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Abstract - The objective of this paper is to provide an
effective technique for accurate modeling of the external
input sequences that affect the behavior of Finite State
Machines (FSMs). The proposed approach relies on adaptive
modeling of binary input streams as Markov sources of fixed-
order. The input model itself is derived through a one-pass
traversal of the input sequence and can be used to generate
an equivalent sequence, much shorter in length compared to
the original sequence. The compacted sequence can be
subsequently used with any available simulator to derive the
steady-state and transition probabilities, and the total power
consumption in the target circuit. As the results demonstrate,
large compaction ratios of orders of magnitude can be
obtained without a significant loss (less than 3% on average)
in the accuracy of estimated values.

I. INTRODUCTION

In the last decade, probabilistic approaches have received a lot of
attention as a viable alternative to deterministic techniques for
analyzing complex digital systems. In particular, the behavior of
FSMs has been investigated using concepts from the Markov chain
theory. Studying the behavior of the Markov chain provides us
with different variables of interest of the original FSM. In this
direction, [1][2] are excellent references where steady-state and
transition probabilities (as variables of interest) can be
successfully estimated in large FSMs. Both techniques are
analytical in nature and resort to some simplifying assumptions,
temporal independence on the primary inputs being the most
notable one. These assumptions, however, limit the applicability
and usefulness of the results. As a consequence, only logic
simulation of the actual set of inputs can finally assert the accuracy
of results.

It is, however, impractical to simulate long sequences of vectors,
mostly when the target circuit is large or when many runs are
needed to evaluate a number of alternative designs. From this
perspective, a short/compact sequence of stimuli - which is
representative of the typical application data - would be desirable
to speed-up the simulation. Differently stated, the question to be
answered is: having a sequence S1, assumed representative of the
data applied to a target sequential circuit, can we produce a shorter
sequence S2 such that the steady-state and transition probabilities
of the signal lines are nearly preserved?

The aim of this paper is to address this issue and, based on a
new Markov model, to propose an effective way to solve it not
only for standard FSMs, but also for interacting FSMs. The
knowledge of steady-state and transition probabilities is a very
important topic by itself because both of them completely
characterize the FSM behavior. However, as a particular domain
where they have an immediate application, we chose the power
estimation area. Without loss of generality, we will consequently
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emphasize the applicability of the new results on sequence
compaction for power estimation.

Generating a minimal-length sequence of input vectors that
satisfies a prescribed set of statistics in not a trivial task. Two
effective techniques were recently presented in [3] [4] where the
authors succeed in compacting large sequences with very small
loss in accuracy. However, these approaches are suited only for
combinational circuits and consider only first-order temporal
effects (i.e. pairs of consecutive vectors) to perform sequence
compaction. As we will prove in this paper, in the case of FSMs,
this is insufficient for accurate estimation of transition
probabilities. Temporal correlations longer than one time step can
affect the overall behavior of the FSM and therefore, result in very
different power consumptions. Let us illustrate this point using a
simple example.
Example 1: Let S1 and S2 be two 4-bit sequences of length 26, as
shown in Fig.1a. These two sequences have exactly the same set of
first-order temporal statistics as shown in Fig. 1b. In this figure, we
provide the wordwise transition graph for these two sequences.
Each node in the graph represents to a distinct pattern which
occurs in S1 and S2 (the topmost bit is the most significant one,
e.g. in S1, v1 = v2 = ‘1’, v3 = ‘2’,..., v26 = ‘9’). Each edge represents
a valid transition between two patterns and has a nonzero
probability associated with it. For instance, the pattern ‘13’ in S1
and S2 is always followed by ‘5’ (thus the edge between nodes
‘13’ and ‘5’ has the probability 1) whereas it is equally likely to
have either ‘3’ or ‘7’ after ‘2’ (thus the outgoing edges from node
‘3’ have probability 0.5). We consider the graph in Fig.1b as a
compact, canonical, characterization of sequences S1 and S2.
Suppose now that S1 and S2 are input to the benchmarks8 taken
from the mcnc’91 sequential suite. Looking at different internal
nodes of the circuit, we see that the total number of transitions
made by each node is very different when the circuit is simulated
with S1 or S2. Moreover, the total power consumption at 20 MHz
is 384µW and 476µW, respectively, showing a difference of more
than 24% even for this small circuit. A natural question is then,
why does this difference appear, in spite of the fact that S1 and S2
have the same characteristic graph plotted in Fig.1b.

