proximity of effectors (Table S4). The

highest significance of this enrichment has been observed within

the range of 30 proteins up- and downstream. Within these

neighbours, 7 structural TTSS proteins show individual enrich-

ment of statistical significance (Table S5). However, particularly in

genomes encoding the TTSS on the chromosome as e.g.

Chlamydiae, the majority of effectors cannot be found in genomic

proximity to components of the TTSS (Table S6). Thus we cannot

derive a general co-evolution rule for all effectors, which limits the

predictive power of genomic context methods significantly.

However, the observed co-evolution of certain effectors with each

other and the co-localization of several effectors with TTSS

components and chaperones make this methodology valuable for

situations if such effectors or chaperones are already known or if

the TTSS is encoded on a plasmid or on a genomic island.

In a next step we analyzed the N-terminal amino acids of known

TTSS effectors in greater detail. Within their N-terminal peptides,

the effectors did not show any conserved residues in several

multiple sequence alignments performed and analyzed (see Figure

S1 for an example). The absence of conserved positions indicative

of a common sequence motif or domain signature, which could

serve as a signal, demonstrated that a conserved binding domain

can be excluded as a general TTSS signal.

A secretion signal could also be encoded in the secondary

structure of the N-terminus. We employed secondary structure

predictions and counted the structural features (coil, a-helix, b-

sheet) at each residue within the first 25 amino acids. In the known

TTSS effectors, 51% coil, 39% a-helix and 10% b-sheet have

been predicted. In randomly selected proteins (not known to be

secreted via a TTSS) we predicted 39% coil, 45% a-helix and

16% b-sheet, which indicates that coiled regions are enriched in

the N-termini of TTSS effectors.

These findings fit well with data from P. syringae, a well-studied

plant pathogen, for which an unusual amino acid composition in

the N-termini of effectors has been reported [16–18,29]. Therefore

Author Summary

Many Gram-negative bacteria live closely associated with
humans, animals, or plants. The pathogenic or symbiotic
interactions between bacteria and host are often mediated
by the secretion of bacterial proteins into the host cells.
The Type III secretion system (TTSS) is one of the best
studied cellular machineries for this purpose and is able to
specifically recognize and export effector proteins, which
are injected into the eukaryotic cells through a needle-like
structure. However, neither the mechanism of transport
nor the recognition of proteins to be exported via the TTSS
has so far been fully comprehended. In this study we have
developed the first general computational model that is
able to identify TTSS effector proteins based on the
analysis of a short part of their amino acid sequences. The
features of this signal sequence are universal among
human and animal pathogens and plant symbionts. Based
on our findings, we developed a computer program for
the in silico prediction of TTSS effector candidates; for
example, in new genomes. The TTSS and its effector
proteins constitute a central virulence mechanism of
several bacterial pathogens responsible for severe and
widespread infectious diseases in humans and animals.
Our findings will facilitate and improve further investiga-
tions of TTSS-mediated pathogenesis and its role in
pathogen–host interactions.

Prediction of Type III Effectors
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we tested, whether this unusual amino acid composition is a

general feature of effector proteins. A Mann-Whitney test on

amino acid frequencies derived from both the whole sequences

and the first 25 residues of the N-termini from the effector sets and

randomly selected proteins revealed significant enrichments and

depletions of certain amino acids in sequences from animal

pathogens and plant symbionts, respectively (Figure 1). This effect

is particularly strong in the N-terminal end and therefore, this

composition bias could reflect an exploitable signal of TTSS

mediated transport. The most significant enrichment in the N-

termini of effectors of animal pathogens and plant symbionts is

that of serine. Threonine and proline are significantly enriched in

the effectors of animal pathogens, and leucine is depleted in both

animal and plant effector proteins. Notably, the enrichment of

proline could explain the enrichment of coiled regions in the N-

termini as this amino acid is known to be less frequent in a-helices

and b-sheets. Interestingly, these experiments revealed both

commonalities and differences between the N-terminus of effector

proteins from plant and animal pathogens, respectively.

Modeling of the N-terminal TTSS signal peptide using a
machine learning approach

The evidence for an unusual amino acid composition in the N-

terminus of known TTSS effectors and the lack of a common

sequence motif or domain signature prompted us to use a machine

learning approach based on a binary classifier to model the TTSS

secretion signal. Binary classification algorithms, such as the naive

Bayes algorithm [30], are trained by a positive and negative set of

instances, each instance represented by a vector of features. The

algorithms weight each feature (or combinations of them) during

the training process in order to achieve optimal separation

between the positive and negative sets. If the performance of the

classifier is high, these weights should represent the underlying

biological signal. Based on our analyses of the TTSS effector sets,

we represented each sequence by a collection of features

comprising frequencies of amino acids, amino acid properties

and short combinations of them (see material and methods). In an

alternative attempt, we used features derived from the predicted

secondary structure elements. Subsequently, the performance of

the different classification algorithms and strategies was assessed by

10-fold cross-validation (see material and methods). The ‘‘Area

Under the Curve’’ (AUC) value of the Receiver Operating Statistic

Curve (ROC) represents the performance of a classifier describing

the trade-off between sensitivity and selectivity by varying over the

classifier’s parameter space. The AUC summarizes this overall

performance: an ideal classifier yields an AUC of 1.0, whereas a

completely random prediction results in a value of 0.5. Values

above 0.5 indicate a prediction above random.

A systematic comparison of different classification algorithms on

the TTSS effector sets from animal pathogens and plant

symbionts, respectively, resulted in a performance far above

random for all classifiers tested, with an maximal AUC of 0.85 for

the animal pathogen set and an AUC of 0.86 for the plant

symbiont set, achieved by the complement naı̈ve Bayesian

algorithm. Both sets combined together achieved their best AUC

(0.86) with the Naı̈ve Bayesian classifier (Table 1). Training the

classifier solely on the predicted secondary structure alphabet of

the combined set performed well with an AUC value of 0.8.

