Sequence of the ebga Gene of Escherichia coli: Comparison with the lacZ Gene ${ }^{1}$

Harold W. Stokes, ${ }^{2}$ Paul W. Betts, and Barry G. Hall
Molecular and Cell Biology Department, The University of Connecticut

Abstract

We have sequenced the ebgA (evolved β-galactosidase) gene of Escherichia coli K 12 . The sequence shows 50% nucleotide identity with the E. coli lac Z gene, demonstrating that the two genes are related by descent from a common ancestral gene. Comparison of the two sequences suggests that the $e b g A$ gene has recently been under selection. A significant excess of identical, rather than synonymous, codons used to encode identical amino acids at the same positions in the aligned sequences implies that some form of selection is operating directly at the DNA level. This selection is independent of, and in addition to, selection based on codon usage or on function of the gene products.

Introduction

The EBG (evolved β-galactosidase) system of Escherichia coli has been used a model for the detailed study of acquisitive evolution via changes in the catalyic properties of an enzyme (Hall 1983).

Wild-type EBG β-galactosidase, encoded by the $\operatorname{ebg} A$ gene, is an ineffective lactase. It has a K_{m} of 150 mM lactose, and a $\mathrm{V}_{\text {max }}$ of 620 nmoles hydrolyzed/minute/mgof enzyme, which is an insufficient level of activity to permit growth on lactose even when the protein is synthesized constitutively as 5% of the soluble protein of the ©ell (Hall and Hartl 1975; Hall 1981). Two classes of single point mutations (Hall 19需) dramatically improve the activity of ebg enzyme toward lactose (Hall 1976; Hall 19815). When both of these mutations are present in the same gene, the double-mutant enzyme hydrolyzes lactose considerably more efficiently than does either single-mutant clagss (Hall 1981). For example, the double-mutant enzyme encoded by the ebgA205 allele has a K_{m} for lactose of 0.93 mM , and a $\mathrm{V}_{\max }$ of $2,000 \mathrm{nmol} / \mathrm{min} / \mathrm{mg}$, i.e., $\mathrm{V}_{\max } / \mathrm{F}_{\mathrm{m}}$ is improved 537 -fold relative to the wild-type enzyme (Hall 1981). This may be cominpared with the K_{m} of 2.5 mM lactose, and a $\mathrm{V}_{\max }$ of $32,600 \mathrm{nmol} / \mathrm{min} / \mathrm{mg}$ exhibited by the lacZ β-galactosidase (Huber, Kurz, and Wallenfels 1976). The wild-type ébg enzyme does not detectably convert lactose to allolactose, whereas the double-mutannt enzyme converts lactose to allolactose at $\sim 10 \%$ of the rate at which it hydrolyzes lactose (Hall 1982). Thus, as a result of two point mutations, ebg enzyme is ablecto replace the lacZ β-galactosidase both with respect to lactose hydrolysis and inductionn of the lac permease gene and consequently is able to permit growth on lactose as a sole carbon and energy source. Because the ebgA gene can evolve to replace the function

1. Key words: ebgA and lacZ genes, nucleotide identity, identical codons.

Address for correspondence and reprints: Dr. Barry G. Hall, Molecular and Cell Biology Department, U-44, The University of Connecticut, Storrs, Connecticut 06268.
2. Current address: School of Biological Sciences, Macquarie University, North Ryde, N.S.W. 2113, Australia.
of the lac Z gene, it is of interest to determine the relationship between these two genes. We have therefore compared the sequences of these two genes.

Material and Methods

Isolation and Manipulation of Plasmid DNA

The construction and preparation of plasmid pUF2, containing the cloned ebg A gene, has been previously described (Stokes and Hall 1984). Purified restriction fragments of cloned DNA were prepared by electroelution from agarose gels (Maniatis et al. 1982). The DNA was then passed over a BRL NACS-52 prepac column, ethanol precipitated, resuspended in appropriate buffer, and ligated into M13 vectors MP8, MP9, MP18, and MP19 as described by Sanger et al. (1980). Escherichia coli strain JM101 (Sanger et al. 1980) was the host for transformation.

Construction of Recombinant M13 Clones with Bal 31 Nuclease
The appropriate restriction fragments were isolated and suspended in $300 \mu \mathrm{lof}$ Bal 31 buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.1,12 \mathrm{mM} \mathrm{MgCl} 2,12 \mathrm{mM} \mathrm{CaCl} 2,60 \mathrm{mM} \mathrm{Na}$. 1 mM EDTA). One-half unit of Bal 31 was added, and the DNA was digested for se $^{-}$ 3 min . Reactions were stopped with 25 mM EDTA. Digested DNA was end repaired with Klenow fragment (Maniatis et al. 1982), and fragments were cloned into Smब1cut M13 vectors.

