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ABSTRACT
In the area of mobile ad-hoc networks and wireless mesh net-
works, sequence numbers are often used in routing protocols
to avoid routing loops. It is commonly stated in protocol
specifications that sequence numbers are sufficient to guar-
antee loop freedom if they are monotonically increased over
time. A classical example for the use of sequence numbers is
the popular Ad hoc On-Demand Distance Vector (AODV)
routing protocol. The loop freedom of AODV is not only a
common belief, it has been claimed in the abstract of its RFC
and at least two proofs have been proposed. AODV-based
protocols such as AODVv2 (DYMO) and HWMP also claim
loop freedom due to the same use of sequence numbers.

In this paper we show that AODV is not a priori loop
free; by this we counter the proposed proofs in the litera-
ture. In fact, loop freedom hinges on non-evident assump-
tions to be made when resolving ambiguities occurring in the
RFC. Thus, monotonically increasing sequence numbers, by
themselves, do not guarantee loop freedom.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols; Protocol
verification; F.3.1 [Specifying and Verifying and Rea-
soning about Programs]: Invariants
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AODV; loop freedom; process algebra; routing protocols;
wireless mesh networks
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1. INTRODUCTION
Wireless Mesh Networks (WMNs), which can be consid-

ered to include Mobile Ad-hoc Networks (MANETs), have
gained considerable popularity and are increasingly deployed
in a wide range of application scenarios, including emergency
response communication, intelligent transportation systems,
mining and video surveillance. They are self-organising wire-
less multi-hop networks that can provide broadband commu-
nication without relying on a wired backhaul infrastructure,
a benefit for rapid and low-cost network deployment.

Highly dynamic topologies are a key feature of WMNs and
MANETs, due to mobility of nodes and/or the variability of
wireless links. This makes the design and implementation of
robust and efficient routing protocols for these networks a
challenging task, and a lot of research effort has gone into it.

Loop freedom is a critical property for any routing proto-
col, but it is particularly relevant and challenging for WMNs
and MANETs. Descriptions as in [9] capture the common
understanding of loop freedom: “A routing-table loop is a
path specified in the nodes’ routing tables at a particular
point in time that visits the same node more than once before
reaching the intended destination.” Packets caught in a rout-
ing loop, until they are discarded by the IP Time-To-Live
(TTL) mechanism, can quickly saturate the links and have a
detrimental impact on network performance. It is therefore
critical to ensure that protocols prevent routing loops.

Sequence numbers, indicating the freshness of routing in-
formation, have been widely used to guarantee loop freedom,
in particular for distance vector protocols such as DSDV [20],
AODV [19], AODVv2 (formerly known as DYMO) [21] and
HWMP [14]. These protocols claim to be loop free due to
the use of monotonically increasing sequence numbers. For
example, the AODV RFC states: AODV “uses destination
sequence numbers to ensure loop freedom at all times (even
in the face of anomalous delivery of routing control mes-
sages), ...” [19], and a similar claim is made in the IETF
draft of AODVv2 [21]: “AODVv2 uses sequence numbers to
assure loop freedom [Perkins99].”1 A proof of loop freedom
of AODV has been provided in [22]. Another, more recent

1Here, [Perkins99] is our reference [22].



proof is [26].2 It is therefore a common belief that the use of
sequence numbers in this context guarantees loop freedom.

However, while this use of sequence numbers can be an
efficient approach to address the problem of routing loops,
we show in this paper that sequence numbers by themselves
do not guarantee loop freedom. We illustrate this using
AODV as a running example.

We show that loop freedom can be guaranteed only if se-
quence numbers are used in a careful way, considering fur-
ther rules and assumptions on the behaviour of the protocol.
The problem is, as shown in the case of AODV, that these
additional rules and assumptions are not explicitly stated
in the RFC, and that the RFC has significant ambiguities
in this regard. We demonstrate that routing loops can be
created—while fully complying with the RFC, and making
reasonable assumptions when the RFC allows different inter-
pretations. As a consequence, which is a key contribution of
this paper, we obtain that routing protocols using sequence
numbers as described in [19] are not a priori loop free. We
argue that the lack of precision and the corresponding ambi-
guity of the protocol definition in the RFC is a key problem
here—and for RFCs in general. As another contribution we
show details of several ambiguities and contradictions in the
AODV RFC, and discuss which interpretations will lead to
routing loops. A third contribution of this paper is an ana-
lysis of five key implementations of the AODV protocol, and
a discussion of their corresponding loop freedom properties.

To address the problem of ambiguities and contradictions
in RFCs, we argue for the benefit of more precise and for-
mal approaches for the specification of protocols, which are
sufficiently expressive to model real networks and protocols,
while maintaining usability. As a final contribution we show
how formal methods can be used to avoid ambiguities in
RFCs and to guarantee properties such as loop freedom.

The remainder of the paper is organised as follows: in Sec-
tion 2 we recapitulate the basic principles of the AODV pro-
tocol. We state what we mean by loop freedom and discuss
the existing proofs of AODV’s loop freedom. In Section 3,
nearly all plausible readings of the AODV RFC, resolving its
ambiguities and contradictions, are discussed. Each of the
presented interpretations is analysed w.r.t. loop freedom. In
Section 4 we show an example of a routing loop occurring in
the AODV routing protocol, as a result of following a rea-
sonable and plausible interpretation of the RFC. Having the
various RFC interpretations and the loop example in mind,
we then analyse five different key implementations of AODV
w.r.t. routing loops. Finally, in Section 6, we sketch how for-
mal methods—here in the form of process algebra—can be
applied to model routing protocols and verify the presented
results on routing loops. Before we conclude with a short
discussion in Section 8, we present major related work in
Section 7.