However, adding this alphabet to the sequence derived features

did neither improve nor reduce the performance significantly: the

test revealed an AUC of 0.87 with and 0.86 without the secondary

structure features. A selection of the most discriminating features

(see material and methods) resulted in a reduced list of features.

These comprise not only the serine, proline and threonine

Figure 1. Enrichment of amino acids in effector N-termini. Amino acids that are significantly enriched or depleted in the first 25 residues of
effectors from the animal pathogen effector set and from the plant symbiont effector set (p-Value,0.05 in the one sided Mann-Whitney test in at
least one of the sets). Frequencies are given as percentage of amino acids within the 25 first residues. Error bars represent one standard deviation in
plus and one standard deviation in minus directions.
doi:10.1371/journal.ppat.1000376.g001

Prediction of Type III Effectors
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frequencies as already indicated by the amino acid composition

analysis, but also depletion of acidic and single alkaline residues

and patterns such as the enrichment of two consecutive alkaline

residues or the pattern ‘‘polar-hydrophobic-polar’’ (Table 2).

To define the part of the proteins which contributes most to the

signal, we performed two experiments: First, we varied the length

of the N-terminal peptide included in the analysis in order to

detect the signal’s length and secondly, we scanned different start

positions of 15 residue long windows. For each selection of length

and position, the complete feature creation, training and testing

procedure was repeated. The results for these two experiments are

shown in Figure 2. As high AUC values are reported over a wide

range of N-terminal peptide lengths, with only a slight maximum

peak at length 30 in the animal pathogen and length 50 in the

plant symbiont set, the actual length of the signal is difficult to

determine. However, the position scan revealed that the most

discriminating positions are indeed at the N-terminus followed by

a region with less predictive power. The best performance was

achieved with the residues 0–30 in the plant symbiont and 0–50 in

the animal pathogen set of effector proteins. Notably, also the

selection 0–15 in both sets gives a good discriminative power.

Some other positions (e.g., residues 90–105 and 120–135 in the

plant symbiont set) also show (an indeed weaker) predictive power

which could hint to an additional signal or at least regularity in

these regions. The majority of positions, however, have no

predictive power due to AUC values between 0.4–0.6, and using

the 15 C-terminal residues also resulted in an AUC value

comparable to a random prediction (Table S7).

Taken together, these findings show the existence of a common

signal encoded in the N-termini of TTSS effector proteins and are

in agreement with the N-terminal signal peptide theory [23,24].

Although it cannot be described by a pattern of conserved amino

acid residues, the signal comprises a characteristic amino acid

composition bias, and can thus be computationally captured using

a machine learning approach. Predicted secondary structure

elements show predictive power, but are substitutable by the

sequence derived features. Therefore, secondary structure features

are likely to be part of the signal, but are equally reflected in the

sequence composition.

The TTSS signal peptide is taxonomically universal
The successful applications of heterologous TTSS systems for in

vitro screens [11–14] indicate that the TTSS secretion signal is

universally understood among phylogenetically different microor-

ganisms. The enrichment and depletion of specific amino acids in

the N-termini of effectors supports this hypothesis, since the same

amino acids are either depleted or enriched in the animal

pathogen and plant symbiont sets (Figure 1) except for minor

Table 1. Performance of different classification algorithms for the prediction of TTSS effectors.

Algorithm Sensitivity sd Selectivity sd AUC sd

Animal pathogen set

Naı̈ve Bayes complement [57] 0.77 0.02 0.79 0.04 0.78 0.02

1 nearest neighbour [58] 0.54 0.09 0.81 0.04 0.68 0.07

Logistic regression [59] 0.57 0.07 0.75 0.07 0.72 0.08

Naı̈ve Bayes [30] 0.71 0.03 0.85 0.04 0.85 0.03

Naı̈ve Bayes multinomial [60] 0.76 0.03 0.81 0.04 0.85 0.02

Support vector machine [61] 0.57 0.05 0.86 0.04 0.71 0.04

Voted perceptron [62] 0.24 0.04 0.97 0.02 0.78 0.01

Plant symbiont set

Naı̈ve Bayes complement 0.79 0.03 0.77 0.03 0.78 0.03

1 nearest neighbour 0.60 0.04 0.80 0.04 0.69 0.04

Logistic regression 0.62 0.03 0.74 0.06 0.73 0.03

Naı̈ve Bayes 0.81 0.02 0.77 0.03 0.84 0.01

Naı̈ve Bayes multinomial 0.78 0.03 0.78 0.03 0.85 0.02

Support vector machine 0.66 0.04 0.83 0.04 0.74 0.03

Voted perceptron 0.28 0.10 0.96 0.03 0.79 0.04

The performance of different classification algorithms in a tenfold cross-validation on the animal pathogen and plant symbiont training set is shown. The cross-
validation has been repeated five times with different negative sets that were randomly chosen from the respective organisms. Sensitivity (defined as TP/[TP+FP]),
selectivity (defined as TN/[TN+FP]), and the AUC value are given with their standard-deviation (sd) computed from the five runs.
doi:10.1371/journal.ppat.1000376.t001

Table 2. Most discriminating features between positive and
negative instances.

Pattern Enriched/Depleted

Polar–hydrophobic–polar Enriched

Alkaline–alkaline Depleted

Threonine Enriched

Serine Enriched

Proline Enriched

Polar Enriched

Alkaline Depleted

Acidic Depleted

Hydrophobic–alkaline Depleted

Polar–polar Enriched

The most discriminating features as reported by the feature selection
procedure. Enrichment or depletion is indicated in respect to the effector class.
doi:10.1371/journal.ppat.1000376.t002

Prediction of Type III Effectors
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differences between them. To further analyze the evolutionary

conservation of the type III secretion signal, we conducted the

following experiment: We tested the performance to detect effector

proteins in genomes which were not part of the training set and

thus did not contribute in the feature selection procedure. For this,

we systematically excluded genomes from training and tested the

classifiers’ performance not by cross-validation, but on the

excluded sequences. High AUC-values between 0.83 and 0.89

were observed for all tested combinations (Figure 3, individual

results of all effectors in Table S8). Notably, it was possible to

predict effectors from the animal pathogen set when trained by the

plant symbiont set and vice versa, yielding an AUC of 0.86 and

0.83 respectively. Therefore, the captured signal is not organism

specific but must be taxonomically universal.

