
Sequence Matching and Learning in Anomaly Detection
for Computer Security

Terran Lane and Carla E. Brodley
School of Electrical and Computer Engineering

1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285
Phone: +1 765 494-3462

email: {terran,brodley} @ecn.purdue.edu

Abstract

Two problems of importance in computer security are
to 1) detect the presence of an intruder masquerad-
ing as the valid user and 2) detect the perpetration of
abusive actions on the part of an otherwise innocuous
user. We have developed an approach to these prob-
lems that examines sequences of user actions (UNIX
commands) to classify behavior as normal or anoma-
lous. In this paper we explore the matching function
needed to compare a current behavioral sequence to
a historical profile. We discuss the difficulties of per-
forming matching in human-generated data and show
that exact string matching is insufficient to this do-
main. We demonstrate a number of partial matching
functions and examine their behavior on user com-
mand data. In particular, we explore two methods
for weighting scores by adjacency of matches as well
as two growth functions (polynomial and exponential)
for scoring similarities. We find, empirically, that the
optimal similarity measure is user dependant but that
measures based on the assumption of causal linkage
between user commands are superior for this domain.

Keywords: Application, Sequence learning, Partial
matching, Classification, Recognition, Computer se-
curity, Anomaly detection, Behavioral modeling.

Introduction

A long-standing problem in the field of computer secu-
rity is that of intrusion detection. The goal is to detect
violations of security policy for a computer site by an
outsider. Of the many possible approaches to intrusion
detection, one that has received considerable atten-
tion is anomaly detection (Anderson, 1980; Lunt, 1990;
Heberlein, Dias, Levitt, Mukherjee, Wood & Wolber,
1990). According to Kumar (1995), "Anomaly detec-
tion attempts to quantify the usual or acceptable be-
havior and flags other irregular behavior as potentially
intrusive." Under this definition, the scope of anomaly
detection encompasses not only violations by an out-
sider but also anomalies arising from violations on the
part of an authorized user. It is important to note that
anomaly detection omits the class of security policy vi-
olations that occur within the bounds of normal behav-
ior for a system or site. Detecting anomalous behavior

can be viewed as a binary valued classification prob-
lem in which measurements of system activity such as
system log files, resource usage, command traces, and
audit trails are used to produce a classification of the
state of the system as normal or abnormal.

In other work (Lane & Brodley, 1997) we have pre-
sented a system intended to address the anomaly de-
tection domain. Our system learns a user profile and
subsequently employs it to detect anomalous behav-
ior. Based on sequences of actions (UNIX commands)
of the current user’s input stream, the system classi-
fies current behavior as consistent or anomalous with
past behavior. The anomaly detection domain presents
a number of interesting problems including learning
from positive examples only, handling concept drift,
and measuring similarity between sequences of human
actions. We demonstrated that the closed world as-
sumption can be used to address the positive training
examples difficulty, and that user behaviors can be dis-
tinguished under a particular definition of behavioral
similarity (Lane & Brodley, 1997).

In this paper we explore the issue of similarity mea-
surement -- matching a current behavioral pattern
with historical behavior. We demonstrate a number
of possible matching functions and examine some of
the behavioral differences among them.

Capturing the Causal Nature of User

Actions

Traditionally, in computer security, user profiles have
been built based on characteristics such as resources
consumed, typing rate, command issue rate, and
counts of particular commands employed (Denning,
1987; Smaha, 1988; Lunt, 1990; Frank, 1994). These
approaches do not use the observation that hu-
man/computer interaction is essentially a causal pro-
cess. Typically, a user has a goal to achieve when using
the computer, which causes the person to issue certain
commands, causing the computer to act in a certain
manner. The computer’s response, in turn, keys fur-
ther actions on the part of the human.

User profiling is a widely studied problem in the lit-
eratures of computer security and machine learning.