Nucleic Acid Sequencing

DNA sequence was determined essentially by the dideoxy method of Biggin et al. (1983), except that ${ }^{32} \mathrm{P}$ was used. To resolve an ambiguity in the sequence, p 1,793-1,894 were also sequenced, by the method of Maxam and Gilbert (1977).

Results

Determination of the ebgA Gene Sequence
Restriction fragments of the segment of plasmid pUF2 that were previously shown to encompass the ebgA gene (Stokes and Hall 1984) were subcloned into appropriate M13 vectors. The positions and orientations of a subset of those sequenced fragmenits that define a contiguous ebgA sequence are shown in figure 1. A number of other

Fig. 1.-Restriction map and sequencing strategy for ebgA. The limits of $e b g A$ are defined by the boxed region. Letters refer to restriction sites: $\mathbf{B}=B a m H l, \mathbf{C}=C l a \mathrm{I}, \mathrm{H}=H i n c \mathrm{II}$, and $\mathbf{P}=P s t \mathrm{I}$. Arrowed lines refer to a set of sequenced overlapping clones that define a contiguous sequence. The arrowheads indicate the strand sequenced, and the numbers are clone designations.
clones (not shown in fig. 1) were sequenced, and the majority of the sequence was confirmed by sequencing both strands with overlapping fragments.

Figure 2 shows the DNA sequence of $e b g A$ and the deduced amino acid sequence. The correct reading frame was initially established by comparison with the sequences of two ebg peptides that were labeled by an active site-labeling reagent (Fowler and Smith 1983). In addition, there was only one open reading frame of sufficient length to account for the coding region of $\operatorname{ebg} A(\sim 3 \mathrm{~kb})$ as previously established (Stokes and Hall 1984). Table 1 shows the alignment of the $e b g A$ gene with the $l a c Z$ gene (Kalnins et al. 1983). The two sequences were aligned by eye, with the aid of the Cornell DNA sequence analysis program (Fristensky, Lis, and Wu 1982), which was used to locate regions of significant similarity. Because the sequences were aligned fy eye rather than by an algorithm that "optimizes" identity, the percentage ident shown in table 1 is a minimum estimate. The majority of the gaps used to align the two sequences were in multiples of three bases; however, two of the segments are "ogit of frame" with respect to each other. The alignment analyzed has 50% DNA sequene identity over $2,665 \mathrm{bp}$, and 33% amino acid identity over 850 residues.

The sequences of the two ebg peptides identified by Fowler and Smith (1983) as active-site regions differ slightly from the deduced sequences reported here. The orlly significant difference is that Fowler and Smith reported the labeling of a serine in ebs A corresponding to methionine at position 502 of $\operatorname{lac} Z$, whereas we identify that residaie as a methionine. It is unlikely that this difference arises from allelic differences, singe we have sequenced this region on both strands of two additional alleles of ebgA (data not shown), and in each case the deduced amino acid at that position was a methionine, not a serine.

We have also sequenced the region between the termination of the adjacent $e b{ }^{2} R$ gene and the beginning of the ebgA coding sequence (fig. 3). BP 91-148 of that regiôn are 47% identical to bp 13-70 of the region between lacI and lacZ (Dickson et ${ }^{3}$). 1975), bp 149-225 are 51% identical to bp 1-77 of lacZ, and bp 226-269 are 52\% identical to bp 149-192 of lacZ.

Discussion

The similarity between the ebgA gene and the lacZ gene of Escherichia coli leads to the conclusion that the two genes are descended from a common ancestral gewe, i.e., that they are homologous. This homology is also apparent at the level of the amigo acid sequences. If the ebgA gene were not under selection, it would be expected that the substitutions that led to 50% sequence divergence would be randomly distributed. In that case it would be unlikely that lactase activity could be restored by only a few mutations. The observation that only two mutations are required to increase the activity of wild-type EBG enzyme to the point where it approaches that of lac $Z \beta$-galactosidase therefore implies that the ebgA gene is, or has recently been, under selection.