Evolutionary history of the TTSS signal peptide
Since the N-terminal TTSS signal is universally detectable, we

tested, whether its acquisition during evolution also follows a

regular pattern. We investigated this by comparing validated

effector proteins with their orthologous counterparts in organisms

without TTSS. If a regular acquisition of the signal peptide by N-

terminal fusion events occurs, this should be reflected in a regular,

N-terminal extension of effector proteins compared with their non-

effector orthologs. To test this, we performed two experiments: a

systematic multiple sequence alignment approach of effectors and

orthologs which are sure non-effector sequences and a pair wise

sequence alignment analysis, in which individual elongations and

truncations between effectors and non-effector orthologs were

assessed.

In total, we could build alignments for 10 orthologous groups

containing effector proteins and sure non-effector proteins. A

manual inspection of the multiple alignments did not reveal a clear

pattern which would support regular fusion events. This result is

further supported by the pair wise analysis: Elongations of the

effector sequences compared to non-effectors are less frequent

(30%) than truncations (57%), whereas a similar length of effector

and non-effector occurs in 13% of all pairs (Table S9, Figure S2).

All three events can be detected within the same orthologous

group. HopAK1, a Pseudomonas syringae effector, is the only example

which is more often elongated (three cases) than truncated (one

case). A similar picture can be seen when only the length of the N-

terminal regions before the first common functional domain of

effector and non-effector orthologs were compared: N-terminal

regions with equal lengths can be found in 4%, shorter lengths for

the effector in 39% and longer lengths for the effector in 57% of

cases (data not shown).

For elucidating the evolutionary acquisition of the TTSS signal

peptide we therefore suggest a model of convergent sequence

adaptation. Under the selective pressure of a type III secretion

system, the N-terminal sequences of all proteins which are exposed

to translocation (e.g., by their cellular localization and transcrip-

tional regulation) have adapted towards or against translocation

and thus became effectors or non-effectors. Such a convergent

evolutionary acquisition is in congruence with the absence of

sequence homology between most of the known type-III effectors.

In addition to this general mechanism, singular terminal re-assortment

Figure 2. Exploration of position and length of the signal. Exploration of optimal length of the signal (A) and begin position of a 15 amino
acid long window (B). The AUC value for each length and begin position is plotted for the animal pathogen set (red) and the plant symbiont set
(green).
doi:10.1371/journal.ppat.1000376.g002

Figure 3. Taxonomic universality of the signal. The y-axis denotes
the achieved AUC value of EffectiveT3 when trained without the
positive and negative samples from the taxonomic group denoted at
the bottom of the x-axis and tested against this set. The performance
on a randomly chosen set of positives and negatives having the same
taxonomic composition is given for comparison.
doi:10.1371/journal.ppat.1000376.g003

Prediction of Type III Effectors
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events as described by Starvinides and coworkers [31] might

accelerate the acquisition of TTSS signal peptides.

The signal is robust against point mutations and can
even tolerate frame shifts

Our in silico model of the N-terminal secretion signal allows the

simulation of its robustness against point mutations. In a first

experiment, we exchanged residues accumulatively by random.

The signal turned out to be robust when changing arbitrary

residues: after one point mutation 97% after five 75% and after

ten 54% of the effector proteins still have a detectable signal

(Figure S3). In a second experiment, we favoured to exchange

these features, which we found to have the strongest influence on

the signal. For example, we depleted the amount of serine and

threonine and exchanged them in favour of arbitrary residues. In

this procedure, the signal rapidly breaks down: after one mutation

93% of the effectors, but only 27% after five and 2% after ten

mutations carry a detectable signal (Figure S3). Therefore, the

signal is robust against single and multiple point mutations as long

as the significant enrichments and depletions of certain amino

acids are not altered.

Schneewind and coworkers [32] showed that frame shift

mutations in the mRNA altering the N-terminal peptide sequence

did not abolish transport of three TTSS effector proteins of Yersinia

species. This seems to contradict the N-terminal signal peptide

hypothesis but could be explained, if the frame shifts lead to

altered amino acids in the N-terminus, which nevertheless retained

the characteristic features of the TTSS signal. Nine example frame

shifts are given in this study which did not abolish secretion. One

Yersinia protein (YopQ) could not be predicted as effector by our

method and thus represents a false negative prediction. From the

remaining six frame shifts in two proteins (YopE and YopN), only

the 22 frame shift of the YopN N-terminus did not lead to a loss

of the TTSS signal. The same behaviour has been shown for the

Salmonella effector InvJ which tolerates +1 and 21 frame shifts

[33]. In the case of the +1 frame shift the signal is still revealed by

EffectiveT3, whereas no signal can be detected for the 21 frame

shift. In order to assess the sensitivity of the TTSS signal towards

frame shift mutations in a more systematic manner, we artificially

introduced all possible frame shift mutations into the 74 known

and positively predicted effectors. As control, we applied the same

procedure to a set of 199 randomly selected and negatively

predicted control sequences. In 15 cases (10%) of the effector

mutants, the signal was preserved (Table S10), in contrast to 31%

of the control sequences (data not shown). This unexpectedly high

rate of preservation in non-effector mutants results from specific

amino acid enrichments and depletions in the mutated sequences,

which are very similar to the characteristics of TTSS effectors

(data not shown). Surprisingly and in agreement with the mRNA

signal hypothesis [23,24], three effector sequences are resistant to

both kinds of shifts, the +1 and +2 mutations (Table S10). Taken

together, our data suggests that while some TTSS effectors

surprisingly tolerate frame shifts without losing the amino acid

secretion signal, most of the known effectors are sensitive towards

frame shift mutations.