2. AODV
To prove that sequence numbers do not a priori guaran-

tee loop freedom, we use AODV as an example. We expect
that other routing protocols such as AODVv2 and HWMP
behave similarly. AODV [19] is a popular routing protocol
designed for MANETs, and is one of the four protocols cur-
rently standardised by the IETF MANET working group3.

2We discuss problems with these proofs later in this paper.
3http://datatracker.ietf.org/wg/manet/charter/

It also forms the basis of new WMN routing protocols, in-
cluding the upcoming IEEE 802.11s wireless mesh network
standard [14]. AODV is designed for wireless and mobile
networks where links are particularly unreliable.

2.1 Brief Overview
AODV is a reactive protocol, which means that routes are

established only on demand. If a node S wants to send a
data packet to a node D, but currently does not know a
route, it temporarily buffers the packet and initiates a route
discovery process by broadcasting a route request (RREQ)
message in the network. An intermediate node A that re-
ceives the RREQ message creates a routing table entry for
a route towards node S referred to as a reverse route, and
re-broadcasts the RREQ. This is repeated until the RREQ
reaches the destination node D, or alternatively a node that
knows a route to D. In both cases, the node replies by uni-
casting a corresponding route reply (RREP) message back
to the source S, via a previously established reverse route.
When forwarding RREP messages, nodes create a routing
table entry for node D, called the forward route. When the
RREP reaches the originating node S, a route from S to
D is established and data packets can start to flow. Both
forward and reverse routes are maintained in a routing ta-
ble at every node—details are given below. In the event
of link and route breaks, AODV uses route error (RERR)
messages to notify the affected nodes: if a link break is de-
tected by a node, it first invalidates all routes stored in the
node’s own routing table that actually use the broken link.
Then it sends a RERR message containing the unreachable
destinations to all (direct) neighbours using this route.

In AODV, a routing table consists of a list of entries—at
most one for each destination—each containing the following
information:

• the destination IP address;

• the destination sequence number;

• the sequence-number-status flag—tagging whether the
recorded sequence number can be trusted;

• a flag tagging the route as being valid or invalid—this
flag is set to invalid when a link break is detected;

• the hop count, a metric to indicate the distance to the
destination;

• the next hop, an IP address that identifies the next (in-
termediate) node on the route to the destination;

• a list of precursors, a set of IP addresses of those 1-hop
neighbours that use this particular route; and

• the lifetime (expiration or deletion time) of the route.

The destination sequence number constitutes a measure ap-
proximating the relative freshness of the information held—a
higher number denotes newer information. The routing ta-
ble is updated whenever a node receives an AODV control
message (RREQ, RREP or RERR) or detects a link break.

During the life time of the network, each node not only
maintains its routing table, it also stores its own sequence
number. This number is used as a local “timer” and is incre-
mented whenever a new route request is initiated.

Full details of the protocol are outlined in the request for
comments (RFC) [19], the official specification of AODV.

http://datatracker.ietf.org/wg/manet/charter/


2.2 Loop Freedom
The “naive” notion of loop freedom is a term that infor-

mally means that “a packet never goes round in cycles with-
out (at some point) being delivered”. This dynamic defini-
tion is too restrictive a requirement for AODV. There are
situations where packets are sent in cycles, but which should
not be considered“harmful”. This can happen when the net-
work topology keeps changing. The sense of loop freedom
is much better captured by a static invariant, saying that
at any given time the collective routing tables of the nodes
do not admit a loop. Such a requirement does not rule out
the dynamic loop alluded to above. However, in situations
where the topology remains stable sufficiently long it does
guarantee that packets will not keep going around in cycles.

2.3 Proofs Based On Sequence Numbers
As mentioned before, AODV “uses destination sequence

numbers to ensure loop freedom at all times” [19, Page 2].
Moreover, it has been “proven” at least twice that AODV is
loop free [22, 26].

In both papers a main argument is that messages relating
to a particular route request are handled only once at ev-
ery node; moreover that every route discovery process has
a unique sequence number. The latter is guaranteed since a
node’s own sequence number is incremented whenever a new
route discovery is initiated. Each sequence number stored
in any routing table for destination dip is ultimately derived
from dip’s own sequence number at the time such a route
was discovered.

The proof sketch given in [22] uses the fact that when a
loop in a route to a destination Z is created, all nodes Xi on
that loop must have route entries for destination Z with the
same destination sequence number. “Furthermore, because
the destination sequence numbers are all the same, the next
hop information must have been derived at every node Xi

from the same RREP transmitted by the destination Z” [22,
Page 11]. The latter is not true at all: some of the infor-
mation could have been derived from RREQ messages, or
from a RREP message transmitted by an intermediate node
that has a route to Z. More importantly, the nodes on the
loop may have acquired their information on a route to Z
from different RREP or RREQ messages, that all carried
the same sequence number. This will be illustrated in our
forthcoming loop example.