The sequence identity at the DNA level (50%) exceeds that at the amino acid level (33%). This is consistent with the general observation (Riley 1984) that duplicated genes in the same genome exhibit greater nucleotide than amino acid identity. This is in contrast to the observation that homologous genes in different bacterial species exhibit greater amino acid than nucleotide similarity, and that duplicated genes within a genome tend to use identical, rather than synonymous, codons. Riley (1984) has suggested that this is because (1) duplication within a genome is more recent than the time of divergence of related bacterial genera and (2) there has been insufficient time for duplications within genomes to achieve equilibrium value for use of synonymous
ATG GCT GAC TGG GGG CAT ATT ACC GTC CCC GCC ATG TGG CAA ATG GAA GGT CAC GGC AAA CTG CAA TAT ACC MET Ala Asp Trp Gly His Ile Thr Val Pro Ala MET Trp Gln MET Glu Gly His Giy Lys Leu Gln Tyr Thr GAC GAA GGT TTT CCG TTC CCC ATC GAT GTG CCG TTT GTC CCC AGC GAT AAC CCA ACC GGT GCC TAT CAA 108120 Asp Glu Gly Phe Pro Phe Pro lle Asp Val Pro Phe Val Pro Ser Asp Asn Pro Thr Gly Ala Tyr Gin Arg ATT TTC ACC CTC AGC GAC GGC TGG CAG GGT AAA CAG ACG CTG ATT AAA TTT GAC GGC GTC GAA ACC TAT TTT Ile Phe Thr Leu Ser Asp Gly Trp Gin Gly Lys Gln Thr Leu Ile Lys Phe Asp Gly Val Glu Thr Tyr Phe
 GTC TAT GTT AAC GGT CAG TAT GTG GGT TTC AGC AAG GGC AGT CGC CTG ACC GCA GAG TIT GAC ATC AGC Glu Val Tyr Val Asn Gly Gln Tyr Val Gly Phe Ser Lys Gly Ser Arg Leu Thr Ala Glu Phe Asp Ile Ser

			300				312				324				336				348			
GCG	ATG	GTT	AAA	ACC	GGC	GAC	AAC	CTG	TTG	TGT	GTG	CGC	GTG	ATG	CAG	TGG	GCG	GAC	TCT	ACC	TAC	GTG
Ala	MET	Val	Lys	Thr	61y	Asp	Asn	Leu	Leu	Cys	Val	Arg	Val	MET	G1n	Trp	Ala	Asp	Ser	Thr	Tyr	Val
			372				384				396				408				420			
GAC	CAG	GAT	ATG	TGG	TGG	TCA	GCG	GGG	ATC	TTC	CGC	GAT	GTT	TAT	CTG	GTC	GGA	A4A	CAC	CTA	ACG	CAT
Asp	G1n	Asp	MET	Trp	Trp	Ser	Ala	Gly	IJe	Phe	Arg	Asp	Val	Tyr	Leu	Val	Gly	Lys	His	Leu	Thr	His
			444				456				468				480				492			
AAC	GAT	TTC	ACT	GTG	CGT	ACC	GAC	TTT	GAC	GAA	GCC	TAT	TGC	GAT	GCC	ACG	CTT	TCC	TGC	GAA	GTG	GTG
Asn	Asp	Phe	Thr	Val	Arg	Thr	Asp	Phe	Asp	G1u	Ala	Tyr	Cys	Asp	Ala	Thr	Leu	Ser	Cys	G1u	Val	Val
			516				528				540				552				564			
GAA	AAT	CTC	GCC	GCC	TCC	CCT	GTC	GTC	ACG	ACG	CTG	GAA	TAT	ACC	CTG	TTT	GAT	GGC	GAA	CGC	GTG	GTG
Glu	Asn	Leu	Ala	Ala	Ser	Pro	Val	Val	Thr	Thr	Leu	Glu	Tyr	Thr	Leu	Phe	Asp	Gly	Glu	Arg	Val	Val
			588				600				612				624				636			
AGC	AGC	GCC	ATT	GAT	CAT	TTG	GCA	ATT	GAA	AAA	CTG	ACC	AGC	GCC	ACG	TTT	GCT	TTT	ACT	GTC	GAA	CAG
Ser	Ser	Ala	Ile	Asp	His	Leu	Ala	Jle	610	Lys	Leu	Thr	Ser	Ala	Thr	Phe	Ala	Phe	Thr	Val	Glu	G1n
			660				672				684				696				708			
CAG	CAA	TGG	TCA	GCA	GAA	TCC	CCT	TAT	CTT	TAC	CAT	CTG	GTC	ATG	AC6	CTG	AAA	GAC	GCC	AAC	GGC	AAC

Gin Gin Trp Ser Ala glu Ser Pro Tyr Leu Tyr His Leu Val MET Thr Leu Lys Asp Ala Asn gly Asn Dal
$732744 \quad 756 \quad 768 \quad 780 \quad$ 䧲 792
CTG GAA GTG GTG CCA CAA CGC GTT GGC TTC CGT GAT ATC AAA GTG CGC GAC GGT CTG TTC TGG ATC AAT AAC Leu Glu Val Val Progin Arg Val Gly Phe Arg Asp lle Lys Val Arg Asp Giy Leu Phe Trp Ile Asn Aisn