43

From: AAAI Technical Report WS-97-07. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



In the area of security, the applications of behavioral
modeling are in anomaly detection (as described pre-
viously) and in software forensics (Spafford & Weeber,
1992). Krsul and Spafford (1996) have examined 
topic of authorship analysis and used a set of software
metrics such as mean line length, placement of syntac-
tic structures, ratio of global to local variable counts,
and ratio of white lines to code lines to identify pro-
gram authors. Such metrics focus on global statistics
but do not address causal sequences of actions. Fur-
thermore, they allow an encoding of domain knowledge
(in terms of the higher-level features employed) but
may overlook other characteristics present in the data.
Machine learning researchers have studied modeling of
human behavior in the contexts of, for example, au-
tomatic tutoring (Baffes & Mooney, 1996). This work
models a student’s understanding of a subject as a set
of Horn-clauses which defines deviations from the cor-
rect theory of the subject. Such a system can work well
when the domain theory is sufficiently understood to
induce such rules from behavior, but this is often not
the case in the context of arbitrary command process-
ing systems (a sufficiently thorough domain theory for
this context might well include a complete model of the
system state -- a computationally infeasible proposi-
tion).

To form a user profile our approach learns character-
istic sequences of actions generated by users. The un-
derlying hypothesis is that a user responds in a similar
manner to similar situations, leading to repeated se-
quences of actions. Indeed, the existence of command
alias mechanisms in many UNIX command interpreters
supports the idea that users tend to perform many re-
peated sets of actions, and that these sequences differ
on a per-user basis. It is the differences in characteris-
tic sequences that our approach uses to differentiate a
valid user from an intruder masquerading as that user.
Note that the detection of anomalous behavior is made
more difficult because an informed, malicious intruder
may attempt to emulate the valid user’s behavior, in-
cluding alias and command usage.

To represent characteristic patterns of actions, our
system uses the sequence (an ordered, fixed-length set
of temporally adjacent actions) as the fundamental
unit of comparison. For this research, actions were
taken to be UNIX shell commands with their argu-
ments, although the approach developed here is gen-
eral and can be extended to any stream of discrete
events such as operating system calls or graphical user
interface events.

A set of behavioral sequences (gathered from a, pre-
sumably, intruder-free history) is collected into a dic-
tionary of sequences. This dictionary, along with sys-
tem parameters such as sequence length, instance se-
lection policy, noise-suppression function, and classi-
fication threshold, forms a user profile. Any new se-
quence under scrutiny can be compared to the dictio-
nary (as described below to yield a measure of’famil-

iarity’ or ’similarity’ to past behavior. This similarity
measure is then used as the basis for classification of
the sequence as anomalous or normal.

We envision our anomaly detection system as part
of a personal software assistant that helps monitor a
user’s account for penetrations. We hope that, in con-
junction with techniques that employ more domain-
specific knowledge (such as rule-base systems or sys-
tems employing user-selected higher-level features),
our techniques can provide a basis for greater security
and privacy for users and sites. Because of privacy is-
sues, and the fact that it is impossible to characterize
the full space of user behaviors, only positive exam-
ples of the account owner’s behavior are available for
training.

Norton has explored sequence learning for DNA se-
quences (Norton, 1994), but his data had both positive
and negative training examples. The anomaly detec-
tion domain differs from traditional concept formation
tasks in that one must characterize user behavior from
"positive" examples only. To resolve this difficulty we
invoked the closed world assumption -- that anything
not seen in the historical data represents a different
user. Intuitively, it seems likely that this is a reason-
able assumption -- the very terms anomaly, abnormal,
and unusual imply that divergence from past behavior
is an important indication of trouble.

It is interesting to note that a separate research
group has independently developed an anomaly de-
tection technique based on examination of sequences
(Forrest, Hofmeyr, Somayaji & Longstaff, 1996a; For-
rest, Hofmeyr & Somayaji, 1996b). Their work, while
similar in intent, focuses on monitoring the behavior of
privileged programs (UNIX system daemons) to detect
exploitation of services by malicious users. Monitoring
processes entails a different set of problems and goals
than does monitoring users. Their system examines
the sequences of system calls emitted by running pro-
cesses. Both the set of possible system calls and the
possible orderings of those calls are from a more re-
stricted set than the space of user-level commands and
command sequences, so strict equality matching has a
much higher probability of yielding useful results. Fur-
thermore, system calls are emitted by system services
much more quickly than are commands by users (po-
tentially 107 times as quickly). Thus, many fewer re-
sources can be devoted to processing each sequence of
system calls than can be devoted to processing each se-
quence of user commands. It is particularly intriguing
that this research group arrived at a sequence based
detection system through a model of the human im-
munological system, while our system has its origins
in a behavioral model. The degree of convergence in
the systems suggests the possibility of congruences in
the underlying models and, perhaps, even in the orig-
inal human systems.