The proof of [26] was established in two steps: (i) a math-
ematical model of AODV was derived4; (ii) based on the
derived model loop freedom was proven using the interac-
tive theorem prover Isabelle [18].5 In the model of [26] route
replies generated by intermediate nodes [19, Sect. 6.6.2.] are
not considered. Since this is a key feature of AODV (and, as
we shall see, an essential ingredient in the creation of rout-
ing loops), the work of [26] cannot be said to pertain to the
full protocol.

3. AMBIGUITIES IN THE AODV RFC
“A Request for Comments (RFC) is a publication of the

Internet Engineering Task Force (IETF) and the Internet
Society [. . . ]. A RFC is authored by engineers and computer
scientists in the form of a memorandum describing methods,
behaviors, research, or innovations applicable to the working

4In [26] the model is only given partially.
5Again only snippets of the proofs can be found in [26].

of the Internet and Internet-connected systems. [. . . ] The
IETF adopts some of the proposals published as RFCs as In-
ternet standards.”6 Not all RFCs are standards [13]. How-
ever, in the case of the AODV routing protocol, the RFC
3561 [19] is the de facto standard.

RFCs are typically written in English and are not equipped
with a formal description language. This has the advantage
that everybody can read any RFC. However, it holds the
disadvantage that the RFC contains contradictions and am-
biguities. Additionally, there may be unexpected situations
occurring in real networks that are not described or antic-
ipated by the RFC. In sum, this yields a variety of inter-
pretations for every RFC; some interpretations being more
plausible than others.

In this section, we discuss some of the ambiguities found
in the specification of AODV. We catalogue and analyse
the variants of AODV arising from interpretations consis-
tent with the reading of the RFC and show which of them
yields routing loops. Our analysis is based on a rigorous,
formal, and mathematical approach [7]. A full and detailed
analysis is given in [8]. Table 1 summarises the results; sec-
tion numbers refer to [19].

One of the crucial aspects of AODV is the maintenance
of routing tables. Hence the update of routing table entries
with new information has to be performed carefully. Un-
fortunately, the RFC specification only gives hints how to
update routing table entries; an exact and precise definition
is missing.

1. Updating the Unknown (Invalid) Sequence Num-
ber in Response to a Route Reply. If a node receives
a RREP message, it might have to update its routing ta-
ble: “the existing entry is updated only in the following cir-
cumstances: (i) the sequence number in the routing table
is marked as invalid [. . . ]” [19, Sect. 6.7]. Here it is rele-
vant that, through the sequence-number-status flag, any se-
quence number can be marked as unknown or invalid. In the
same section it is also stated what actions occur if a route
is updated. Among others it is stated that “the destination
sequence number is marked as valid, [. . . ] and the [new] des-
tination sequence number [in the routing table] is the Desti-
nation Sequence Number in the RREP message.” [19, Sect.
6.7]. The interpretation that follows these lines literally is
denoted 1a in Table 2. It can decrement sequence numbers,
which immediately yields routing loops, as explained in [8,
Sect. 8]. This update mechanism contradicts Sect. 6.1 of [19],
which states that any information from an incoming AODV
control message that carries a lower sequence number than
the corresponding entry in the routing table MUST be dis-
carded (Interpretation 1b). The routing loops resulting from
following Sect. 6.7 strongly indicate that this contradiction
in the RFC should be resolved in favour of Sect. 6.1.

2. Updating with the Unknown Sequence Number.
Whenever a node receives a forwarded AODV control mes-
sage from a 1-hop neighbour, it creates a new or updates
an existing routing table entry to that neighbour. For ex-
ample, “[w]hen a node receives a RREQ, it first creates or
updates a route to the previous hop without a valid sequence
number” [19, Sect. 6.5]. In case a new routing table entry is
created, the sequence number is set to a default value (typi-
cally 0, as is done in implementations such as AODV-UU [2],
AODV-UIUC [15] and AODV-UCSB [4]) and the sequence-

6http://en.wikipedia.org/wiki/Request_for_Comments
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Table 1: Analysis of different interpretations of the RFC 3561 (AODV)

1. Updating the Unknown (Invalid) Sequence Number in Response to a Route Reply
1a. the destination sequence number (DSN) is copied from the

RREP message (Sect 6.7)
may decrement sequence numbers, which causes loops

1b. the routing table is not updated when the information that
it has is “fresher” (Sect. 6.1)

does not cause loops

2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a. no update occurs does not cause loops, but opportunity to improve routes

is missed.
2b. overwrite any routing table entry by an update with an

unknown DSN
may decrement sequence numbers, which causes loops

2c. use the new entry with the old DSN does not cause loops

3. (Dis)Allowing the Creation of Self-Entries in Response to a Route Reply
3a. allow (arbitrary) self-entries loop free only if used with Interpretations 4d or 4e below
3b. allow optimal self-entries only;

store own sequence number in optimal self-entry
does not cause loops

3c. disallow self-entries; if self-entries would occur, ignore msg. does not cause loops
3d. disallow self-entries; if self-entries would occur, forward does not cause loops

4. Invalidating Routing Table Entries in Response to a Route Error Message
4a. always copy DSN from RERR message (Sect. 6.11) may decrement sequence numbers, which causes loops

(when allowing self-entries (Interpretation 3a))
4b. only invalidate if the DSN in the routing table is smaller

than or equal to the one from the RERR message (Sect. 6.1)
causes loops (when allowing self-entries)

4c. take the maximum of the DSN of the routing table and the
one from the RERR message

causes loops (when allowing self-entries)