CGT TAT GTG ATG CTG CAC GGC GTC AAC CGT CAC GAC AAC GAT CAT CGC AAA GGC CGC GCC GTT GGA ATG GAT Arg Tyr Val MET Leu His Gly Val Asn Arg His Asp Asn Asp His Arg Lys Gly Arg Ala Val Gly MET $\mathrm{g}_{8} \mathrm{f} p$
$876 \quad 888 \quad 900 \quad 912 \quad 924 \quad 86$

CGC GTC GAG AAA GAT CTC CAG TTG ATG AAG CAG CAC AAT ATC AAC TCC GTG CGT ACC GCT CAC TAC CCG MAC Arg Val Glu Lys Asp Leu Gln Leu Met Lys Gin His Asn Ile Asn Ser Val Arg Thr Ala His Tyr Progisn $948 \quad 960 \quad 972 \quad 984 \quad 996$ GAT CCG CGT TTT TAC GAA CTG TGT GAT ATC TAC GGC CTG TTT GTG ATG GCG GAA ACC GAC GTC GAA TCG GAC Asp Pro Arg Phe Tyr Glu Leu Cys Asp Ile Tyr Gly Leu Phe Val MET Ala Glu Thr Asp Val Glu Ser bis

Fig. 2.-Sequence of $e b g A$ and deduced amino acid sequence. The peptide portions correspondingto the active-site peptides of Fowler and Smith (1983) are underlined.
codons. We must demur from this position. Orthologous genes in different organisms i.e., homologous genes that diverged following speciation-are expected to exhibit high amino acid identity arising from selection acting at the amino acid level to preserve identical functions. Thus, amino acid similarity is expected to be higher than nucleotide similarity because the degeneracy of the genetic code permits silent substitutions, predominantly at third positions of the codons. In contrast, paralogous genes-i.e., homologous genes that diverged following gene duplication within the same genomeare expected to diverge more rapidly at the amino acid level as replacements are required for divergence of function. Codon usage patterns, which may depend on the relative abundance of synonymous tRNAs within a species, impose a constraint on

GGC TTT GCT 1020 AAT GTC GGC GAT ATT AGC CGT ATT 1044 GAC GAT CCG 1056 TAG TGG GAA AMA GTC TAC GTC GAG CGC 1080 1092
ATT GTT CGC CAT ATC CAC GCG CAG AAA AAC CAT CCG TCG ATC ATC ATC TGG TCG CTG GGC AAT GAA TCC GGC 11104
1150 Ile Val Arg His Ile His Ala Gin Lys Asn His Pro Ser lle lle lle Trp Ser Leu Gly Asn Giu Ser Gly
$11641176 \quad 1188 \quad 1212001224$
TAT GGC TGT AAC ATC CGC GCG ATG TAC CAT GCG GCG AAA CGG CTG GAT GAC ACG CGA CTG GTG CAT TAC GAA Tyr GTy Cys Asn Te Arg Ala MET Tyr His Ala Ala Lys Arg Leu Asp Asp Thr Arg Leu Val His Tyr Glu $\begin{array}{llllll}1236 & 1248 & 1260 & 1272 & 1284 & 1296\end{array}$ GAA GAT CGC GAT GCT GAA GTG GTC GAT ATT ATT TCC ACC ATG TAC ACC CGC GTG CCG CTO ATG AAT GAG TTT Glu Asp Arg Asp Ala glu Val Val Asp lle Ile Ser Thr MET Tyr Thr Arg Val Pro Leu MET Asn Glu Phe
$1308131320 \quad 1332 \quad 1344 \quad 1356 \quad 1388$ GGT GAA TAC CCG CAT CCG AAG CCG CGC ATC ATC TGT GAA TAT GCT CAT GCG ATG GGG AAC GGA CCG GGC CBG Gly Glu Tyr Pro His Pro Lys Pro Arg lle lle Cys Glu Tyr Ala His Ala MET Gly Asn Gly Pro Gly Giy
$1380 \quad 1392 \quad 1404 \quad 1416 \quad 1428 \quad 1440$

CTG ACG GAG TAC CAG AAC GTC TTC TAT AAG CAC GAT TGC ATT CAG GGT CAT TAT GTC TGG GAG TGG TGC GAC Leu Thr Glu Tyr Gln Asn Val Phe Tyr Lys His Asp Cys Ile Gin Gly His Tyr Val Trp Glu Trp Cys Agep
$14521464 \quad 1476 \quad 1488 \quad 1500 \quad 152$ CAC GGG ATC CAG GCA CAG GAC GAC CAC GGC AAT GTC TGG TAT AAA TTC GGC GGC GAC TAC GGC GAC TAT COEC His Gly lle Gin Ala Gin Asp Asp His Gly Asn Ual Trp Tyr Lys Phe Gly Gly Asp Tyr Gly Asp Tyr Pro
$15241536 \quad 1548 \quad 1560 \quad 1572 \quad 1584$