Fig.1: Two sequences with the same first-order statistics

The reason is that S1 and S2 have a different set of second-order
statistics that is, the sets of triplets (three consecutive patterns) are
different. For instance, the triplet (1,2,7) in S2 does not occur in S1;
the same observation applies to the triplet (5,2,3) in S2. The
conclusion to note is that having the same set of one-step transition
probabilitiesdoes not imply that the set of second-order or higher-
order statistics are identical and, as it was just illustrated in this
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small example, for FSMs higher order statistics can make a
significant difference in total power consumption. The initial
problem of compacting an initial input sequence so as to preserve
the set of steady-state and transition probabilities of the FSM can
be now cast in terms of power as follows: can we transform a given
input sequence into a shorter one, such that the new body of data is
a good approximation of the initial sequence as far as total power
consumption is concerned?

Addressing these issues, the present paper improves the state-of-
the-art in two ways. First, it shows the effect of finite-order
statistics of the input sequence on FSMs behavior. Second, based
on the vector compaction paradigm, it provides an original
solution for power estimation problem in FSMs and interacting
FSMs. Among the theoretical results provided here, three are
noteworthy for probabilistic FSM analysis. First, under the
stationarity and ergodicity assumptions, completely capturing the
characteristics of the external inputs of the FSM is sufficient to
jointly characterize the input and state lines. Second, if the
sequence feeding the target circuit has orderk, then a lag-k Markov
chain model of the sequence will suffice to model correctly the
joint transition probabilities of the primary inputs and internal
states in the target circuit. Lastly, if the input sequence has order
two or higher, then modeling it as a lag-one Markov Chain cannot
exactly preserve the first-order joint transition probabilities
(primary inputs and internal states) in the target circuit.

The foundation of our approach is probabilistic in nature; it
relies onadaptive (dynamic) modeling of binary input streams as
first-order and higher-order Markov sources of information. The
adaptive modeling technique itself (best known as Dynamic
Markov Chain or DMC modeling) was used very recently for
power estimation [4]. However, this formulation is not completely
satisfactory for our purpose; in order to capture high-order
temporal effects, we thus extend the initial formulation to handle
groups of more than two consecutive input vectors.

The paper is organized as follows: section II formalizes the
power-oriented vector compaction problem. Next, based on
Markovian information sources, we present in section III the main
results about the effect of finite-order statistics on FSM and
interacting FSM behavior. Section IV introduces a DMC-based
procedure for vector compaction. In section V we present some
experimental results and finally, we conclude by summarizing our
main contribution.

II . DATA COMPACTION FOR POWERESTIMATION

Assuming that a gate level implementation is available, one can
estimate the total power dissipation by summing over all the gates
in the circuit the average power dissipation due to the capacitive

switching currents, that is:

where fclk is the clock frequency,VDD is the supply voltage,Cn
andswn are the capacitance and the average switching activity of
gaten, respectively. From here, the average switching activity per
node is the key parameter that needs to be correctly determined.
However, this parameter is highly sensitive to the input statistics,
namely it depends significantly on transition probabilities among
different signal lines. As shown in the previous section, high-order
information sources make a significant difference in power
consumption for sequential machines.

The vector compaction problem for FSMs is formulated as
follows: for any sequence of lengthL0, find another sequence of
lengthL « L0 (consisting of a subset of vectors from the original
sequence), such that the average joint transition probability on the
primary inputs and present state lines is preservedwordwise,for
k+1 consecutive time steps. More formally, the following holds:

                                (1)

wherep andp’ are the probabilities in the original and compacted
sequences, respectively. This condition simply requires that the
joint transition probability for inputs and states (xisi) is preserved
within a given level of error fork + 1 consecutive time steps.
Before going further, we note the particular case whenk = 1,
which is the theoretical basis of vector compaction techniques
recently published in [3][4].

