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Sequence databases are rapidly growing, thereby increasing
the coverage of protein sequence space, but this coverage
is uneven because most sequencing efforts have concen-
trated on a small number of organisms. The resulting
granularity of sequence space creates many problems for
profile-based sequence comparison programs. In this paper,
we suggest several strategies that address these problems,
and at the same time speed up the searches for homologous
proteins and improve the ability of profile methods to
recognize distant homologies. One of our strategies com-
bines database clustering, which removes highly redundant
sequence, and a two-step PSI-BLAST (PDB-BLAST), which
separates sequence spaces of profile composition and space
of homology searching. The combination of these strategies
improves distant homology recognitions by more than
100%, while using only 10% of the CPU time of the
standard PSI-BLAST search. Another method, inter-
mediate profile searches, allows for the exploration of
additional search directions that are normally dominated
by large protein sub-families within very diverse families.
All methods are evaluated with a large fold-recognition
benchmark.
Keywords: fold recognition/intermediate profile search/
sequence clustering

Introduction

The success of recent genome sequencing projects has resulted
in a dramatic increase in the number of known protein
sequences. With this increasing density of sequence space, it
has become easier to develop generalized descriptions of
protein families, using methods such as profiles, position
specific scoring matrices (PSSMs) or hidden Markov models
(HMMs). Homology detection and structure prediction
methods based on exploring information from multiple align-
ments of homologous families have gained a lot from the
databases’ growth.

On the other hand, the growth of the databases has slowed
down the searches because of the sheer number of sequences
that have to be considered; however a more serious problem
is caused by the uneven growth of the databases. In the widely
used non-redundant protein database (NR) maintained at the
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National Center for Biotechnology Information, a typical
protein family may contain numerous identical or almost
identical entries from some species but only a few homologs
from other sources. The almost identical sequences are
important in many research problems, such as studies of single
nucleotide polymorphisms (SNPs) or splice variants, but such
biased data creates two serious problems when using PSI-
BLAST (Altschul et al., 1997), the most popular profile-based
homology recognition tool and other profile based tools.

PSI-BLAST is performed in a iterative way. First, an initial
sequence–sequence comparison is performed and the hits are
ranked according to their alignment scores. Secondly, a profile
in the form of a PSSM is calculated from a certain number of
sequences from the top of the hit list. Thirdly, with this PSSM,
the next search is a profile–sequence comparison, and in most
cases some new sequences can be found. Finally, a search
loop from steps 2 to 3 is repeated until no more new hits are
found or the maximum number of iterations is reached.

The first problem created by the biased data affects large
sequence families. Because the number of sequences to be
included in the profile calculation (step 2) is limited, proteins
that are highly homologous to the query can saturate the
profile. The profile does not provide much more information
than the query sequence itself, since more diverse homologs
are ranked too low in the hit list to come above the threshold
number of sequences for the profile calculation. One solution
is to increase the number of explicitly considered alignments,
but this dramatically slows the algorithm and may be still
insufficient for families consisting of tens of thousands of
homologs (Park et al., 2000). Another aspect of this problem
is that if we are interested only in certain homologs with
specific features, such as coming from a certain genome or
having a known 3D structure, these may not be included or
may be difficult to find in the PSI-BLAST output because of
output size restrictions.

One of our strategies to address this problem is a two-step
PSI-BLAST search approach, where a profile is first built from
a search against a large database like the NR, and then this
profile is used to search a small database like the PDB. This
method called PDB-BLAST was introduced as a reference
method for our profile–profile alignment method FFAS
(Rychlewski et al., 2000) and was shown to perform respectably
well in the CASP4 fold-prediction competition, where it was
classified in the middle of all competing algorithms and
groups (http://predictioncenter.llnl.gov/). For fold-recognition
benchmarking purposes only, the profile can be built from a
database of PDB sequences and all their homologs in the NR
instead of the entire NR. We refer to the expanded database
as PDBX. A similar database, PDB-ISL, has been used as an
intermediate sequence library to speed up PSI-BLAST searches
(Teichmann et al., 2000). But our aim here was to narrow the
searching space, because only the sequences in PDBX will
potentially contribute to the profile being used.