AAC AAC TAT AAC TTC TGT CTT GAT GGT TTG ATC TAT TCC GAT CAG ACG CCG GGA CCG GGC CTG AAA GAG RAC Asn Asn Tyr Asn Phe Cys Leu Asp Gly Leu Ile Tyr Ser Asp Gin Thr Pro Gly Pro Gly Leu Lys Glu Tyr
15961608
1620
1632
1644
1656

AAA CAG GTT ATC GCG CCG GTA AAA ATC CAC GCG CGG GAT CTG ACT CGC GGC GAG TTG AAA GTC GAA AAT POA Lys Gin Val lle Ala Pro Val Lys lle His Ala Arg Asp Leu Thr Arg Gly Glu Leu Lys Val Glu Asn bys

1668	1680	1692	1704	1716	8

CTG TGG TTT ACC ACG CTT GAT GAC TAC ACC CTG CAC GCA GAG GTG CGC GCC GAA GGT GAA AGC CTC GCG ASG Leu Trp Phe Thr Thr Leu Asp Asp Tyr Thr Leu His Ala glu Val Arg Ala Glu Gly Glu Ser Leu Ala Rhr
$17401752 \quad 1764 \quad 1776 \quad 1788 \quad 1$ 気 170
CAG CAG ATT AAA CTG CCG GAC GTT GCG CCG AAC AGC GAA GCC CCC TTG CAG ATC ACG TGC CGC AGC TGG ACG Gln Gln Ile Lys Leu Pro Asp Val Ala Pro Asn Ser Glu Ala Pro Leu Gln Ile Thr Cys Arg Ser Trp Thir
$18121824 \quad 1836 \quad 1848 \quad 1860 \quad 182$
CCC GCG AAG CGT TCC CTC AAC ATT ACG GTG ACC AAA GAT TCC CGC ACC CGC TAC AGC GAA GCC GGA CAC COT Pro Ala Lys Arg Ser Leu Asn lle Thr Val Thr Lys Asp Ser Arg Thr Arg Tyr Ser Glu Ala Gly His for
$1884 \begin{array}{llllll}1896 & 1908 & 1920 & 1932 & 1984\end{array}$ ATC GCC ACT TAT CAG TTC CCG CTG AAG GAA AAC ACC GCG CAG CCA GTG CCT TTC GCA CCA AAT AAA TGC GEG Ile Ala Thr Tyr Gln Phe Pro Leu Lys Glu Asn Thr Ala Gln Pro Val Pro Phe Ala Pro Asn Lys Cys fia
$19561968 \quad 1980 \quad 1992 \quad 2004 \quad 206$
TCC GTG ACG CTG GAA GAC GAT CGT TTG AGC TGC ACC GTT CGC GGC TAC AAC TTC GCG ATC ACC TTC TCA AAA Ser Val Thr Leu Glu Asp Asp Arg Leu Ser Cys Thr Val Arg Gly Tyr Asn Phe Ala lle Thr Phe Ser lys

Fig. 2 (Continued)
the use of synonymous as opposed to identical codons. Thus, within a species, coden usage alone may be expected to conserve nucleotide identity to a degree greater than it does amino acid identity even over very long periods of time. We suggest (Stokes and Hall 1985, in this issue) that ebgA and lacZ diverged following genome, rather than simple gene, duplication. Given the similarity of the E. coli and Salmonella typhimurium genetic maps (Riley and Anilionis 1978), this implies that the duplication event was very ancient and preceded the divergence of E. coli and S. typhimurium. Thus there should have been sufficient time for equilibrium to have been reached.

As is the case for other duplicated genes in E. coli (Riley 1984), the use of identical codons by $\operatorname{lac} Z$ and $e b g A$ (151 identical codons) exceeds the use of synonymous codons (118 synonymous codons) (these values exclude methionine and tryptophan, which
 MET Ser gly Lys Pro Thr Ser Trp Gin Val Asn gly Glu Ser Leu Leu Thr Arg Glu Pro Lys lle Asn Phe
$2100 \begin{array}{llllll}2112 & 2124 & 2136 & 2148 & 2160\end{array}$
tTC Aag ccg atg atg atc gac hac cac aAg cag gag tac gan gge ctg tgg can ccg aat cat ttg cag atc Phe Lys Pro Met Met lle Asp Asn his Lys gln glu Tyr glu gly Leu Trp Gin Pro Asn his Leu gin Ile
$21722184 \quad 2196 \quad 2208 \quad 2220 \quad 2$
ATG CAG GAA CAT CTG CGC GAC TTT GCC GTA GAA CAG AGC GAT GGT GAA GTG CTG ATC ATC AGC CGC ACA GTT MET Gin Glu His Leu Arg Asp Phe Ala Val Glu Gin Ser Asp Gly Glu Val Leu lle lle Ser Arg Thr Val