4d. take the maximum of the increased DSN of the routing
table and the one from the RERR message

does not cause loops

4e. only invalidate if the DSN in the routing table is smaller
than the one from the RERR message (Sect. 6.2)

does not cause loops

number-status flag is set to unk to signify that the sequence
number corresponding to the neighbour is unknown. But,
what happens if there exists already a routing table entry?
Following the quote above, the routing table has to be up-
dated. Unfortunately, it is not stated how the update is
done.7 There are three reasonable options:
(2a) no update occurs. This interpretation is harmless with
regard to routing loops, but misses an opportunity to im-
prove some routes. It can be argued that the RFC rules out
this option by including “or updates” in the quote above.
(2b) All information is taken from the incoming AODV con-
trol message; since that message formally does not contain
a sequence number for the neighbour, the destination se-
quence number is set to value 0. Since this can decrease
sequence numbers, routing loops might occur. Hence this
interpretation must not be used.
(2c) The information from the routing table and from the
incoming AODV control message is merged.8 This interpre-
tation does not give rise to loops.

3. (Dis)Allowing the Creation of Self-Entries in Re-
sponse to a Route Reply. In any practical implementa-
tion, when a node sends a data packet to itself, the packet
will be delivered to the corresponding application on the
local node without ever involving a routing protocol and
therefore without being “seen” by AODV or any other rout-
ing protocol. Because of this it seems that it does not make
a difference whether any node using AODV stores routing
table entries to itself.

In AODV, when a node receives a RREP message, it cre-
ates a routing table entry for the destination node if such an

7Section 6.2 of [19] further explains in which circumstances
an update occurs. It does not resolve this ambiguity (cf. [8]).
8By taking the destination sequence number from the exist-
ing routing table entry and all other information from the
AODV control message.

entry does not already exist [19, Sect. 6.7]. If the destina-
tion node happens to be the processing node itself, this leads
to the creation of a self-entry. The RFC does not mention
self-entries explicitly; it only refers to them at one location:
“A node may change the sequence number in the routing ta-
ble entry of a destination only if: – it is itself the destination
node [. . . ] ” [19, Sect. 6.1]. This points at least to the pos-
sibility of having self-entries. We have analysed various im-
plementations of AODV and found that the Kernel-AODV
[1], AODV-UIUC [15], AODV-UCSB [4] and AODV-ns2 im-
plementations allow the creation of self-entries.

If arbitrary self-entries are allowed (Interpretation 3a in
Table 2) this can, in combination with other plausible as-
sumptions, yield routing loops, as we will show in the next
section. However, storing only optimal self-entries in rout-
ing tables (Interpretation 3b) does not cause loops. For
example, Kernel-AODV maintains the nodes’ own sequence
numbers in this way.

On the other hand, there are two possibilities to disallow
self-entries: if a node receives a route reply and would create
a self-entry, it silently discards the message (Interpretation
3c). This interpretation has the disadvantage that replies are
lost. The alternative is that the node forwards the message
without updating its routing table (3d). Both variants by
themselves do not yield routing loops.

4. Invalidating Routing Table Entries in Response
to a Route Error Message. If a node receives a RERR
message, it might invalidate entries of its routing table based
on information from this message. When invalidating rout-
ing table entries, destination sequence numbers should be
“copied from the incoming RERR” [19, Sect. 6.11]. This is
Interpretation 4a in Table 1. In particular, this part of the
RFC prescribes the replacement of an existing destination
sequence number in a routing table entry with one that may
be strictly smaller, which contradicts Sect. 6.1 of the RFC.



To make invalidation consistent with Sect. 6.1 of the RFC,
one could use two possible variants instead. The first (4b),
strictly following Sect. 6.1, invalidates only if the destina-
tion sequence number in the routing table is smaller than or
equal to the destination sequence number provided by the
incoming RERR message; it aborts otherwise. The second
(4c) invalidates in all circumstances, but prevents a decrease
in the destination sequence number by taking the maximum
of the stored and the incoming number.9 In the next sec-
tion we will show that each of these three interpretations
can yield routing loops, when used in conjunction with non-
optimal self-entries.

There are two reasonable solutions to avoid routing loops
in these circumstances. As a modification of Interpretation
4c, one can first increment the destination sequence number
of the routing table by one and then use the maximum of this
updated sequence number and the one from the RERR mes-
sage (Interpretation 4d). Alternatively, one could invalidate
only if the destination sequence number in the routing table
is (strictly) smaller than the destination sequence number
provided by the incoming RERR message (4e), and abort if
it is larger or equal. The latter interpretation is at least con-
sistent with Section 6.2 of the RFC, which states that “The
route is only updated if the new sequence number is either
(i) higher than the destination sequence number in the route
table, or [. . . ]”.

4. AODV YIELDS LOOPS
In the previous section, we discussed some of the ambigui-

ties found in the specification of AODV, and catalogued the
variants of AODV that arise from interpretations consistent
with the RFC. In the following we describe an example of
a routing loop in AODV, based on a reasonable and plausi-
ble interpretation of the RFC, following Interpretations 3a
and any out of 4a, 4b and 4c of AODV, in resolving the
ambiguities from Table 1.

4.1 Creating Routing Loops
The given example (shown in Figure 1) consists of four

parts: (1) First, a standard RREQ-RREP cycle occurs (Fig-
ures 1(a)–(b)); (2) Then, a node stores information about
itself in its routing table (Figures 1(c)–(e)); Such informa-
tion is called a self-entry. (3) Another standard RREQ-
RREP cycle occurs (Figure 1(f)); (4) Finally, a link break
in combination with another route discovery yields the loop
(Figures 1(g)–(h)).