Another approach to this problem is to cluster similar
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Fig. 1. PSI-BLAST search versus IPS. A large protein family consisting of
three distantly related sub-families: Dashed (D), short (S) and long (L), and
S is between D and L (left panel). When a sequence from L is used as a
query, it is difficult to find D with the profile dominated by L and its closer
neighbor S (upper panel). However, if sequences are grouped into sub-
families S and L, the most remote sub-family D is likely to be found by a
profile made from S.

sequences in the database and to only search against the
representative sequence from each cluster. The size of the
representative set is decided by a threshold of sequence
similarity between the proteins in one cluster. After clustering,
the representative set will not have sequences that are more
similar than the threshold. When we cluster the NR database
at 80%, we refer to the representative set as NR80 and will
use this convention to name other clustered databases. In a
naive approach, such clustering would require all-against-all
sequence comparisons, which would be essentially impossible
for large data sets like the NR, so techniques have been
developed to speed up clustering and make it possible. For
example, the nrdb90 program (Holm and Sander, 1998),
implemented with short peptide filters and a lookup table,
can cluster the NR to the 90% threshold level. Series of
representative sequence databases (RSDB) (Park et al., 2000)
were generated from the NR at different identities from 20 to
99% by a comprehensive pairwise comparison database made
by a large number of BLAST searches. We have developed
algorithms that were implemented in the CD-HI (Li et al.,
2001) and CD-HIT (Li et al., 2002) programs, which are able
to cluster NR at 65% identity in hours and at 50% identity in
5 days on a midsize Linux workstation. In the RSDB study, it
was found that clustering saved a remarkable amount of search
time and that even the database clustered at 50% identity
(RSDB50) did not compromise homology detection in compar-
ison to the full NR.
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The second problem with the profile approach is encountered
if a large protein family is composed of several sub-families
of uneven sizes (Figure 1). The profile is thus likely to be
dominated by proteins from the largest sub-family and its close
relatives, and the profile becomes trapped by the dominating
sequences in successive iterations, making it difficult to find
more distant sub-families. For example, if the search was
initiated by a query from a small sub-family, the PSI-BLAST
iterations converge on a group that often excludes the initial
sequence. This phenomenon is referred to as the profile trap.

We have tried several methods to address this second
problem. The profile can be rebalanced using a two-dimensional
weighting system, FFAS (Rychlewski et al., 2000), resulting
in more sensitive recognitions. Another solution is the inter-
mediate sequence search (ISS) (Park et al., 1997, 1998; Karplus
et al., 1998; Salamov et al., 1999) where a cascade of BLAST
or PSI-BLAST searches are performed using the intermediate
sequences from each sub-family as the new search queries. The
automated protocol of such a cascade search is implemented in
our package: Saturated BLAST (Li et al., 2000). We introduce
here a new method to handle the profile trap using multiple
profiles from each sub-family (see Figure 1), and refer to this
method as the intermediate profile search (IPS). IPS is more
powerful in distant homology detection than ISS because it
uses an intermediate profile instead of a single intermediate
sequence to establish remote homology.

In this study, our focus was on how various search strategies
improve the recognition of distant homologs, as evaluated
using a large fold-recognition benchmark. We introduce and
test several methods to solve the profile problems discussed
in the Introduction. These methods include database clustering,
IPS, PDB-BLAST, and can be used individually or in different
combinations.

Our search strategies are more than just technical tricks that
improve the performance of PSI-BLAST. Apart from offering
significant practical advantages in applying fold prediction and
distant homology recognition to large groups of sequences,
they offer avenues to include additional information such as
functional similarity into sequence searches. Our strategies
also allow us to learn more about the underlying structure of
sequence space: first by exploring its granularity, and ultimately
understanding the constraints that have shaped it. All other
profile-based algorithms face the same problems and the
solutions presented here would also apply to them.

Materials and methods

Fold-recognition benchmarks

A fold-recognition benchmark contains distant homology pairs
that are difficult to recognize with a simple sequence alignment
method. The sensitivity of different algorithms is evaluated by
listing the number of correctly recognized pairs in the
benchmark as a function of a number of false positive hits
(sensitivity plot) for a given level of statistical significance.
Such plots have become standard in describing fold-recognition
algorithms.