III . MARKOVIAN SOURCES OF INFORMATION

A. Finite-order memory models

Without loss of generality, we restrict ourselves to finite binary
strings, that is, finite sequences consisting only of 0’s and 1’s. The
set of events of interest is the setS of all finite binary sequences on
b bits. A particular sequenceS1 in S consists of vectorsv1, v2,...,vn
(which may be distinct or not), each having a positive occurrence
probability. An attractive subclass of information sources is the
class of Markov sources which can be conveniently modeled as
Markov chains of finite-order.
Definition 1. (lag-k Markov chain) A discrete stochastic process
{ vn} n ≥1 is said to be a lag-k Markov chain if at any time stepn ≥
k+1:            (1)

In particular, any lag-one Markov source, is characterized by
the set of states (nodes in the corresponding graph representation)
and the set of transition probabilitiespij  from statevi to the next
statevj. We note that any lag-k Markov chain can be reduced to a
lag-one Markov chain using the following (all proofs are in [8]):
Proposition 1. If { un} n ≥1 is a lag-k Markov chain then {vn} n ≥1,
where vn = (un, un+1,..., un+k-1), is a multivariate first-order
Markov chain.

B. The effect of finite-order statistics on FSM behavior

Now we turn our attention from the input sequence to the circuit
and investigate the effect of input statistics on the transition
probabilities (primary inputs and present state lines) in the target
circuit. As shown in Fig.2, we model the ‘tuple’ (input_sequence,
FSM) by the ‘tuple’ (Markov_chain, FSM), whereMarkov_chain
models theinput_sequence and FSM is the sequential machine
where the transition probabilities have to be determined. In what
follows, xn, sn will denote the inputs and states of the target
sequential machine;p(xnsn) is the probability that the input isxn
and the state issn at time stepn.

Fig.2: The tuple (Markov-Chain, FSM)

We are interested in defining the joint probabilitiesp(xnsn) and
p(xnsnxn-1sn-1) because, as we can see in Fig.2, they capture the
characteristics of the input (primary inputs and present state lines)
that feeds the next state and the output logic of the target circuit.
Under the general assumptions ofstationarity andergodicity, we
can prove the following result:
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Theorem 1. If the input xn applied to a target sequential circuit
can be modeled by a lag-k Markov chain then, for anyn ≥ k+1 the
following holds:

     (2)

Theorem 2. If the sequence feeding a target sequential circuit has
order k, then a lag-k Markov chain which correctly models the
input sequence, also correctly models thek-step conditional
probabilities of the primary inputs and internal states, that is
p(xnsn|xn-1sn-1xn-2sn-2...xn-ksn-k) = p(xn|xn-1xn-2...xn-k).

We note therefore that preserving order-k statistics implies also
that order-k statistics will be captured for inputs and states. In
general, modeling a k-order source with a lower order model may
introduce accumulative inaccuracies. From a practical point of
view, this means that underestimating a high-order source, one
may end up not preserving correctly even the first-order transition
probabilities. In terms of power consumption, this will adversely
affect the quality of the results. However, we will show later that
increasing the order of the input model will decrease the error in
correctly capturing the joint transition probabilities for inputs and
states.