2244 2256 2268 2280 2304
 lle Ala Pro Pro Val Phe Asp Phe Gly MET Arg Cys Thr Tyr lle Trp Arg lle Ala Ala Asp Gly Gin Val
$23162328 \quad 2340 \quad 2352 \quad 2376$ AAC GTG GCG CTT TCC GGC GAG CGT TAC GGC GAC TAT CCG CAC ATC ATT CCG TGC ATC GGT TTC ACC ATG SGG Asn Val Ala Leu Ser gly glu Arg Tyr Gly Asp Tyr Pro His lle lle Pro Gys lle Gly Phe Thr MET हैly
$2388 \quad 2400 \quad 2412 \quad 2424 \quad 2436 \quad 2448$ ATt AAC GGC GAA tac gat cag gTg gcg tat tac gat cgt gga ccg gec gan hac tac gcc gac agc cag cag lle Asn Gly Glu Tyr Asp Gln Val Ala Tyr Tyr Gly Arg Gly Pro Gly Glu Asn Tyr Ala Asp Ser Gin छln
$24602472 \quad 2484 \quad 2496 \quad 2508 \quad 2520$
 Ala Asn lle Ile Asp lle Trp Arg Gln Ala Val Asp Ala MET Phe Glu Asn Tyr Pro Phe Pro Gln Asn asn
GGT 2532
gGt alc cgt cag cat gTC cge tgg acg gca ctg act aac cgi cac gat anc ggt ctg ctg gtg gTt ccg gag Giy Asn Arg Gin His Val Arg Trp Thr Ala Leu Thr Asn Arg His Gly Asn giy Leu Leu Val Val Pro fin

CGC CCA ATT AAC TTC AGC GCC TGG CAC TAT ACC CAG GAA AAC ATC CAC GCT GCC CAG CAC TGT AAC GAGFTG Arg Pro lle Asn Phe Ser Ala Trp His Tyr Thr Gln Glu Asn lie His Ala Ala Gin His Cys Asn glu deu

2676 2688 $2700 \quad 2712 \quad 2724 \quad 2736$ cag cge agt gat gac atc acc cta gga acc tcg atc acc agc tgc ttg gcc tcg gct cca act cct gge sca Gln Arg Ser Asp Asp lle Thr Leu Gly Thr Ser lle Thr Ser Cys Leu Ala Ser Ala Pro Thr Pro Gly Gla

GCG AGG TGC TGG ACT CCT GGC GCG TCT GGT TCC GTG ACT TCA GCT ACG GCT TTA CGT TGC TGC CGG TTT तुTG Ala Arg Cys Trp Thr Pro Gly Ala Ser Gly Ser Val Thr Ser Ala Thr Ala Leu Arg Cys Cys Arg Phe Neu

282028322844 2856 2868 2官80
gCG gag hag cta ccg cgc ana gcc tgg cgt cgt atg agt tcg gcg cag ggt tct ttt cca cga att tgc caca Ala Glu Lys Leu Pro Arg Lys Ala Trp Arg Arg Met Ser Ser Ala Gin gly Ser Phe Pro Arg lle Cys ©hr

2892
CGG AGA ATA AGC TAA
Arg Arg lle Ser
Fig. 2 (Continued)
use only a single codon each). Codon usage by ebgA (data not shown) exhibits ${ }^{\text {qno }}$ significant differences from codon usage by lacZ (Kalnins et al. 1983). We therefere pooled the two codon usage tables to generate an "average" codon usage for the Ewo sequences, from which we calculated for each amino acid the probability of identisal codons being used where the same amino acid occurred at a given position (table'2). Table 2 shows a χ^{2}-test of the hypothesis that the proportion of identical codons used is due to chance alone. The value of χ^{2} calculated in table 2 is significant at the 2.5% level. Since only identical amino acids were considered, it is not possible that selection at the protein level can account for the observed excess of identical codons. Since codon usage was taken into account in this calculation and since there is only a 2.5% likelihood that chance alone accounts for the excess, it is likely that selection is operating directly at the DNA level. By this we mean that some form of selection seems to be operating on the DNA sequence itself, rather than on the products of the DNA sequence. It would therefore appear that there are at least two constraints that would