A substantial fraction of proteomes is predicted as
secreted

To predict type III secreted proteins for whole genomes, we

applied our software EffectiveT3 on 739 bacterial and archaeal

proteomes. We chose all completely sequenced prokaryotes for

which the presence or absence of a type III secretion system could

be determined using the KEGG database [34] and for which the

cell wall type (Gram-negative vs. Gram-positive) has been

unambiguously described (Table S11). In organisms encoding a

TTSS, a substantial fraction of proteins is predicted as secreted,

varying between 2% and 7% percent with an average of 4% of all

proteins. In organisms without a TTSS, the fraction of positive

predictions varies widely between different taxonomic groups.

Gammaproteobacteria without a TTSS mostly contain a less or similar

percentage of positives as Gammaproteobacteria with a TTSS.

Interestingly also Deinococci (6%) and the Gram-positive Actinobac-

teria (up to 10%) exhibit high percentages of positives despite the

differences in cell wall composition and the absence of a TTSS.

Contrarily, Archaea and Firmicutes exhibit a very low amount of

positives with 1%, respectively 2% on average. Between more

closely related bacteria, similar percentages of predicted TTSS

effectors were found in different strains of e.g. S. enterica (on

average 3%) and E. coli (3%). The amoebae symbiont Proto-

chlamydia amoebophila exhibits a slightly higher percentage (6.1%)

compared to its chlamydial relatives, which are pathogens of

animals and humans (on average 5%).

The surprisingly high number of (false) positives in genomes

without TTSS exceeds the expected false positive rate (Table 1)

and thus raised questions about their nature. Manual inspection of

positive predictions in Gram-positive bacteria revealed many cases

of wrongly annotated gene starts (having N-terminal elongations

and thus contain fractions of the intergenic space) or questionable

genes without any homologs in other genomes (ORFans).

Although genome annotation errors have many different reasons,

they are more likely in G+C rich genomes due to the long average

lengths of open reading frames [35]. When comparing the number

of positives with the genomic G+C content, a partially linear

relationship can be seen for Gram-positive bacteria (Figure 4;

R2,0.4). In agreement with the mutation experiments (see above),

which showed similar characteristics of the N-termini from

effectors and many nonsense peptides after frame shift mutations,

unexpectedly high fractions of positives in Gram-positives are

likely to be artefacts from misannotations. To distinguish between

wrongly annotated gene starts and ORFans, we assessed the

specificity of positive predictions for N-terminal sequences by

calculating a genome wide Z-Score (see material and methods).

Proteomes with a high Z-Score (.1) are enriched in effector-like

sequences in the N-termini. Low Z-Scores indicate the presence of

ORFans, which show similar characteristics to type III effectors

over their whole length (Table S11).

In Gram-negative bacteria, the correlation between the number

of positives and the genomic G+C content is much weaker

(R2,0.06) than in Gram-positives (Figures 4 and 5). Additive to

the expected false positive rate, most proteomes with TTSS

encode more putative effectors than their relatives without TTSS.

The missing clear difference between Gram-negatives with and

without TTSS may be explained by the noise caused by

misannotations which seem to be present in all selected genomes

(data not shown). Additionally, putative Type III effectors may not

be a unique feature of species encoding a TTSS but could be

ubiquitous in a broad range of phylogenetically diverse microbes.

This finding would be surprising, but could be explained by the

absence of evolutionary pressure on N-termini towards not to be

secreted in microorganisms without a TTSS. Additionally, effector

proteins might be subject of horizontal gene transfers into genomes

without TTSS where they neo-functionalize but keep their N-

termini.

Conclusion
The TTSS is a key virulence factor in many important human

pathogens, such as Salmonella sp., Yersinia sp., Chlamydiae and E. coli.
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Figure 4. Overview of EffectiveT3 predictions in complete genomes from Gram-positive bacteria and archaea. The figure shows the
percentage of positive predictions in proteomes from Gram-positive bacteria and archaea, respectively, depending on the G+C content of the
genomes. Linear fits are shown by trend lines in the colours of the respective data sets; attached are the coefficients of determination R2 of each fit.
The individual results for all proteomes can be found in Table S11.
doi:10.1371/journal.ppat.1000376.g004

Figure 5. Overview of EffectiveT3 predictions in complete genomes from Gram-negative bacteria with and without TTSS. The figure
shows the percentage of positive predictions in proteomes from Gram-negative bacteria with and without TTSS, depending on the G+C content of
the genomes. The plot has been scaled as Figure 4 to facilitate comparison. Linear fits are shown by trend lines in the colours of the respective data
sets; attached are the coefficients of determination R2 of each fit. The individual results for all proteomes can be found in Table S11.
doi:10.1371/journal.ppat.1000376.g005
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However, the prediction of TTSS effector proteins was possible

so far only on a small taxonomic scale, impeding the study of

this important group of virulence factors in newly sequenced

genomes of organisms without well-studied close relatives. In this

study we describe the identification of taxonomically universal

features of TTSS effector proteins, which formed the basis of the

development of the program EffectiveT3, the first universally

applicable in silico prediction method for TTSS transported

proteins.

The core of our in silico prediction method consists of a machine

learning approach, which behaves like a black-box in the sense

that it does not imitate the unknown biological mechanism itself

but models regularities in the N-terminal peptides of TTSS

effectors. Since the training set comprised no other common

feature beside TTSS mediated transport, EffectiveT3 must

capture the sequence related parts of the biological signal. In

contrast, it has not been possible to learn on equally sized,

randomly selected sequences using the same machine learning

protocol. Thus the predictive performance cannot result from a

selection bias introduced by small training sets.

EffectiveT3 performs far above random in the cross-validation

as well as on data derived from organisms which were not present

in the training set. A certain degree of generality of the TTSS

substrate recognition process was already suggested by heterolo-

gous secretion assays [12]. Our computational model demon-

strates that the signal is indeed highly conserved over a broad

taxonomic range, facilitating the prediction of plant symbiont

effectors using information derived from animal pathogens (and

vice versa). This taxonomic universality of the TTSS secretion

signal implies a common mechanism of TTSS substrate

recognition across phylogenetically diverse bacterial groups.