C.Interacting FSMs and high-order information sources

Modern designs where interacting finite state machines are present
offer a good example where high-order information sources have
found applicability. As presented in [5], the decomposition of large
FSMs into smaller, interacting FSMs may be useful for both area
and performance reasons. In practice, three options are available:
parallel decomposition (both submachines are supplied with the
same input sequence, but operate independently),cascade
decomposition (one submachine has information about the internal
state of the another one) and finally, a type ofcomplex
decomposition where each submachine is provided with
information about the current state of the other submachine.
Having on inputs a Markov source of orderk, any of the
aforementioned topologies may increase the order of the source at
the output. However, we may assume a finite-order Markov source
for the output, since for a given level of accuracy, there exists a
general result thatguarantees the existence of afinite limit in the
resulting order:
Theorem 3.[6] Let P = (pij)1 ≤ i, j ≤ N be the transition probability
matrix of a lag-one Markov chain {xn} n ≥1 with N states. If pij  > 0

for anyi, j and , then for any arbitrary

functionzn = f (xn) the following holds∀ k andxn-k-1 ≠ x’n-k-1
1:

                                   (3)

In other words, this theorem states that even if the output is not
of finite order, it can be approximated as such up to a bounded
error. Based on this result, we can prove the following:
Corollary 2. Assume that the input of the FSM can be written asxn
= f(wn) wheref is an arbitrary function and {wn} n ≥1 is a lag-one
Markov chain. If the order of the Markov model used to represent
the input is increased, then the error for estimating the joint
transition probabilities for inputs and states decreases.

Thus, the error of using a finite-order model for a non-finite
order discrete process decreases exponentially with the order
used. Hence, the larger the order, the better we approximate the
model on the input and also the joint transition probabilities for
inputs and states.
1It can also be shown thatλ is less than one. The result may be extended to Markov
chains of order greater than one.

IV . HIGH-ORDERDYNAMIC  MARKOV MODELS

Dynamic Markov Chain (DMC) technique was introduced in the
literature of data compression few years ago and used recently to
adaptively compact data for power simulators [4]. The structure
DMT1 used by authors in [4] is general enough to capture
completely the correlations among all bits of the same input vector
and also between two successive input patterns. However, it has
conceptually no inherent limitation to be further extended to
capture temporal dependencies of higher orders.

Fig.3: A high-order Markov tree

For instance, if we continue to define recursivelyDMT2 (as a
function of DMT1), we can basically capture second-order
temporal correlations. For any sequence wherevi, vj, vk are three
consecutive vectors (that is,vi → vj → vk), the treeDMT2 looks
like in Fig.3.

The following result, gives the theoretical basis for using the
DMC technique to capture high-order temporal correlations.
Theorem 3. The general structureDMTk and its parameters
completely capture spatial and temporal correlations of orderk.

In practice, we can imagine the following simple procedure for
vector compaction: during a one-pass traversal of the original
sequence (when we extract the bit-level statistics of each
individual vectorv1,v2...,vn and those corresponding top ≤ k+1
consecutive vectors (v1v2...vp), (v2v3...vp+1),...) we grow
simultaneously the treeDMTk up to the end of the original
sequence. This is followed by a generation phase driven by the
user-specified compaction parameterratio that is, a total ofm = n/
ratio vectors are generated. The generation procedure uses a
modified version of thedynamic weighted selection algorithm[7].
The pseudocode for the generation procedure and a detailed
example can be found in [8]. We note that this strategy does note
allow ‘forbidden’ vectors that is, those combinations that did not
occur in the original sequence, will not appear in the final
compacted sequence either. This is an essential capability needed
to avoid ‘hang-up’ (‘forbidden’) states of the sequential circuit
during simulation process for power estimation.

V. EXPERIMENTAL RESULTS

The overall strategy is depicted in Fig.4.

Fig.4: Experimental setup

We assume that the input data is given in the form of a sequence of
binary vectors. Starting with ank-bit input sequence of lengthn,
we perform a one-pass traversal of the original sequence and
simultaneously build the basic treeDMTk; during this process, the
frequency counts onDMTk’s edges are dynamically updated. The
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next step in Fig.4 does the actual generation of the output sequence
(of lengthm). If the initial sequence has the lengthn and the new
generated sequence has the lengthm < n then the outcome of this
process is a compacted sequence, equivalent to the initial one as far
as total power consumption is concerned; we say that acompaction
ratio of r = n/mwas achieved. Finally, a validation step is included
in the strategy; we have used an in-house gate-level logic simulator
developed under SIS. The total power consumption of some
mcnc’91 and ISCAS’89 benchmarks has been measured for the
initial and the compacted sequences, making it possible to assess
the effectiveness of the compaction procedure (under both zero-
and real-delay models).