1. Standard RREQ-RREP Cycle. In Figure 1(a), we
show the initial network topology, with the nodes’ sequence
numbers depicted inside the circles. Figure 1(b) shows node
D searching for a route to node A. We see that the sequence
number for node D is increased to 2 (“The Originator Se-
quence Number in the RREQ message is the node’s own se-
quence number, which is incremented prior to insertion in a
RREQ.” [19, Sect. 6.3]). Figure 1(b) also shows the nodes’
routing tables. Each routing table entry (depicted as a 5-
tuple) contains information about the destination, the des-
tination’s sequence number, the validity of the routing table
entry, the hop count and the next hop (cf. Section 2.1). We

9Although this is not really a plausible reading of the RFC,
Interpretation 4c can be seen as a compromise between Sec-
tions 6.11 and 6.1 of the RFC—it seems a natural way to
avoid a decrement of destination sequence numbers and still
take all information from the RERR message into account.

do not show the sequence-number-status flag, the list of pre-
cursors in the routing table entries and the lifetime of a route
as they constitute auxiliary information that is not critical
to the loop example here. Due to the successful exchange
of RREQ-RREP messages, nodes D and A create routing
table entries to each other in their routing table.

2. Self-Entries. In Figure 1(c), we see node S searching
for a route to node D. In Figure 1(d), the link between nodes
S and D goes up (e.g. due to node mobility) and node S then
searches for a route to node X. The route request message
RREQS�X is forwarded by nodes D and A since they do not
have any information on the destination node X. From the
information contained in the RREQS�X message, a routing
table entry to node S is created in the routing tables of
nodes D and A. “Then the node searches for a reverse route
to the Originator IP Address [. . . ] If need be, the route is
created, or updated using the Originator Sequence Number
from the RREQ in its routing table.” [19, Sect. 6.5]. Node
S also receives the forwarded RREQS�X message from node
D, and before silently discarding the message (since it is
the originator of the RREQ message), updates its routing
table to create an entry to node D. “When a node receives
a RREQ, it first creates or updates a route to the previous
hop without a valid sequence number.” [19, Sect. 6.5]. We
use the value 0 for an unknown/invalid sequence number
created in this manner, as is also done in implementations
like AODV-UU [2], AODV-UIUC [15] and AODV-UCSB [4].

At some point, RREQS�D finally reaches node A (Fig-
ure 1(e)). Since node A has a valid routing table entry to
node D, it generates an intermediate route reply message
using the information from its routing table [19, Sect. 6.6
and 6.6.2]. The RREPS�D message is unicast to node D,
the next hop on the path towards node S. “Once created,
the RREP is unicast to the next hop toward the origina-
tor of the RREQ, as indicated by the routing table entry
for that originator.” [19, Sect. 6.6]. Node D processes the
RREPS�D message, updates its routing table and forwards
the message to node S, which establishes a route to node D.
When updating its routing table, node D creates a self-entry
(following Interpretation 3a in Table 1) since the RREPS�D

message contains information about a route to node D [19,
Sect. 6.7].

3. Standard RREQ-RREP Cycle. In Figure 1(f), the
link between nodes S and X goes up, while the link between
nodes D and A goes down. Node D also searches for a
route to node X. Due to the successful exchange of RREQ-
RREP messages, the routing tables of nodes D, S, and X
are updated accordingly.

4. From Self-Entries to Loops. The loop example con-
tinues with the link between nodes S and X going down
(Figure 1(g)). In addition, node D detects that its link to
node A is broken. Following from this, node D initiates pro-
cessing for a RERR message. “A node initiates processing
for a RERR message [. . . ] if it detects a link break for the
next hop of an active [(val)] route in its routing table while
transmitting data” [19, Sect. 6.11]. In this process, “the node
first makes a list of unreachable destinations consisting of the
unreachable neighbor and any additional destinations [. . . ]
in the local routing table that use the unreachable neighbor
as the next hop.” [19, Sect. 6.11]. In addition, the routing
table for node D has to be updated for these unreachable
destinations as follows: “1. The destination sequence number
of this route entry, if it exists and is valid, is incremented



(a) The initial state. (b) Standard RREQ-RREP cycle; D is looking for A;
(b) A, D establish routing table entries for each other.10
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(d) S searches for X; RREQ message flows throughout the network.
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Figure 1: Creating routing loops

10Each routing table entry has the form (destination, sequence number, validity, hop count,next hop).



[. . . ]. 2. The entry is invalidated by marking the route entry
as invalid”. [19, Sect. 6.11]. The result of this process is
that the sequence numbers of routing table entries for the
unreachable destination nodes A and D are increased, and
the entries invalidated, as shown in the routing table of node
D in Figure 1(g).