The great value of the EffectiveT3 method is its independency

from sequence similarity to known effectors and the independence

of organism specific a priori knowledge. It is therefore suited to the

application on newly sequenced genomes from bacteria with a

Gram-negative type cell wall and for the detection of novel effector

families, which could lead to the discovery of so far unrecognized

virulence factors and thus improve our understanding of the ways

of host cell manipulation by bacterial pathogens. Since the

procedure reveals a substantial fraction of false positive predictions

and is intrinsically sensitive to misannotations such as wrongly

annotated gene starts and ORFans, the current method should be

complemented by specific pre- and postprecessing steps:

1. Before applying EffectiveT3, the gene annotations of the

analyzed proteins should be verified to remove ORFans and

ensure correct translational start sites.

2. An additional protocol to filter and rank the positive

predictions by reliability might include the exclusion of already

annotated genes, house-keeping genes and proteins with a

signal for other transport routes as the SecA pathway.

3. Particularly in genomes which encode TTSS components on

plasmids or genomic islands, the genomic proximity of TTSS

components might be enriched in effectors and should be

analyzed additionally.

The most promising improvement of our computational model

would be the consideration of the transcriptional control of

effector proteins [36]. It can be expected that genome-wide

transcriptional data will become available in the near future for a

sufficient number of genomes having known type III effectors.

The EffectiveT3 predictions can be accessed online at http://

www.chlamydiaedb.org. The software is freely available from the

authors upon request.

Materials and Methods

Data sets
The known type-III effector proteins have been collected

manually from the literature. Each protein has been included if it

has at least one direct evidence for TTSS mediated transport

resulting from a single experiment. Not included are proteins,

which are part of the TTSS needle complex although some of

them are transported by the TTSS and data from large scale

screens. By this procedure, we collected a animal pathogen set of

48 proteins comprising the taxa Chlamydia (17 sequences),

Salmonella (9 sequences), Yersinia (15 sequences), Escherichia (7

sequences). A representation of this set with only one member of

each orthologous group has been created separately. The

sequences were downloaded from SWISSPROT/UNIPROT

[37] (version as downloaded on 07/30/2008) or, if not contained

there, downloaded from RefSeq [38] (version as downloaded on

07/30/2008). We retrieved the plant symbiont set consisting of 52

known Pseudomonas effector proteins from the Pseudomonas syringae

Genome Resources database [39] (Hop virulence protein/gene

database, downloaded on 07/30/2008). A complete list of used

effector sequences is given in the Table S1. All effectors have been

examined for correctness of translational start sites by manual

inspection of multiple sequence alignments with their homologs.

Negative training sets of non-effectors have been created by

randomly choosing proteins from the organisms represented in the

animal pathogen and plant symbiont sets devoid of the known

effectors. Each negative set is twice as large as its corresponding

positive set. This procedure has been repeated five times in order

to enable investigations on the influence of the negative set on the

prediction.

Protein sequences from completely sequenced genomes of

Yersinia, Escherichia, Salmonella, Pseudomonas, Chlamydia species as

well as of gram(+) Bacteria, Archaea and Gammaproteobacteria were

downloaded from RefSeq (version as downloaded on 07/30/2008)

[40]. The data sets were classified into organism with and without

TTSS by manual search in the literature for the case of gram(2)

bacteria or generally classified as ‘‘without TTSS’’ in the case of

gram(+) bacteria and archaea. A complete list of organisms used is

given in the Table S11. A list of proteins building the TTSS system

has been obtained by full-text searches against the SIMAP [41]

databases using the gene-names of the TTSS compounds as given

by KEGG [34].

Grouping of training sets by homology
An all-against-all comparison of the full length-sequences using

the Smith-Waterman algorithm [42] as implemented in the

Jaligner package was performed [43]. For each pair, a similarity

score Sratio by dividing the alignment score by the selfscore is

computed and sequences are iteratively grouped if they show a

Sratio value greater or equal 0.15. This measure is similar to the

measure used by Lerat et al. in a study of genome repertoires in

bacteria [44] and has been adjusted to maximal sensitivity in the

detection of putative orthologs.

Secondary structure prediction
To predict secondary structure features we used the PSIpred-

software [45]. The prediction has been applied to the whole

sequences. PSIpred can be applied using alignments to conserved

sequences as extrinsic information using PSI-BLAST [46]. For this

purpose, we performed PSI-BLAST searches against SWIS-

SPROT/UNIPROT. For the N-terminal ends of the effectors,

we did not receive a sufficient amount of alignments to improve

the secondary structure prediction at these positions. As a
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consequence, we only used the ab initio prediction without

alignment information. We then counted the fraction for each

predicted class in the N-termini as input feature for the prediction

pipeline.

Multiple alignments of N-termini
Multiple alignments have been created using two different

methods: ClustalW (Version 2.0.5) [47], and Muscle (Version 3.7)

[48] with standard parameters. We randomly chose ten sequences

from the sets of known effectors to create multiple alignments and

aligned their 10, 20 and 30 first residues. This procedure has been

repeated 20 times. We manually checked the alignments for

conserved regions similar to a multiple alignment containing a

certain domain signature. Example alignments are given in the

Figure S1.

Statistical enrichment analyses
Enrichments and depletions of amino acid properties (frequen-

cy, frequency of its representations in a reduced alphabet,

frequency of secondary structure properties) have been performed

using a one sided Mann Whitney test with p, = 0.5. We used the

implementation in the Prompt software (Protein Mapping and

Comparison Tool [49], which employs the statistic software R

[50].

Co-evolution of known type-III effectors and TTSS-related
sequences

Predicted functional interactions between orthologous groups

containing effector sequences and selected TTSS sequences

(representing proteins of all orthologous groups taken from Table

S1) were obtained from the STRING database [28] (Version 7.1

as downloaded on 10/03/2007). Links from genomic context

methods (conserved neighbourhood, gene fusion, phylogenetic

profiles) were used, the others were discarded. Links with a

confidence score less than 0.5 have been discarded and the

connected proteins were grouped.