In Table 1, we provide only the real-delay power dissipation
results for different initial sequences of 4,000 vectors formcnc’91
circuits and 10,000 vectors forISCAS’89 circuits. These sequences
were produced using a second order information source based on
the Fibonacci series. As shown in Table 1, the sequences were
compacted with two different compaction ratios (namelyr = 5 and
10) using two Markov models: one of order one and another one
having order two. We give in this table the total power dissipation
measured for the initial sequence (column 3) and for the
compacted sequence using both models (columns 4-7). On a Sparc
20 workstation with 64 Mbytes of memory, the time necessary to
read and compress data was less than 5 sec. for both models. Since
the compaction with DMC modeling is linear in the number of
nodes in the structureDMTk, these time values are far less than the
actual time needed to simulate the whole sequence. During these
experiments, the number of nodes allowed in the Markov model
was on average 10,000 formcnc’91 circuits and 200,000 for
ISCAS’89 circuits.

As we can see, for the model of order 2, the quality of results
is very good even when the length of the initial sequence is
reduced by one order of magnitude. Thus, forbbara in Table 1,
instead of simulating 4,000 vectors with an exact power of
747.10µW, one can use only 800 vectors (r = 5) with an estimate
of 748.22µW or just 400 vectors (r = 10) with power
consumption estimated as 744.99µW. This reduction in the
sequence length has a significant impact on speeding-up the
simulative approaches where the running time is proportional to
the length of the sequence which must be simulated. On the other
side, using a first-order model, the quality of the results can be
seriously impaired. For instance, in the case of benchmarkplanet,
we can erroneously predict a total power of 3596.80µW (57.78%
error) if r = 10. This is because for a sequence generated with a
second-order source, a model that considers only pairs of two
consecutive vectors cannot preserve correctly even the first-order
transition probabilities for the primary inputs and state lines.

We also studied the sensitivity of the proposed approach to the
choice of initial seeds used for random excitation of the DMC
model. Using different seeds for the random number generator,
we run a set of 1,000 experiments for the DMC technique. In
almost all cases, the second-order model yielded errors less than
5% compared to the exact simulation. On the other hand, using a

first-order model significantly impaired the accuracy of the
results: for some circuits, more than 80% of the runs produced
results with more than 10% error compared to the original
sequence.

To assess the importance of correctly modeling the input
sequence, we give in Table 2 our results for cascade and complex
configurations with a compaction ratio of 5. In the first case we
cascaded benchmarksex4 (from mcnc’91 suite) ands1196 (from
ISCAS’89 suite) and we estimated the total power consumption
for both of them. In the second case, we used a complex topology
where benchmarksex3 andplanet interact. Looking at the results
in Table 2 we can conclude that only the second order model is
appropriate for this type of analysis.

We note that using a lower order model than needed may also
significantly impair our ability to correctly estimate the switching
activity in anode-by-node analysis. Typical results are given in [8].

VI. CONCLUSION

In this paper we investigated from a probabilistic point of view the
effect of finite-order statistics of the input sequence on FSM and
interacting FSM behavior. Based on dynamic Markov modeling,
we proposed an effective approach to compress an initial sequence
into a much shorter one such that the steady state and transition
probabilities (and therefore the total power consumption) in the
target circuit are preserved.

The mathematical foundation of this approach relies on adaptive
modeling of binary input streams as first- and higher-order Markov
sources of information. For the first time to our knowledge, the
effect of temporal correlations longer that one clock-cycle on the
power dissipation in FSMs and networks of interacting FSMs was
studied. As shown by the experimental results, large compaction
ratios can be obtained with less than 3% loss in accuracy for total
and node-by-node power consumption.

The results presented in this paper represent an important step
towards understanding the FSM behavior from a probabilistic
point of view.
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