The RERR message generated by node D contains infor-
mation about the unreachable destination nodes A and D,
taken from the routing table of node D. The message is sent
to node S since it is the precursor for the unreachable des-
tination node D. Node S receives the RERR message, and
updates its routing table as follows: “1. The destination se-
quence number of this routing entry [. . . ] is copied from the
incoming RERR. [. . . ] 2. The entry is invalidated by mark-
ing the route entry as invalid”. [19, Sect. 6.11]. Therefore,
the entry to node D in node S’s routing table is updated to
(D, 3, inv, 1, D).11

In Figure 1(h), the link between nodes S and D goes down,
while the link between nodes S and X goes up. Node S also
searches for a route to node D. Accordingly, the destina-
tion sequence number in the RREQS�D message is set to
the value 3 since “a previously valid route to the destination
[. . . ] is marked as invalid. [. . . ] The Destination Sequence
Number field in the RREQ message is the last known des-
tination sequence number for this destination and is copied
from the Destination Sequence Number field in the routing
table.” [19, Sect. 6.3]. The RREQ message is received by
node X, which generates an intermediate RREP message
since “it has an active route to the destination, the destina-
tion sequence number in the node’s existing route table entry
for the destination is valid and greater than or equal to the
Destination Sequence Number of the RREQ” [19, Sect. 6.6].
Due to this, node X unicasts a RREPS�D message back to
node S. Finally, node S receives this message and updates
its routing table, as shown in Figure 1(h).

A routing loop between nodes S and X for destination
node D is now established. When either of the nodes has a
data packet to send to destination node D, the data packet
will loop between the two nodes.

In this section, we have shown that AODV is not a pri-
ori loop free. The presented example can create loops if
(i) sequence numbers are implemented in a way consistent
with the RFC, (ii) self-entries are allowed, and (iii) des-
tination sequence numbers are copied directly from RERR
messages—even when this copying is only executed if it does
not cause a decrement in the destination sequence number
in the routing table. This shows that loop freedom hinges
on non-evident assumptions to be made when interpreting
the RFC and not only on monotonically increasing sequence
numbers.

5. AODV IMPLEMENTATIONS
To show that our results are not only theoretically driven,

but do occur in practice, we analyse five different open source
implementations of AODV:

• AODV-UU [2] is an implementation of AODV, developed
at Uppsala University.
http://aodvuu.sourceforge.net/

• Kernel-AODV [1] is an implementation developed at NIST.
http://w3.antd.nist.gov/wctg/aodv_kernel/

11Each of the Interpretations 4a, 4b and 4c in Table 1 will
produce the same update in this scenario.

• AODV-UIUC [15] (Univ. of Illinois at Urbana-Champaign)
is an implementation that is based on an early draft (ver-
sion 10) of AODV.
http://sourceforge.net/projects/aslib/

• AODV-UCSB [4] (Univ. of California, Santa Barbara) is
another implementation that is based on an early draft
(version 6) of AODV. http://moment.cs.ucsb.edu/

AODV/aodv-ucsb-0.1b.tar.gz

• AODV-ns2 is an AODV implementation in the ns2 net-
work simulator, originally developed by the CMU Monarch
project and improved upon later by S. Das and E. Belding-
Royer (the authors of the AODV RFC [19]). It is based on
an early draft (version 8) of AODV. It is frequently used
by academic and industry researchers to simulate AODV.
http://ns2.sourcearchive.com/documentation/

2.35~RC4-1/aodv_8cc-source.html

Although these implementation behave differently, all of
them do capture the main aspects of the AODV protocol,
as specified in the RFC [19]. As we have shown in the pre-
vious sections, implementing the AODV protocol based on
the RFC specification does not necessarily guarantee loop
freedom: routing loops may occur when following either In-
terpretation 1a, Interpretation 2b or the combination of In-
terpretation 3a with any of 4a–c of Table 1. Therefore, we
look at these five concrete AODV implementations to de-
termine whether any of them is susceptible to routing loops.
In particular, we examine the code of these implementations
to see if routing loops can occur. Table 2 shows the results
of this analysis: it indicates for each of the implementa-
tions which of the interpretations of Table 1 they follow and
whether they can create routing loops or not.

We found that none of the five implementations makes use
of the sequence-number-status flag, so a positive sequence
number can never be marked as unknown. As a result, Am-
biguity 1 of Table 1 does not arise.

In AODV-UU, self-entries are never created because a
check is always performed on an incoming RREP message
to make sure that the destination IP address is not the same
as the node’s own IP address. In terms of Table 1 it follows
Interpretations 2c, 3c and 4a. It is shown in [8] that this
interpretation of the RFC (avoiding self-entries) is loop free.

In Kernel-AODV, which follows Interpretations 2a, 3b and
4a of Table 1, an optimal self-entry (with hop count 0 and
next hop being the node itself) is always maintained by ev-
ery node in the network. The optimal self-entry is created
during node initialisation. The node also maintains its own
sequence number in this entry. Since the self-entry is al-
ready optimal, a node will never update the self-entry when
processing any incoming RREP messages that contain infor-
mation about itself. As such, a routing loop as described by
the example in Section 4.1 will never occur.

AODV-UIUC follows the Interpretations 2b, 3a and 4a,
whereas AODV-UCSB implements 2b, 3a and 4b. Due to In-
terpretation 3a, both implementations allow the occurrence
of self-entries. These self-entries are not created during node
initialisation, but generated based on information contained
in received RREP messages.