44



Detecting Anomalous Behavior

Once a user profile is formed, the basic action of the
detection system is to compare incoming input se-
quences to the historical data and form an opinion as to
whether or not they both represent the same user. The
fundamental unit of comparison in the anomaly detec-
tor system is the command sequence. Dietterich and
Michalski (1986) have studied the problem of learn-
ing to predict sequences by fitting sequence data to
a model from a space of possible models. Their goal
was to create a system that could predict subsequent
actions in the sequence, whereas our goal is to clas-
sify sequences of new actions as consistent or inconsis-
tent with sequence history. To this end, all input to-
ken streams are segmented into overlapping sequences
of tokens (where the length of each sequence is a pa-
rameter to the system, but is fixed for a single run).
Two sequences can then be compared using a similarity
measure.

Computing Sequence Similarity

One approach to learning from sequence data is to con-
vert the data into feature vectors by accumulating mea-
sures of the individual sequences (Hirsh &: Japkowicz,
1994; Salzberg, 1995). Then one can apply any off the
shelf classifier construction algorithm such as a neural
network or a decision tree to the feature vectors that
describe the sequence data. By contrast, our approach
uses a measure of similarity between sequences to com-
pare current input to historical data. Direct analysis
of the user’s command stream avoids introduction of
the domain knowledge required to construct higher-
level features. Our hypothesis is that these two classes
of approaches are complimentary and that a system
incorporating may well be more effective than either
individually.

A number of possible methods exist for measuring
the similarity of two sequences. The most straightfor-
ward is the equality function, which yields TRUE when
both sequences match in every position and FALSE oth-
erwise. This is the similarity function employed by
string matching algorithms and has the advantage of
being widely studied and highly optimizeable. For ex-
ample, the UNIX di:ff program employs this form of
matching. Srikant and Agrawal (1996) use a modified
equality matching function to detect frequently occur-
ring sequences in large data sets; they allow gaps, or
intervening non-matching elements, in their sequence
detection. In spite of the (presumed) causal nature
of human-generated command sequences, we do not
expect exact matches for reasonably long sequences
because of unpredictable and asynchronous events (ar-
rival of mail, telephone calls, etc.), which can be viewed
as noise distorting the causally-driven process. Thus,
the equality function is not a viable choice for this par-
ticular domain. Equality matching can, however, be a
viable technique for other aspects of anomaly detec-
tion in computer security, as demonstrated by Forrest,

et al. (1996b).
Our system, therefore, computes a numerical simi-

larity measure that returns a high value for pairs of
sequences that it believes to have close resemblance,
and a low value to pairs of sequences that it believes
largely differ. The individual elements of the sequences
are from an unordered set, which creates a matching
problem identical to that of symbolic features for IBL.
However, unlike IBL, our similarity measure is judging
the similarity between two sequences rather than two
feature vectors.

Initially, we examined a similarity measure that sim-
ply assigns a score equal to the number of identical
tokens found in the same locations of the two se-
quences. Upon consideration, however, we hypothe-
sized that a measure that assigns a higher score to
adjacent identical tokens than to separated identical
tokens might be preferable. The intuition is that token
matches separated by interleaving non-matching to-
kens are more likely to have occurred by chance, while
adjacent matches are more likely to have occurred due
to a causal process. Therefore, if sequence Seql has k
tokens in common with each of Seq2 and Seq3, but the
common tokens are adjacent in Seql and Seq2 then we
would like the similarity measure to have the property
that Sim(Seq1, Seq2) > Sim(Seql, Seq3). Under this
requirement, the pair of sequences shown below on the
left would have a higher similarity value than would
the pair on the right.