For the in-depth analysis of conserved genomic proximity,

complete genome and proteome data for the known effectors has

been downloaded from the KEGG database [34] (release 2009/

01/19). Components of the TTSS have been identified by their

association to the KEGG Orthologous Groups (KO) belonging to

the TTSS reference pathway KO03070 (K03219..K03230).

Genomic neighbours of a certain distance to known effectors

have been extracted from the KEGG data and grouped by their

associated KO.

Analysis strategy for signal acquisition
To detect regular acquisition by fusion of a signal peptide, we

employed an automated alignment pipeline. Orthologous groups

have been obtained from the eggNOG database [51] for each

effector protein. Proteins from organisms other than Gammaproteo-

bacteria have been filtered out. The remaining proteins where

labelled as ‘‘effector’’ if in training set, ‘‘putative effector’’ if from

an organism with TTSS or ‘‘non-effector’’ if from an organism

without TTSS.

We cut every sequence at the start of its first functional domain

as detected by Pfam [52] (as contained in InterPro Release 17.0

[53]) and created multiple alignments of the remaining N-terminal

fragments. We then checked the alignments for regular N-terminal

extensions of effector or putative effector proteins compared with

non-effectors by manual inspection in the case of the multiple

alignments. We also pair wise aligned effector/non-effector

sequences from the same orthologous group and counted

elongations (alignment start of the effector greater than of the

non-effector) and truncations within one group. If the difference

between the alignment starts was smaller than 15 residues, we

counted the alignment as having the same length. The same

procedure has been repeated without aligning the sequences by

just comparing the lengths before the start of the functional

domain.

Multiple alignments were built using ClustalW (Version 2.0.5)

[47], Muscle (Version 3.7) [48], with standard parameters, pair

wise alignments were calculated with the Smith Waterman

algorithm as implemented in the Jaligner package using the

BLOSUM62 substitution matrix.

Feature creation
We deduced the frequencies of amino acids as well as

frequencies from two reduced alphabets. The reduced alphabets

are created by mapping amino acids to amino acid properties and

to a hydrophobic/hydrophilic alphabet. Each amino acid is only

added to one of the property classes, although some would fit to

several classes. In this case, the amino acid has been added to the

more specific (smaller) class. The feature mapping is listed in

Table 3. We also computed the frequencies of di- and tri-peptides

from each of the alphabets. From these features, we discarded all

these which did not occur at least two times in either the positive

or the negative data set, since these features would lead to the

adaptation of the classifiers to individual sequences (over-fitting).

This procedure typically reveals ,70 features, depending on the

negative set employed. The frequencies of these features range

typically between 2 and 5; we could therefore use them directly as

input for the machine learning algorithms without the need of

further discretisation. A list of all features is given in Table S12.

Selection of the most discriminating features
To detect the most influential features, we applied two feature

selection strategies, a greedy hill-climbing search (the BestFirst

algorithm) (parameters: look-up-cache size = 1, 5 iterations) in

combination with Correlated Feature Selection [54] (parameters:

locally predictive = true, missing values = false) as provided by

WEKA (version 3.5.6) [55].

Learning and testing procedure
We used the implementations of several classification algorithms

from the WEKA machine learning package. Each classifier has

Table 3. Mapping of amino acids to property alphabets.

Property Amino Acids

Hydrophobic; 1st alphabet A, G, I, L, M, V

Hydrophilic; 1st alphabet P, H, U

Aaromatic F,W,Y

Polar N, Q, S, T

Acidic D, E

Alkaline K, L, R

Ionisable C, Y

Hydrophilic; 2nd alphabet S, F, T, N, K, Y, E, Q, C, W, P, H, D, R, U

Hydrophobic; 2nd alphabet V, M, L, A, I, G

The mapping of amino acids on the two reduced alphabets (amino acid
property alphabet and hydrophobic/hydrophilic alphabet) maps each amino
acid to exactly one letter of the respective alphabet.
doi:10.1371/journal.ppat.1000376.t003
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been tested five times using different negative sets (see used data

sets) by a 10-fold cross-validation procedure as provided by

WEKA. For cross-validation, the positive and negative sequence

sets have been partitioned into 10 subsamples. In each of the 10

passes, a single subsample was retained as validation data for

testing the model which has been trained using the remaining 9

subsamples.

Initially, we aligned each N-terminus of the training set with

each other using the Smith-Waterman algorithm with a

BLOSUM62 substitution matrix. If two sequences showed Sratio

(see above).0.1 over the whole sequence or more than 0.3 in the

area of the signal, one of them was discarded from the training set.

This has been done to avoid learning protein-families instead of

the signal. Sensitivity has been computed as TP/(TP+FN),

Selectivity as TN/(TN+FP), with TP = amount true positive

predictions, FN = amount false negative predictions, TN = amount

true negative predictions, FP = amount false positive predictions.

Receiver Operating Statistics to determine the AUC value had

been created using the WEKA-toolbox. Precision and Recall are

computed separately for both classes, where the AUC describes

the overall performance of the classifier. The classification

algorithms employed are listed in Table 3.

Exploration of optimal position and length
To determine the optimal position and length of the signal we

applied a sliding window approach varying the start and length of

the sequence used for the learning and testing procedure. At each

position, the whole procedure of feature selection, removal of

similar sequences, training and cross-validation has been repeated.

For the position exploration, we used a window of the length 15

which we moved in steps of five residues. The length exploration

started with a window of the first ten residues which was elongated

by five residues in each round. If a sequence was too short for the

range of coordinates in a certain step of this procedure, it has been

discarded from the data set. Since we found that the choice of the

negative set does not significantly influence the prediction, we used

only one negative set in this analysis.

Signal robustness
The robustness of the signal has been assessed by measuring the

fractions of positively predicted instances from the training set

after introducing a certain amount of amino acid exchanges in the

first 25 residues. We only used these sequences, which are

predicted as true positives by the final classification algorithm (full

training set, Naı̈ve Bayes algorithm with selective settings

[probability for class ‘‘secreted’’ .0.95 using the Naı̈ve Bayesian

Classifier]).