The benchmark in this study was prepared from the
SCOP Database (Murzin et al., 1995) Release 1.53 from
http://scop.mrc-lmb.cam.ac.uk/scop/. The ASTRAL compen-
dium (Brenner et al., 2000) at http://astral.stanford.edu/ pro-
vides a series of SCOP domain sequence databases clustered
at different identities. Our benchmark was based on SCOP
domain sequences comprising 2417 sequences with lengths
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longer than 40 amino acids and with �30% identity with each
other (SCOPD30).

We performed all-against-all BLAST searches and collected
pairs of domains that could not be recognized with a BLAST
expect value better than 0.1 despite having the same SCOP
fold type. This benchmark contains 11 853 pairs with the
same fold type but very low sequence similarity. It is avail-
able at http://bioinformatics.burnham-inst.org/liwz/research/
benchmark

Database clustering
The NR protein database was downloaded from NCBI on
September 20, 2000 and contains 563 276 sequences. It was
clustered with CD-HIT at 90, 80, 65 and 50% sequence
identities, and four databases NR90, NR80, NR65 and NR50
containing only the representative sequences were obtained.
We did not include the EBI RSDB database, because it was
derived from a much earlier NR, and it was too time consuming
to prepare it locally using the EBI method.

Apart from NR database and its derivatives, we also created
another database called PDBX, which contains all the
sequences or sequence fragments that are possibly homologous
to known PDB sequences. The PDBX was built by the
following steps: (i) all of the entries in NR were marked as
blank sequences; (ii) all of the sequences in SCOPD30 were
used as queries to search the NR by PSI-BLAST; (iii) all of
the sequence segments identified in the searches in (ii) were
marked as foldable; (iv) in the same sequence, overlapping
foldable fragments were merged; (v) each blank fragment
shorter than 40 amino acid between two foldable regions was
also marked as foldable; (vi) all of the foldable segments were
accumulated. PDBX was then clustered at 80, 65 and 50% to
yield PDBX80, PDBX65 and PDBX50.

Fold recognition
We searched these prepared databases using three fold-recogni-
tion tools: PSI-BLAST, PDB-BLAST and IPS. The PSI-
BLAST parameters were 500 alignments and descriptions,
three iterations, 0.001 expect value of sequences to be included
in the profile.

PDB-BLAST is a two-step PSI-BLAST search. The para-
meters for the first search were identical to the PSI-BLAST
parameters above except that the binary format sequence
profile was saved with the ‘-R’ option. The second search was
without iteration and was against the SCOPD30 database.

The PDB-BLAST procedure was introduced in one of our
previous papers as a reference method (Rychlewski et al.,
2000) and gained a significant popularity since then. As we
reported before, PDB-BLAST was more sensitive than PSI-
BLAST in fold-recognition. The PDB-BLAST fold-recognition
strategy is implemented on our fold-recognition server at
http://bioinformatics.burnham.org/pdb_blast

The IPS was a PSI-BLAST search using the same parameters
as above, and the sequences with expect values lower than
0.001 were clustered into sub-groups by an identity threshold.
We then built a multiple alignment for each sub-group and
ran a single iteration of a PSI-BLAST using this alignment
and the ‘-B’ option. The new hit sequences were added to the
output list and a search loop was repeated for another round.
The clustering threshold was optimized 20% by tests with the
above benchmark and if a sequence was found again during
an iteration, it replaced the old one if its expect value was
better and if the alignment was longer, otherwise the new hit
was rejected.
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Fig. 2. Sizes of clustered databases as the number of thousands of amino
acids.

There is a PDB-BLAST-like IPS-variant of IPS where the
object database is set to SCOPD30 in the last rounds of
the searches. To test the IPS, please contact the author at
liwz@burnham-inst.org for the Perl scripts.

Results and discussion
Clustered NR and PDBX databases
Figure 2 compares the sizes of the original NR and the
sizes of the clustered databases: NR90, NR80, NR65, NR50,
PDBX80, PDBX65, PDBX50. There is a large decrease going
from NR to NR90, with more gradual decreases in sizes down
to NR50. There is another large decrease in size when going
from the NR to the PDBX databases. PDBX50 is the smallest
and is 7% of NR’s size. In order to demonstrate the scope of
redundancy in the sequence databases, we present a pie chart
of the distribution of redundant sequences in NR in Figure 3.
At 90% identity, 42% of the sequences in NR do not have
redundant neighbors. When the threshold is lowered to 65%
identity, only 29% of the sequences of NR can form single-
member clusters, but the percentage of highly redundant
sequences, as defined as having more than 50 members in a
cluster, is raised to 21%. There are several well populated
clusters of over 1000 members. For example, the largest cluster
represented by a sequence (NCBI-gi identifier 3002851) has
12 990 sequences at a threshold of 65% identity.