is foo ; vi is-i foo ;
is foo cat bar Is -F foo cat

Thus, one axis of differentiation between similarity
measures is ’does not detect match adjacency’ vs. ’de-
tects match adjacency’. A second axis is the bound
of the maximum similarity measure as a function of
sequence length. The similarity measure that scores
sequences from a count of matches, regardless of adja-
cency, has an upper bound that is polynomial in the
length of the sequences. Specifically, for sequences of
length n, this measure is _< n. We denote this similar-
ity measure as MC-P (for match count with polyno-
mial bound). To examine the hypothesis that detect-
ing match adjacency is useful for this task, we modified
MC-P to bias the similarity score in favor of adjacent
matches (as described below). This measure is denoted
MCA-P (for match count with adjacency and polyno-
mial bound) and is bounded by n(n + 1)/2. A poly-
nomial bound seems appropriate, considering that the
central hypothesis is that adjacent tokens are produced
by a (mostly) causal process, and, therefore, should
display a high degree of correlation.

In a stream of independently generated tokens, it
seems likely that an exponentially bounded function
would be more appropriate. Our intuition is that the
causal linkage of user-generated tokens will evidence
itself as a deviation from the characeristics of the in-
dependence assumption. To test our hypothesis (i.e.
reject the independence hypothesis), we examined the

45



f(Sim, c) u(c)
MC-P Sim + 1 1
MCA-P Sim + c c+l
MC-E 2 ¯ Sim 1
MCA-E Sim + c 2,e

Table 1: scoring and update functions for the similarity
measures

behavior of exponentially bounded measures analogous
to the polynomially bounded ones just described. The
MC-P measure was modified to score exponentially in
the number of matches (still without considering adja-
cency) and was labeled MC-E. The MC-E measure has
upper bound 2n. The MCA-P measure was adapted in
a similar fashion to create MCA-E, whose upper bound
is 2n - 1. All four similarity measures are encompassed
by the following algorithm operating on sequences Seql
and Seq2:

¯ Set an adjacency counter, c := 1 and the value of
the measure, Sim := 0.

¯ For each position, i, in the sequence length, n:

- If Seql(i ) = Seq2(i) then Sim := f(Sim, c) and
e := u(c)

- Otherwise, c := 1.

¯ After all positions are examined, return the measure
value.

The differences between the measures are determined
by the nature of the scoring function, f(Sim, c), and
the adjacency update function, u(c), as summarized in
Table 1.

Finally, we define the similarity of a single sequence
Seqi to a set of sequences, D, as:

Sim(Seqi,D) = max {Sim(Seqi,Seqj)}
SeqjED

Thus, the similarity of a sequence to the user dictionary
is the measure of that sequence compared to the most
similar sequence in the dictionary.

Classifying User Behavior
Given an input stream of command tokens parsed by
the data collection module (as described in (Lane
Brodley, 1997)), the detection module classifies the
current user as normal or anomalous after each token.
The output of the detection module is a stream of bi-
nary decisions indicating, at each point in the input
command data, whether or not it believes that the in-
put stream at that point was generated by the profiled
user.

To make these decisions, the detection module first
calculates the similarity of each input sequence to the
user’s dictionary, yielding a stream of similarity mea-
sures. In an intuitive sense, this stream represents the
familiarity of the input commands at each time step,

given knowledge about the previous behavior of the
user. The similarity stream is smoothed to reduce noise
(Lane & Brodley, 1997) and classification is performed
for each time step. In the current implementation the
classification is made with a threshold decision: if the
current smoothed similarity measure is between max-
imum and minimum allowable bounds, then classify
the current time step as normal, otherwise classify it
as abnormal. The thresholds are system parameters
and were selected empirically by examining an inde-
pendent ’parameter selection’ data set drawn from the
command history of the profiled user. After comput-
ing sequence similarity to the user profile (under the
currently selected similarity measure) for each item in
the parameter selection data set, the thresholds were
selected such that a proportion of err_rate samples fell
outside the thresholds (specifically, err_rate~2 below
the minimum threshold and err_rate~2 above the max-
imum threshold). A smaller allowed error rate, there-
fore, corresponds to a wider range of acceptable simi-
larities. We acknowledge that this classification scheme
is relatively unsophisticated, but it turns out to per-
form surprisingly well in many cases. We are currently
investigating employing other non-parametric classifi-
cation techniques, such as clustering with Parzen win-
dows (Fukunaga, 1990), to this task.