We mutated the N-terminal sequences (first 25 residues) by

introducing point mutations at random positions into the

underlying DNA sequences (T,A,C,G exchanged with equal

probability of 1/4) which did not result in stop codons but altered

the amino acid sequence. After translating the mutated sequence,

we measured the fraction of positively predicted effectors after one,

five and ten consecutive mutations. In a second strategy we

substituted randomly selected amino acids according to their

importance for the TTSS signal peptide. Residues which did not

belong to the group of depleted amino acids (leucine, glutamic

acid, aspartic acid and alanine) were replaced by a randomly

selected member of this group of depleted amino acids. Residues

which did belong to the group of enriched amino acids (threonine,

serine and proline) were replaced by randomly selected amino

acids which did not belong to this group of enriched amino acids

(the substitution probabilities for the non-enriched amino acids

have been derived from their frequency within the complete

proteins without the N-terminal ends).

The effect of frame shift mutations on the signal
We have used a data set given by Ramamurthi et al. [56] of

three Yersinia effector proteins with three frame shift mutants for

each. We retrained our classifier using the first 15 amino acids

instead of the first 25, since only the first 15 residues of the mutants

are given in the paper.

Simulation of frame shifts has been done by shifting the DNA by

one (+1) and two (+2) positions. In order to get a sufficient amount

of sequences with sufficient length, appearing stop codons have

been replaced by methionine. We used only these effectors, which

show a positive prediction with restrictive parameters (probability

for class ‘‘secreted’’ .0.95 as reported by the Naı̈ve Bayesian

Classifier). As control, we used randomly selected sequences from

the same organisms which are covered by the positive set and used

only these sequences, which were negatively predicted (probability

not secreted .0.95 as reported by the Naı̈ve Bayesian Classifier).

Signals conserved after frame shift were detected with the same

settings as in the selection procedure.

Taxonomic universality of the signal
Notably, a conclusion about the signal’s generality cannot be

deduced by the fact that the classifier performs well in the cross-

validation procedure, since the algorithm might detect indepen-

dent features for each taxon in this procedure. In order to test the

universality of the signal, we excluded each taxon (Yersinia,

Salmonella, Escherichia, Chlamydia, Pseudomonas) from the training

and feature-selection procedure and tested the classifiers perfor-

mance with this taxon as separate test set. For both sets, negative

sets twice as large are randomly created from these organisms,

which are also in the respective positive set. The values for the

AUC have been computed using the WEKA-toolbox.

Final training of the classifier for the prediction of
secretomes

The final classifier has been obtained using both sets of known

effectors and a negative set which was twice as large as the positive

set. We used the Naı̈ve Bayes algorithm as it showed the best

overall performance in the cross-validation procedure. Again, we

excluded similar N-termini and used the first 25 amino acids as

primary input. The sequence data of the proteomes has not been

pre-filtered or further processed for the prediction of effectors in

complete genomes. To investigate the influence of the amino acid

frequencies within each proteome, the prediction of effectors has

been also performed in pseudo-proteomes, for which all protein

sequences have been denaturised by random shuffling. The

shuffling process has altered only the order of amino acids within

the proteins but not their overall (genome-wide) frequency.

Implementation of the effectiveT3 software
The EffectiveT3 software is based on the WEKA toolbox and

implemented purely in the JavaTM programming language. The

probability threshold for class ‘‘secreted’’ using the Naı̈ve Bayesian

Classifier can be selected by the user in order to adjust the

selectivity and sensitivity of the predictions. We offer a web-

interface for own predictions at http://www.chlamydiaedb.org.

Application of effectiveT3 to complete archaeal and
bacterial proteomes

Complete genome and proteome data of prokaryotic genomes

has been downloaded from the KEGG database [34] (release
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2009/01/19). Components of the TTSS have been identified by

their association to the KEGG Orthologous Groups (KO)

belonging to the TTSS reference pathway KO03070

(K03219..K03230). Genomes in which at least 9 of these 12 KO

are present have been considered as genomes with TTSS.

Genomes in which less than 6 of these 12 KO are present have

been considered as genomes without TTSS. All genomes in which

between 6 and 8 of these 12 KO are present have been excluded

from this analysis to avoid uncertainty. Additionally, all bacterial

genomes have been excluded from this analysis for which no

information on cell wall type (Gram-positive vs. Gram-negative)

was available at the NCBI Entrez Genome Project Organism Info

database [38]. For the remaining 739 proteomes, EffectiveT3

predictions have been calculated using a selective parameter

setting (probability for class ‘‘secreted’’ .0.99 using the Naı̈ve

Bayesian Classifier).

To estimate the enrichment of TTSS effector-like sequences in

the N-termini of the proteomes, a genome-wide Z-Score is

calculated for every proteome: Z = (N-A)/SD, whereas N denotes

the number of positives in the N-termini of the real proteome. A

and SD are derived from 50 repetitions predicting positives in

randomly chosen segments of 25 aa length (one segment per

protein), whereas A corresponds to the average number of

positives in the 50 runs and SD to their standard deviation.

Supporting Information

Figure S1 Example alignment of N-termini. The first 30

residues of non-homologous effector proteins have been aligned

using ClustalX with default parameters.

Found at: doi:10.1371/journal.ppat.1000376.s001 (4.31 MB TIF)

Figure S2 Example alignments between effector and non-

effector orthologs. To investigate the evolutionary acquisition of

the signal peptide, a pair wise sequence alignment study counting

individual elongations and truncations between effectors and non-

effector orthologs has been performed. This figure shows examples

of these alignments. A) demonstrates elongation and B) truncation

of effector proteins (upper row) aligned with sure non-effector

proteins (lower row).

Found at: doi:10.1371/journal.ppat.1000376.s002 (1.31 MB TIF)

Figure S3 Robustness of the TTSS secretion signal against point

mutations. The diagram depicts the percentage of positively

predicted TTSS signals after accumulation of point mutations.