In our fold-prediction experiment, the SCOPD30 database
was appended to each of the NR and PDBX series of databases
when evaluating the benchmark. This is a neglible difference
in the databases size because the SCOPD30 is tiny compared
to the NR or PDBX databases.

Fold recognition of PSI-BLAST and PDB-BLAST
The clustered NR and PDBX databases were used in PSI-
BLAST and PDB-BLAST searches to show how the database
clustering strategy improved fold-recognition. The sensitivities
of PSI-BLAST and PDB-BLAST with these databases are
plotted in Figure 4.

For PSI-BLAST, the fold-recognition accuracy was strongly
affected by the database used to generate the profile, which is
similar to the results of the EBI group (Park et al., 2000). The
full-size NR is clearly the worst performer and the results
improve with a decreasing clustering threshold. For clarity,
the NR90, NR65 and PDBX65 are not plotted in Figure 4.
Results for the NR90 are between the results for NR and
NR80; NR65 is between NR80 and NR50, and PDBX65 is
between PDBX80 and PDBX50. The same trend was found
in PDB-BLAST searches, but the differences between each
database were much smaller than in PSI-BLAST.

The advantages of clustered databases are even clearer in
terms of search time. The search time in PSI-BLAST, which
includes scanning the database and calculating the profile, is
not linear in relation to the size. The size of NR50 is 39% of
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Fig. 3. Redundancy of NR database in terms of the distribution of sequence clusters at different levels of sequence similarity. The thresholds from (a) to (d)
are 90, 80, 65 and 50%, respectively. The two numbers beside each area represent the sizes of clusters and the percentage of such sequences in NR. For
example, as seen in (b), at an 80% threshold level, proteins in five-member clusters form 3% of the NR database.

Fig. 4. Sensitivity of fold-recognition in PSI-BLAST (A) and PDB-BLAST (B) with different databases. The x-axis is the number of false positive hits, the
y-axis is the number of correct hits. (A) Lines from top to bottom at x � 300 are PDBX50, NR50, PDBX80, NR80 and NR. (B) Lines from top to bottom at
x � 300 are PDBX80, PDBX50, NR50, NR80 and NR.

NR, but as a result the PSI-BLAST searches are three times
faster in our benchmark. The searches with PDBX50 were
only 10% of the search time for NR.

Figure 4 shows that PDB-BLAST is more sensitive than
PSI-BLAST on identical databases. Since the only difference
between PDB-BLAST and PSI-BLAST is the second database
search against SCOPD30, the improvement must come from
this step. There are two reasons for this phenomenon:
SCOPD30 is 350 times smaller than the NR so the PDB-
BLAST output covered more hits; and the second search is
another iteration. Another possible explanation is that the
SCOPD30 search identifies the least dissimilar protein, which
would not be recognized from the NR because of high-scoring
false positive alignments. It is interesting to note that this
improvement cost almost no extra CPU time because of the
tiny size of SCOPD30.

The PDBX databases performed better in fold-recognition
than their corresponding NR databases, but the use of PDBX
databases is questionable in real fold-recognitions where the
query sequences may have an inadequate number of homologs
in the PDBX database.

Profile quality
The main result of the paper, that recognition accuracy is
better when using a clustered database, is puzzling: one
would not have expected to improve recognition by discarding
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information. So we examined the sequence profiles from the
different databases for all the queries, especially the profiles
from NR65 and NR, which we later called Prof-NR65 and
Prof-NR. For each query, we extracted the sequences used to
calculate Prof-NR65 and Prof-NR and discarded the redundant
sequences from NR that were eliminated from NR65 during
clustering. We then generated multiple alignments using
ClustalX (Jeanmougin et al., 1998) and computed phylogenic
trees. Typical trees are shown in Figure 5. In all cases,
sequences in Prof-NR were also in Prof-NR65, but the opposite
was not always true. In viewing these trees, it was easy to
state the extent and the percentage to which NR65 brought
new sequences; and thus there was more information in the
profiles despite being derived from a smaller database.