Examination of Similarity Measures

To examine the degree of class separation produced by
each of these similarity measures, we used each to clas-
sify user command history traces. The data were com-
mand histories collected from five members of the Pur-
due MILLENNIUM lab over the course of slightly more
than an academic semester and two sets donated by
other students. From each user’s data set, two thirds
of the tokens were devoted to training (i.e. initial dic-
tionary construction) and the remaining one third was
divided into 1000 testing instances and the rest into in-
stances used for dictionary instance selection and pa-
rameter selection. The user profiles were initialized
with all available training data and were pruned down
to the desired testing sizes of 200, 500, or 1000 se-
quences via the LRU instance selection algorithm as
described in (Lane 8z Brodley, 1997). The LRU (Least
Recently Used, by analogy with the page replacement
algorithm of the same name) prunes instances from the
dictionary by examining the timestamps of their last
reference (the last point at which they were selected as
’most similar’ to an instance under examination) and
removing those with the oldest timestamps.

All experiments employed a sequence length of ten
tokens and a smoothing window length of eighty se-
quences. These values were selected based on previous
experimentation (Lane &; Brodley, 1997). Profiles were
created for four of the users and then the test data from
all seven users were classified against the profiles ac-
cording to each similarity measure. The classification
thresholds were selected to achieve a false-negative er-

46



for rate of 1% on the parameter selection data (as de-
tailed above). Results of the experiments are displayed
in Tables 2 and 3. The results given here are typical
and are generally reflective of the trends we found in
the data.

Each value in this table reports the percentage of
instances for which the tested user was identified as
the profiled user. The goal, therefore, is to minimize
all rows other than the profiled user and to maximize
the row corresponding to the profiled user (USEI:t0, in
Table 2 and USER2, in Table 3). In Table 3, the sym-
bol ’t’ indicates the position in which the best value
occurs for each user. As above, MC and MCA denote
match count and match count with adjacency bias sim-
ilarity measures, respectively, while the suffixes P and
E indicate that the similarity measure’s upper bound
is polynomial or exponential in the length of the se-
quence.

Table 2 indicates a definite superiority of MC-P for
the task of identifying the profiled user (USER0) but
somewhat inferior behavior on the task of distinguish-
ing other users from USER0. By contrast, all other
algorithms perform spectacularly when distinguishing
other users from the profiled user but have what is
likely to be an unacceptably high false negative rate.
Unfortunately, the behaviors of many of the similar-
ity measures are nearly identical for large parts of the
tested space, so it is difficult to identify their relative
merits from this data. Nonetheless, for USER0’s pro-
file, the MC-P similarity measure seems to be prefer-
able. This result provides evidence against the hypoth-
esis that detecting adjacent matches is desirable.

The results in Table 3 indicate that, overall, MCA-P
is the preferable similarity measure for USER2’s pro-
file, followed by MCA-E. A strong preference for the
adjacency-based measures is supportive of the hypoth-
esis of the causality of command sequences. And, as
with USER0, preference for the polynomial bounded
similarity measure further supports this hypothesis.
It’s also noteworthy that the MC-P algorithm has the
poorest performance for this user (often dramatically
so). This indicates that there are cases in which equal-
ity matching (with the addition of ’don’t care’ posi-
tions) is insufficient to the task of user modeling in
this context.

Together the results for USER0 and USER2 demon-
strate that different similarity measures are appropri-
ate for different users. This indicates that there is a
need for a method to detect which similarity measure
is appropriate for a particular user and that future
research should take this into account. This issue is
further complicated by the possibility that the opti-
mal similarity measure may be time variant within the
context of a single user. Finally, the possibility exists
(and is supported to a certain degree by the data in Ta-
ble 3) that the optimal similarity measure depends also
upon the nature of the anomaly (i.e. the identity of the
masquerading user). This presents a difficulty because,

as mentioned in previously, the only data available for
training is that of the valid user.