Table 1
Alignment of ebgA and lacZ Sequences

SEGMENT No．	Base Pairs Aligned		\％DNA IDENTITY	No．OF IDENTICAL AMINO ACIDS	No．of IDENTICAL CODONS
	$e b g A$	$\operatorname{lac} Z$			
1	1－168	232－399	54.2	21	10
2	169－546	403－780	52.1	54	29
3	547－1，026	793－1，272	54.2	56	35
4	1，036－1，248	1，273－1，485	55.4	32	21
5	1，249－1，320	1，489－1，560	47.2	9	8 ■
6	1，321－1，602	1，597－1，878	55.3	41	23 ¢
7	1，612－1，716	1，879－1，983	38.1	8	5 交
8	1，717－1，758	2，020－2，061	57.1	4	3 ）
9	1，759－1，800	2，065－2，106	40.8	4	$2 \stackrel{\circ}{\circ}$
10	1，837－1，944	2，107－2，214	47.2	13	9 突
11	1，945－1，983	2，242－2，280	46.2	2	2 3
12	1，984－2，054	2，327－2，397	47.9	．．	$\underset{5}{\square}$
13	2，068－2，151	2，398－2，481	41.7	5	2 ¢0
14	2，191－2，280	2，482－2，571	41.1	3	$2 \stackrel{\text { ® }}{ }$
15	2，290－2，388	2，572－2，670	34.3	4	3 §
16	2，389－2，511	2，674－2，796	48.0	15	8 －${ }^{\text {¢ }}$
17	2，518－2，571	2，797－2，850	46.3	2	1 ก
18	2，587－2，646	2，851－2，910	43.3	3	1 O
19	2，650－2，685	2，911－2，946	50.0	2	1 웅
20	2，686－2，729	2，951－2，994	45.5	．．	
21	2，794－2，841	2，995－3，042	50.0	2	$1 \frac{3}{3}$
22	2，845－2，871	3，043－3，069	40.7	0	0 －
23	2，872－2，892	Terminated			亳

NoTE．－All gaps are in multiples of three except those surrounding segments 12 and 20 ．Those segments are of reading frame with respect to each other；thus，identical amino acids and codons are not considered．
maintain greater DNA than amino acid identity as duplicated genes diverge．The fifist is codon usage，and the second is selection at the DNA level．Although the basis of selection at the DNA level is certainly not clear，Lipman and Wilbur（1983）have

10	20	30	40	50	60	7
ATCCCCttac	ACACTGTCCG	GCAATCGTTT	ttgccgeaca	GTGCTGCCGT	TTATTTTCGT	gatclagtia
80	90	100	110	120	130	149
AAGTAATGC	ATTTACCTGC	TACTTTTTAG	TAAAATTTT	ACTAAACTCC	CCAGCAATTA	CACAACTAF
150	160	170	180	190	200	219
CATCACCATO	AATGGTTCCG	ATTTCTCTCT	ACCGgGagg	Cctatgact	CGCTGGGAA	acattcagct
220	230	240	250	260	270	280
CACCCACGA	a miccascttg	caccacatac	GTACTTTTIT	tcactatgat	TCTGTtGcgi	ataggegtac
290	300	310	320	330	340	350
CTtTtaccege	gamaccasca	GCCTGTTTCT	gCCCTTAAGC	gGtcagtgea	ATTTCCACTT	ttttgaccat

360
 370
 380
 CCGCTGCAAG TACCAGAAGC CTTCACCTCT BAGTTA

Fig．3．－Sequence of the region immediately preceding $e b g A$ ．This sequence begins immediately after the stop codon of ebgR（Stokes and Hall 1985，in this issue）．The segments showing similarity to the 5^{\prime} region of lac Z are underlined once，and the segment showing similarity to the control region preceding lac Z is underlined twice．A possible Pribnow box is enclosed in a box．

Table 2
Use of Identical and Synonymous Codons in the ebgA and lacZ Sequences

Amino Acid	Identical Codons		$\chi^{2 \mathrm{a}}$	Synonymous Codons		$\chi^{2 a}$
	Observed	Expected		Observed	Expected	
Ala	7	4.114	2.025	7	9.856	0.828
Arg	7	5.656	0.319	7	8.344	0.216
Asn	11	9.911	0.120	6	7.089	0.167
Asp	11	10.300	0.048	9	9.700	0.051
Cys	1	1.728	0.307	2	1.272	0.408
Gln	8	7.381	0.052	3	3.689	0.029
Glu	13	9.856	1.003	3	6.144	1.009
Gly	16	10.819	2.481	15	20.181	1.330
His	5	3.500	0.643	2	3.500	0.643
Ile	8	5.445	1.199	3	5.555	1.175
Leu	12	8.970	1.024	11	14.030	0.654
Lys	4	2.428	1.018	0	1.572	1.572
Phe	11	7.500	1.633	4	7.500	1.633
Pro	13	7.880	3.327	7	12.120	2. ${ }^{1} 3$
Ser	4	1.910	2.287	4	6.880	1.206
Thr	5	6.192	0.229	13	11.808	0.020
Tyr	4	7.530	1.655	11	7.470	1.688
Val	11	12.826	0.260	11	9.170	0.365