The non-targeted mutation strategy exchanged residues accumu-

latively by random. The targeted mutation strategy favoured to

exchange these features, which we found to have the strongest

influence on the signal. For both experiments all positively

predicted proteins from the animal pathogen and plant symbiont

training sets have been used.

Found at: doi:10.1371/journal.ppat.1000376.s003 (0.09 MB TIF)

Table S1 Effector and TTSS sequences used in this study.

Effector proteins are listed first, then the sequences of the TTSS

system and few examples of TTSS related chaperones. The

different sets are denoted as follows: A = animal pathogen set,

P = plant symbiont set, T = type III secretion system, C = TTSS

related chaperone. For each sequence, the first 25 N-terminal

amino-acids are given.

Found at: doi:10.1371/journal.ppat.1000376.s004 (0.20 MB

DOC)

Table S2 Orthologous groups of effector proteins. This table

comprises effector proteins with individual experimental evidence

for type III mediated transport which can be clustered into

orthologous groups (clustered by homology and manual inspec-

tion). A sequence is added to a cluster, if it has at least

Sratio. = 0.15 to one other cluster member. Sratio is computed as

alignment-score/selfscore.

Found at: doi:10.1371/journal.ppat.1000376.s005 (0.08 MB

DOC)

Table S3 Groups of co-evolving effector and TTSS proteins and

examples of co-localized effector proteins and chaperones based

on the STRING database. For each group of co-evolving effector

and TTSS proteins, gene names of the members are given. The

right column indicates, whether the orthologous group comprises

effectors, TTSS proteins or TTSS related chaperones. A gene is

added to a cluster, if the score of a genomic context method to

another member derived from STRING exceeds 0.5. In the last

section, examples of co-localized effectors and chaperones are

listed.

Found at: doi:10.1371/journal.ppat.1000376.s006 (0.05 MB

DOC)

Table S4 Number of genomic neighbours of known effectors,

number of non-neighbours and their association to the TTSS. For

all known effectors from Table S1, genomic neighbours have been

determined for a certain distance upstream and downstream on

the chromosome or plasmid. These neighbours and the remaining,

non-neighboured proteins of the genomes have been distinguished

by their association to the TTSS. Components of the TTSS are

enriched in the neighbourhood of effectors. The statistical

significance of this enrichment has been determined using the t-

Test. The most significant enrichment of TTSS components in the

genomic neighbourhood of effectors can be observed within the

range of 30 neighbours up- and downstream (marked in red).

Found at: doi:10.1371/journal.ppat.1000376.s007 (0.04 MB

DOC)

Table S5 Enrichment of KEGG orthologous groups within the

genomic neighbourhood of known effectors. This table lists

KEGG orthologous groups (KO), which are significantly enriched

(Bonferroni-corrected t-Test p-Value,0.05) within 30 neighbours

up- and downstream of known effectors.

Found at: doi:10.1371/journal.ppat.1000376.s008 (0.03 MB

DOC)

Table S6 Known effectors and their genomic neighbourhood to

TTSS components. The genomic neighbourhood (30 genes up-

and downstream) to TTSS components has been evaluated for all

known effectors, except on Yersinia pestis KIM due to the absence

of the plasmid pCD1 from the KEGG database. The number of

effectors which are neighboured to at least one TTSS component

is given in the middle column, the remaining effectors are

summarized in the right column.

Found at: doi:10.1371/journal.ppat.1000376.s009 (0.04 MB

DOC)

Table S7 Performance of the classifiers using the C-terminal

end. To prove the concept of the N-terminal signal peptide, C-

termini should have no predictive power. The performance for

several classifiers has been evaluated using exactly the same feature

selection, training and test procedure as used for the N-termini. 5

runs with different negative sets have been performed.

Found at: doi:10.1371/journal.ppat.1000376.s010 (0.03 MB

DOC)

Table S8 Prediction results with EffectiveT3 trained without a

certain taxonomic sub-set. EffectiveT3 has been trained without

the positive and negative samples from the excluded taxonomic

groups listed in this table. Testing EffectiveT3 on these effectors

(E) and randomly chosen negative samples (R) resulted in true
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positive (+E), false negative (2E), false positive (+R) and true

negative (2R) predictions.

Found at: doi:10.1371/journal.ppat.1000376.s011 (0.35 MB

DOC)

Table S9 Pair wise comparison of orthologous effector and non-

effector proteins. Truncations, elongations and conservations of

the N-terminal length until the first functional domain are listed

according to the effector protein (first column) compared to

orthologs from non-TTSS bearing organisms.

Found at: doi:10.1371/journal.ppat.1000376.s012 (0.05 MB

DOC)

Table S10 Effector sequences which tolerate frame shift

mutations. The mutations were introduced by either shifting the

DNA sequences by one or two bases to the left, stop codons where

replaced by Methionine.

Found at: doi:10.1371/journal.ppat.1000376.s013 (0.04 MB

DOC)

Table S11 EffectiveT3 predictions in complete proteomes.

EffectiveT3 predictions for complete proteomes have been

grouped by Archaea, Gram-positive and Gram-negative bacteria.

Within each group, proteomes are sorted by their taxonomic

lineage and species names. For each proteome, the absence (2) or

presence (+) of a TTSS, the genomic G+C content, the number of

annotated proteins, the percentage of EffectiveT3 positive

predictions and the genome-wide Z-Score are given. The presence

of the TTSS in the proteomes as determined by KEGG and the

hosts are coded by the following colors: black = without TTSS or

unknown host; red = with TTSS/animal pathogenic; green = with

TTSS/plant symbiotic.

Found at: doi:10.1371/journal.ppat.1000376.s014 (0.98 MB

DOC)

Table S12 Input features of the machine learning algorithms

after initial feature selection. This table comprises these features,

which are selected from all possible feature combinations using

three different alphabets (amino acid alphabet, amino acid

property alphabet, hydrophobic/hydrophilic alphabet) with a

maximal pattern length of three. In order to avoid over-fitting on

the data, only features are selected which are not specific to either

the positive or the negative set but exists in both.

Found at: doi:10.1371/journal.ppat.1000376.s015 (0.07 MB

DOC)
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