The processing of RERR messages in AODV-UIUC and
AODV-UCSB does not adhere to the RFC specification (or
even the draft versions that these implementation are based
upon). Due to this non-adherence, we are unable to re-
create the routing loop example in Section 4.1. However,
we note that if both AODV-UIUC and AODV-UCSB were

http://aodvuu.sourceforge.net/
http://w3.antd.nist.gov/wctg/aodv_kernel/
http://sourceforge.net/projects/aslib/
http://moment.cs.ucsb.edu/AODV/aodv-ucsb-0.1b.tar.gz
http://moment.cs.ucsb.edu/AODV/aodv-ucsb-0.1b.tar.gz
http://ns2.sourcearchive.com/documentation/2.35~RC4-1/aodv_8cc-source.html
http://ns2.sourcearchive.com/documentation/2.35~RC4-1/aodv_8cc-source.html


Table 2: Analysis of AODV implementations

Implementation Interpretation Analysis

AODV-UU [2] 2c, 3c, 4a Loop free, since self-entries are explicitly excluded.

Kernel-AODV [1] 2a, 3b, 4a Loop free, due to optimal self-entries.

AODV-UIUC [15] 2b, 3a, 4a Yields loops, through decrement of sequence numbers, by use of Interpretation 2b.

AODV-UCSB [4] 2b, 3a, 4b Yields loops, through decrement of sequence numbers, by use of Interpretation 2b.

AODV-ns2 2a, 3a, 4b
Yields routing loops in the way described in Section 4,
following plausible interpretations of the RFC w.r.t. Ambiguities 3 and 4.

to strictly follow the RFC specification with respect to the
RERR processing, loops would have been created.

Even though the routing loop example of Section 4.1 could
not be recreated, both implementations allow a decrease of
destination sequence numbers in routing table entries to oc-
cur, as a result of following Interpretation 2b. This con-
tradicts the idea of monotonically increasing destination se-
quence numbers, and can give rise to routing loops in a
straightforward way [8, Sect. 8.1].

In AODV-ns2, self-entries are allowed to occur in nodes
and the processing of RERR messages follows the RFC spec-
ification. It follows Interpretations 2a, 3a and 4b. However
in AODV-ns2, whenever a node generates a RREQ message,
sequence numbers are incremented by two instead of by one
as specified in the RFC. We have modified the code such
that sequence numbers are incremented by one whenever a
node generates a RREQ message, and are able to replicate
the routing loop example of Section 4.1 in the ns2 simula-
tor, with the results showing the existence of a routing loop
between node S and node X in Figure 1(h). However, we
note that even if the code remains unchanged and sequence
numbers are incremented by two, AODV-ns2 can still yield
loops; the example is very similar to the one presented and
only varies in subtle details.

In sum, we discovered not only that three out of five
AODV implementations can produce routing loops, but also
that there are essential differences in various aspects of pro-
tocol behaviour. This is due to different interpretations of
the RFC by the developers of the AODV implementations.

6. METHODOLOGY
In Section 3 we discussed several interpretations of the

RFC. We also stated which of these interpretations are loop
free and which are not. To show that there is a possible
routing loop, a single example, like the one we have given in
Section 4, is sufficient.

The statement that a particular interpretation is loop free
is much harder to show. Looking at the specification of
AODV and AODV-based protocols, loop freedom is claimed
in the preamble; the justification is then given by a short in-
formal statement. For example, AODV“uses destination se-
quence numbers to ensure loop freedom at all times (even in
the face of anomalous delivery of routing control messages),
avoiding problems (such as “counting to infinity”) associated
with classical distance vector protocols.” [19, Sect. 1]. As we
have shown, these statements are not sufficient and not nec-
essarily true. The only way to guarantee loop freedom for
some interpretations and to analyse all (reasonable) inter-
pretations in a systematic manner is by the use of formal
modelling and analysis.

6.1 Formal Modelling and Analysis
Ideally, any specification is free of ambiguities and contra-

dictions. Using English prose only, this is nearly impossible
to achieve. Hence every specification should be equipped
with a formal specification. The choice of an appropriate
specification language is often secondary, although it has
high impact on the analysis. The use of any formal language
helps to avoid ambiguities and to precisely describe the in-
tended behaviour. Examples for modelling languages are
(i) the Alloy language, which is used to model Chord [24];
(ii) timed automata, which are the input language for the
Uppaal model checker, used by Chiyangwa, Kwiatkowska
[5] and others [6] to reason about AODV; (iii) routing alge-
bra as introduced by Griffin and Sobrinho [11] or (iv) AWN,
a process algebra particularly tailored for (wireless mesh)
routing protocols [7, 12].

The analysis yielding the results presented in this paper
is based on a formal model using AWN. The reason why we
chose this formal language is two-fold: on the one hand it
is tailored for wireless protocols and therefore offers primi-
tives such as broadcast; on the other hand, it defines the
protocol in a pseudo-code that is easily readable by any net-
work or software researcher/engineer. (The language itself
is implementation independent). Table 3 presents the main
primitives of AWN; the full specification of AODV in AWN
can be found in [8].

Table 3: AWN language (main primitives)

X(exp1, . . . , expn) process name with arguments
P + Q choice
[ϕ]P if statement:

execute P if condition ϕ holds
[[var := exp]]P assignment followed by P
broadcast(ms).P broadcast ms followed by P
groupcast(dests,ms).P iterative unicast to all destina-

tions dests
unicast(dest,ms).P I Q unicast ms to dest:

if successful proceed with P ;
otherwise with Q

deliver(data).P deliver data to application layer
receive(msg).P receive a message
P‖Q parallel composition of nodes

Based on a formal specification one can now perform a
careful analysis of the model to see if the model is consistent
and if it satisfies properties such as loop freedom. Our anal-
ysis uses “classical” paper-and-pen verification techniques,
and, in this end, guarantees the loop freedom of some inter-
pretations of the AODV specification.