Finally, note that there is a significant disparity be-
tween optimal dictionary sizes for the users (1000 vs.
200 sequences). This seems to indicate that USER2’s
behavior is characterized by a smaller set of actions
than is USER0’s. The possibility remains, however,
that none of the similarity measures investigated here
are really appropriate for measuring USER,0’s behav-
ior, and that under a different measure fewer character-
istic sequences would be required. Upon examination,
however, we note that instance selection (via the LRU
algorithm, as described above) was performed with
only 1667 tokens of data for USER0’s profile while over
5000 tokens were available for dictionary initialization.
When a small number of sequences are rated as highly
characteristic by the instance selection algorithm, so
few of the other dictionary instances will be touched
that selection becomes effectively random for sequences
other than the most strongly characteristic ones. This
turns out to be the case for USER0 as approximately
260 of the instance selection sequences were devoted
to selecting only two of the final dictionary sequences.
Thus, we hypothesize that for USER0 the LRU in-
stance selection algorithm concentrates undue atten-
tion on sequences that are not necessarily reflective of
true behavior while selecting the majority of the in-
stances effectively randomly. Therefore a large num-
ber of sequences are required in the final profile to ob-
tain reasonable accuracy. By contrast, LRU seems to
select important instances much more successfully for
USER2 so fewer are needed in the final profile. Any se-
quences in the profile beyond those most characteristic
of behavior represent noise and lead to decreased per-
formance (and, indeed, degraded performance was seen
in the case of USER2’s profile for larger final dictionary
sizes). The behavior demonstrated here highlights an
interaction between the similarity measure and the in-
stance selection algorithm, which makes it likely that
choice of similarity measure is affected not only by the
identity of the profiled user and intruder (and possibly
time/concept drift) but also by the choice of instance
selection technique.

Conclusions and Future Work
This paper has examined some of the issues involved in
similarity-based matching of user behavior sequences.
We find that the best measure is user-dependent and
there are indications that it may also depend on choice
of instance selection technique and even the identity
of the anomalous/intrusive user. There do, however,
seem to be indications that polynomially bounded
measures and measures biased in support of adjacent
matches are, overall, preferable. Both the adjacency
and the polynomial bound are evidence in support
of the hypothesis that user behavioral sequences are
characterized by strong correlations among temporally
close command tokens.

47



MC-P MCA-P MC-E MCA-E
USER0 93.96 67.07 73.44 79.36
USER1 9.11 0.00 0.00 8.23
USER2 0.00 0.00 0.00 0.00
USER3 15.37 0.00 0.00 0.00
USER4 5.49 0.00 0.00 0.00
USER5 10.54 0.00 0.00 0.00
USER6 10.87 0.00 0.00 0.00

Table 2: Detections over all users and similarity measures for USER0’s profile, dictionary of 1000 sequences

MC-P MCA-P MC-E MCA-E
USER0 60.92 33.48 52.69 29.75 t
USER1 68.72 70.14 "~ 77.06 73.77
USER2 93.85 99.89 99.89 99.89
USER3 61.25 48.30 t 52.47 54.99
USER4 34.80 33.26 t 39.08 35.13
USER5 79.69 75.74 t 87.16 87.38
USER6 81.78 70.58 83.53 68.06 t

Table 3: Detections over all users and similarity measures for USER2’s profile, dictionary of 200 sequences

Future directions for this work include examination
of other forms of similarity measures. We are also ex-
amining the possibility of replacing the simple thresh-
old classification system employed here with either a
non-parametric clustering classification system based
on Parzen windows (Fukunaga, 1990) or a classifica-
tion system based on Hidden Markov Models (Rabiner,
1989) of user behavior. Under any of these classifica-
tion schemes, the problem of the selection of an optimal
similarity measure for each user needs to be examined.
Finally, the issue of concept drift must be addressed,
including the influence of concept drift on the optimal
similarity measure.

One issue that must be kept in mind when deal-
ing with concept drift is that of informed malicious
users. Such users are presumed to be aware of all secu-
rity measures in place, including the anomaly detection
system and user profiles. Thus, the anomaly detection
system must be resistant to deliberate training -- that
is, it should, ideally, be able to distinguish genuine
concept drift on the part of a legitimate user from dis-
tortions introduced by a malicious user to subvert the
security measures.

References

Anderson, J. P. (1980). Computer security threat
monitoring and surveillance, (Technical Report),
Washington, PA, James P. Anderson Co.