We obtained four types of phylogenic tree. The first type is
in Figure 5a and Prof-NR65 and Prof-NR contain the same
sequences. This is the most common type, accounting for 50%
of all computed trees. Figure 5b is the second type, where
most sequences (�80%, but not all) are present in both
Prof-NR65 and Prof-NR; the occurrence of this type is approxi-
mately 33%. The third type is in Figure 5c, where Prof-NR65
contained more new sequences (from 20 to 80%); this type is
14% of the trees. Figure 5d is the fourth type where the tree
is dominated by Prof-NR65 at over 80%; these types of trees
are rare and only 3% of the trees.
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Fig. 5. The sequence diversity of profiles in the PSI-BLAST searches of NR65 and NR. The phylogenic graph shows the sequences included in the profile. In
order to reduce the number of branches, homologous sequences (from 30 to 60% identities) were merged into a single branch. Branches in black represent
sequences found in both NR65 and NR90, and the gray branches are the sequences found only in NR65. The capped branches represented the query
sequences. The queries in (a–d) are the SCOP domains d1poia_, d1dg6a_, d1iaka2 and d1a28a_. The phylogenetic tree was generated by ClustalX
(Jeanmougin et al., 1998) and drawn by the Treeview program (http://taxonomy.zoology.gla.ac.uk/rod/rod.html).

Fig. 6. Overlaps of correct hits of PSI-BLAST against different databases.

As shown in Figure 5, fold prediction using clustered
databases is primarily improved in third and fourth types of
trees: 17% of all queries.

The overall performances of clustered databases were better
than the original NR, but a clustered database may also
decrease the quality of the profile in some individual cases
because some information is inevitably lost when near-redund-
ancy is eliminated. Figure 6 shows the overlaps of correct hits
found by PSI-BLAST searches against NR and the clustered
databases at a level of 300 false-positive hits. Profiles derived
from every database can distinguish some benchmark pairs
that are missed by others. Therefore, the optimal cluster
threshold is not fixed for an individual protein family. This
phenomenon suggests an intelligent way of preparing a clus-
tered database: use a variable threshold for different proteins.
A method based on this idea is now being evaluated.

Intermediate profile search
The IPS was tested with the NR80 and PDBX50 databases
and compared with PDB-BLAST and PSI-BLAST (see Figure
7). As introduced in Materials and methods, the IPS was
implemented in two ways: IPS and a PDB-BLAST-like IPS.
For both the NR80 and PDBX50, the PDB-BLAST-like IPS
was the better method. Both IPS and PDB-BLAST are better
than PSI-BLAST, and combining them into a PDB-BLAST-
like IPS is even better.

With NR80, the PDB-BLAST-like IPS increased sensitivity
by 5% compared with PDB-BLAST at a level of 300 false-
positives, while IPS gained 38% compared to PSI-BLAST.
With PDBX50, these two numbers are 12 and 20%,
respectively.

But IPS is more time consuming than other methods, because
additional PSI-BLAST searches are run after the first search.
Depending on the diversity of a protein family and the
clustering threshold of intermediate profile calculations, the
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number of additional searches can range from zero to several
dozen. With additional searches, it is likely that IPS finds
more potential homologs in the search, but it can also introduce
more false predictions. We used a fixed threshold of 20%
to make the intermediate profile for the whole benchmark
calculation, but this threshold may not be suitable for every
individual case. For smaller number of additional searches and
better sensitivity, an optimized threshold can be obtained, so
practically, IPS can be more powerful in finding remote
homologies.

We selected one example to illustrate the power of IPS in
finding remote homologs. The query sequence is SCOP domain
d1iray3 with SCOP token ‘2.1.1.4.10’. The structure has the
immunoglobulin-like beta-sandwich fold type, which contains
many very diverse sequences that are hard to detect. The PSI-
BLAST search against PDBX50 found seven correct hits; the
IPS search found 30 correct hits (Figure 8). In addition
to detecting more homologs, IPS usually provides better
alignments. From the above example, we compared the align-
ments between SCOP domains d1iray3 and d1tlk as found by
PSI-BLAST and IPS, and the IPS alignment is longer than the
PSI-BLAST alignment. When evaluated with the structural
comparison CE method (Shindyalov and Bourne, 1998), IPS
provides 25 more correctly aligned positions than PSI-BLAST
(Figure 9). Based on the IPS alignment and PSI-BLAST
alignment, two models of the domain d1ltk were built using
d1iray as the template and with the comparative modeling
algorithm, Modeler (Sali and Blundell, 1993). The RMSD
between the IPS model and the crystal structure is 1.9 Å (the
result from the CE server), but the RMSD for PSI-BLAST
model is 4.4 Å.