6.2 Using Formal Methods to Augment RFCs
Though we have not shown our proofs in the present

paper—the purpose was to show that sequence numbers do
not a priori guarantee loop freedom and that formal meth-
ods are needed—our analysis is based on a rigorous, formal
and mathematical approach. As mentioned before, each in-
terpretation of the RFC has been formalised in an unam-
biguous way.

We strongly believe that a“good”specification should con-
sist of both a formal specification such as the one given in
[12, 8] and an English description. The English text then
serves the purpose of informing the reader about the main
behaviour of the protocol and explains design decisions; the
formal specification gives all the details, without allowing
any ambiguities.

The IETF argues for the value of formal methods for spec-
ifying, analysing and verifying protocols.

“Formal languages are useful tools for specifying
parts of protocols. However, as of today, there
exists no well-known language that is able to cap-
ture the full syntax and semantics of reasonably
rich IETF protocols.” [IETF Web page12]

The quote is dated 1 Oct 2001; we believe that since then
formal methods have advanced to such a state that they are
now able to capture the full syntax and the full semantics of
protocols and should be used for protocol specification and
analysis.

7. RELATED WORK
Analysing and verifying routing protocols has a long tra-

dition. Merlin and Segall [16] were amongst the first to use
sequence numbers to guarantee loop freedom of a routing
protocol. As we have pointed out, at least two proofs for
AODV’s loop freedom have been proposed [22, 26]. These
proof attempts are discussed in Section 2.3. Besides, other
researchers have used formal specification and analysis tech-
niques to investigate the correctness of AODV; we point only
at some examples.

A preliminary draft of AODV has been shown to be not
loop free by Bhargavan et al. in [3]. Since then, AODV
has changed to such a degree that the analysis of [3] has
no bearing on the current version [19]. Furthermore, their
loop had to do with timing issues (as is also the case in [10,
23]), whereas ours is time-independent. In the same paper
they show the use of model checking on a draft of AODV,
demonstrating the feasibility and value of automated verifi-
cation of routing protocols. Using the model checker SPIN
they were able to find/verify the routing loop in the pre-
liminary draft. Musuvathi et al. [17] introduced the CMC
model checker primarily to search for coding errors in imple-
mentations and used AODV as an example. Chiyangwa and
Kwiatkowska [5] use the timing features of the model checker
Uppaal to study the relationship between the timing param-
eters and the performance of route discovery. A “time-free”
model of AODV is exhaustively analysed by Fehnker et al.
in [6], where variants of AODV, which yield performance
improvements, are proposed and analysed. The presented
model is based on the process algebra AWN introduced by
the same authors in [7]; the complete model of AODV can
be found in [8].

Next to the analysis of AODV with various formal meth-
ods, formal languages are also used for the specification and

verification of other reasonably rich protocols. In [11], Grif-
fin and Sobrinho use path algebras and algebraic routing to
define a metarouting language that allows the definition of
routing protocols. Their main interest lies in the combina-
tion of different algebras with applications in interdomain
routing protocols such as BGP. Zave et al. provide abstrac-
tions for implementing the SIP protocol; the major elements
of the language are presented in [25].

8. DISCUSSION & CONCLUSION
We have shown that, in contrast to common belief, se-

quence numbers do not guarantee loop freedom, even if they
are increased monotonically over time and incremented
whenever a new route request is generated. This was mainly
achieved by analysing the Ad hoc On-demand Distance Vec-
tor (AODV) routing protocol. We have shown that AODV
can yield routing loops.

Of course, one could argue that the given loop example
does not occur in practice very often, since the sequence in
which different requests have to be initiated and afterwards
handled by different nodes might be really rare. However,
it has been claimed that routing loops are avoided in all
possible scenarios by the use of sequence numbers—this has
been proven to be incorrect. Here, it does not matter how
often this scenario occurs in real life. The fact that the
example exists and can occur, makes the protocol flawed and
disproves the fact that monotonically increasing sequence
numbers are sufficient to guarantee loop freedom.

Next to that we have analysed several different interpre-
tations of the AODV RFC. It turned out that several in-
terpretations can yield unwanted behaviour such as routing
loops. We also found that implementations of AODV behave
differently in crucial aspects of protocol behaviour, although
they all follow the lines of the RFC. This is often caused by
ambiguities, contradictions or unspecified behaviour in the
RFC. Of course a specification “needs to be reasonably im-
plementation independent”12 and can leave some decisions
to the software engineer; however it is our belief that any
specification should be clear and unambiguous enough to
guarantee the same behaviour when given to different devel-
opers. As demonstrated, this is not the case for AODV, and
likely not for many other RFCs provided by the IETF.

Our work confirms that RFCs written merely in a natu-
ral language contain ambiguities and contradictions. As a
consequence, the various implementations depart in various
ways from the RFC. Moreover, semi-informal reasoning is
inadequate to ensure critical safety-properties like loop free-
dom. We believe that formal specification languages and
analysis techniques—offering rigorous verification and ana-
lysis techniques—are now able to capture the full syntax and
semantics of reasonably rich IETF protocols. These are an
indispensable augmentation to natural language, both for
specifying protocols such as AODV, AODVv2 and HWMP,
and for verifying their essential properties.
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