Baffes, P., ~ Mooney, R. (1996). A novel application
of theory refinement to student modeling. Proceed-
ings of the Thirteenth National Conference on Artifi-
cial Intelligence (pp. 403-408). Portland, OR: AAAI
Press.

Denning, D. E. (1987). An intrusion-detection model.
IEEE Transactions on Software Engineering, 13, 222-
232.

Dietterich, T. G. , ~ Michalski, R. S. (1986). Learn-
ing to predict sequences. In Michalski, Carbonell
Mitchell (Eds.), Machine learning: An artificial in-
telligence approach. San Mateo, CA: Morgan Kauf-
mann.

Forrest, S., Hofmeyr, S. A., Somayaji, A.,
Longstaff, T. A. (1996a). A sense of self for Unix
processes. Proceedings of 1996 IEEE Symposium on
Computer Security and Privacy.

Forrest, S., Hofmeyr, S., & Somayaji, A. (1996b).
Computer immunology. Communications of the
ACM.

Frank, J. (1994). Machine learning and intrusion de-
tection: Current and future directions. Proe. of the
17th National Computer Security Conference.

Fukunaga, K. (1990). Statistical Pattern Recognition
(second edition). San Diego, CA: Academic Press.

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukher-
jee, B., Wood, J., ~ Wolber, D. (1990). A network
security monitor. Proceedings of the 1990 IEEE Sym-
posium on Research in Security and Privacy (pp. 296-
304).

Hirsh, H., & Japkowicz, N. (1994). Bootstrapping
training-data representations for inductive learning:
A case study in molecular biology. Proceedings of the
Twelfth National Conference on Artificial Intelligence
(pp. 639-644). Seattle, WA.

Krsul, I., & Spafford, E. H. (1996). Authorship anal-
ysis: Identifying the author of a program, (CSD-TR-

48



96-052), West Lafayette, IN: Purdue University, De-
partment of Computer Sciences.

Kumar, S. (1995). Classification and detection of
computer intrusions. Doctoral dissertation, Depart-
ment of Computer Sciences, Purdue University, W.
Lafayette, IN.

Lane, T., ~ Brodley, C. E. (1997). Detecting the ab-
normal: Machine learning in computer security, (TR-
ECE 97-1), West Lafayette, IN: Purdue University.

Lunt, T. F. (1990). IDES: An intelligent system
for detecting intruders. Proceedings of the Sympo-
sium: Computer Security, Threat and Countermea-
sures. Rome, Italy.

Norton, S. W. (1994). Learning to recognize promoter
sequences in E. coli by modelling uncertainty in the
training data. Proceedings of the Twelfth National
Conference on Artificial Intelligence (pp. 657-663).
Seattle, WA.

Rabiner, L. R. (1989). A tutorial on Hidden Markov
Models and selected applications in speech recogni-
tion. Proceedings of the IEEE.

Salzberg, S. (1995). Locating protein coding regions
in human DNA using a decision tree algorithm. Jour-
nal of Computational Biology, 2, 473-485.

Smaha, S. E. (1988). Haystack: An intrusion de-
tection system. Proceedings of the Fourth Aerospace
Computer Security Applications Conference (pp. 37-
44).
Spafford, E. H., ~ Weeber, S. A. (1992). Software
forensics: Can we track code to its authors? 15th Na-
tional Computer Security Conference (pp. 641-650).

Srikant, R., & Agrawal, R. (1996). Mining sequential
patterns: Generalizations and performance improve-
ments, . Proc. of the Fifth Int’l Conference on Extend-
ing Database Technology (EDBT). Avignon, France.

Acknowledgments: We would like to thank Tim
Stough, Gene Spafford, Ronny Kohavi, Paul Utgoff,
Craig Codrington, and our anonymous reviewers for
their helpful comments. We are also grateful to the
members of the Purdue MILLENNIUM Lab and our
other data donors for their contributions of data and
insight to this work. A portion of this research was
funded by the commercial and government sponsors
and supporters of the COAST Laboratory: Cisco Sys-
tems, HP, Schlumberger, MITRE, Sprint, Sun Mi-
crosystems, Hughes Research Laboratories, Thompson
Consumer Electronics, and the U.S. Department of De-
fense.

49