Although IPS is expensive in time as compared to PDB-
BLAST or PSI-BLAST with the same database, the average
time of IPS against the PDBX database is still less than PDB-
BLAST or PSI-BLAST on the NR.

Conclusion
We improved the quality of sequence profiles using two
clustering strategies: database clustering and IPS. The first
clustering procedure is performed before searching the database
searching and rebalances the sequence profile by removing
highly homologous redundant proteins that compete with
intermediate or remote homologs in the profile calculation.
The second clustering procedure explored additional search
directions by using profiles made with separate sub-families.

Our search strategies, along with the PDB-BLAST strategy,
double the sensitivity of recognizing a remote homology while
reducing the search time 10-fold as compared to standard PSI-
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Fig. 7. Sensitivity of fold-recognition of PDB-BLAST-like IPS, IPS, PDB-BLAST and PSI-BLAST on the NR80 (A) and PDBX50 (B) databases. The x-axis
is the number of false positive hits, the y-axis is the number of correct hits. (A) Lines from top to bottom at x � 300 are PDB-BLAST-like IPS, PDB-
BLAST, IPS and PSI-BLAST. (B) Lines from top to bottom at x � 300 are PDB-BLAST-like IPS, IPS, PDB-BLAST and PSI-BLAST.

Fig. 8. Fold recognition of IPS with SCOP query d1iray3 against the
PDBX50 database. The sequences found by IPS before the first false
positive hit. The capped branches represented the query sequences
(d1iray3). The branches in black are the sequences found by PSI-BLAST
and IPS, and the branches in gray are the sequences found only by
IPS. The phylogenetic tree was generated by the Phylip program
(http://evolution.genetics.washington.edu/phylip.html) and was based on the
multiple alignment provided by IPS. The tree was drawn by the Treeview
program (http://taxonomy.zoology.gla.ac.uk/rod/rod.html).

BLAST. One shortcoming of using clustered databases is that
the recognition sensitivity can get worse for some protein
families. We are currently working on using variable cluster
thresholds that can separately balance redundancy and informa-
tion for every protein family.

The IPS method provides additional possibilities to find
remote homology by extending the search in directions other
than that of the dominant sub-family. Despite the relatively
slow speed as compared to PDB-BLAST and PSI-BLAST,
this method is a good choice when PSI-BLAST and PDB-
BLAST fail. If the purpose of the search is to identify a
template for or to develop a 3D model or to analyze the
conservation of specific residues, then IPS is worth a try
because it often provides better alignments.

The Materials and methods introduced in this paper are
available on-line. The web addresses are http://bioinformatics.
burnham-inst.org/liwz/research/benchmark for the fold-recog-
nition benchmark, http://bioinformatics.burnham-inst.org/cd-hi
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Fig. 9. Comparison of the alignments and the 3D-model made by IPS,
PSI-BLAST and CE. (A) The alignments between SCOP domains d1iray3
and d1tlk as made by IPS, PSI-BLAST and CE, the structure comparison
server at http://cl.sdsc.edu/ce.html. The positions in the IPS alignment
marked with ‘Λ’ are in agreement with the CE alignment but not with
PSI-BLAST alignment. (B) Based on the alignments in (A), the models of
d1tlk were built by the Modeler program (Sali and Blundell, 1993). This is
the overlap of the native crystal structure (thick line), the IPS model (thin
black line) and the PSI-BLAST model (white line). Positions with large
deviations in the PSI-BLAST model are marked at CA atoms.
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for the fast database clustering programs CD-HI and CD-HIT
and http://bioinformatics.burnham-inst.org/pdb_blast for PDB-
BLAST search. The complete PDB_BLAST WEB server is
available upon request. The script for IPS can be obtained by
contacting the author at liwz@burnham-inst.org
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