NOTE.-Observed $=$ the number of identical or synonymous codons used; expected $=$ the number of identical or sinonymous codons expected on the basis of the codon usage for the two sequences. $\chi^{2}=$ (observed - expected) ${ }^{2} /$ expected.
${ }^{2}$ The sum of the χ^{2} values $=31.788$, which is significant at the 2.5% level for 17 degrees of freedom.
pointed out that the choice of the degenerate third base in a codon exhibits statistiemal dependence on its nearest neighbors on each side. This also suggests the existence some sort of selection operating directly on DNA sequences rather than on their products.

Acknowledgments

We are grateful to Carol Crowther for assistance with sequence interpretation and for preparation of figures and to Bob Donnelly for help with Maxam and Gilbért sequencing. We are particularly grateful to J. Lis for the gift of the Cornell DESA sequencing program. This work was supported by National Institutes of Health grant AI 14766. B.G.H. is the recipient of Research Career Development Award 1 Ke4 AI00366 from the National Institute of Allergy and Infectious Diseases.

LITERATURE CITED

Biggin, M. D., T. J. Gibson, and G. F. Hong. 1983. Buffer gradient gels and ${ }^{35}$ S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963-3965.
Dickson, R. C., J. Ableson, W. M. Barnes, and W. S. Reznikoff. 1975. Genetic regulation: the lac control region. Science 187:27-35.
Fowler, A. V., and P. J. Smith. 1983. The active site regions of lac Z and ebg β-galactosidases are homologous. J. Biol. Chem. 258:10204-10207.
Fristensky, B., J. Lis, and R. WU. 1982. Cornell DNA sequence analysis program. Nucleic Acids Res. 10:6451-6463.
HALL, B. G. 1976. Experimental evolution of a new enzymatic function: kinetic analysis of the ancestral (ebg ${ }^{\circ}$) and evolved (ebg ${ }^{+}$) enzymes. J. Mol. Biol. 107:71-84.
＿＿＿1977．Number of mutations required to evolve a new lactase function in Escherichia coli．J．Bacteriol．129：540－543．

1981．Changes in the substrate specificities of an enzyme during directed evolution of new functions．Biochemistry 20：4042－4049．

1982．Transgalactosylation activity of the ebg β－galactosidase synthesizes allolactose from lactose．J．Bacteriol．150：132－140．

1983．Evolution of new metabolic functions in laboratory organisms．Pp．234－257 in M．Nei and R．KOEHN，eds．Evolution of genes and proteins．Sinauer，Sunderland，Mass．
Hall，B．G．，and D．L．Hartl．1975．Regulation of newly evolved enzymes．II．The ebg repressor． Genetics 81：427－435．
Huber，R．E．，G．Kurz，and K．Wallenfels．1976．A quantitation of the factors which affect the hydrolase and transgalactosylase activities of β－galactosidase（ E ．coli）on lactose．B B chemistry 15：1994－2001．
Kalnins，A．，K．Otto，U．Ruther，and B．Muller－Hill．1983．Sequence of the lacZ ge्नne of Escherichia coli．EMBO J．2：593－597．
Lipman D．J．，and W．J．Wilbur．1983．Contextual constraints on synonymous codon chome． J．Mol．Biol．163：363－376．
Maniatis，T．，E．F．Fritsch，and J．SAmbrook．1982．Molecular cloning：a laboratory manûal． Cold Spring Harbor Laboratories，Cold Spring Harbor，New York．
Maxam，A．M．，and W．Gilbert．1977．A new method for sequencing DNA．Proc．Natl．Acêd． Sci．USA 74：560－564．
Riley，M．1984．Arrangement and rearrangement of bacterial genomes．Pp．285－315 in Re． MORTLOCK，ed．Microorganisms as model systems for studying evolution．Plenum，New York．
Riley，M．，and A．Anilionis．1978．Evolution of the bacterial genome．Annu．Rev．Microbitiol． 32：519－560．
Sanger，F．，A．R．Coulson，B．G．Barrell，A．J．H．Smith，and B．A．Roe．1980．Cloning in single－stranded bacteriophage as an aid to rapid DNA sequencing．J．Mol．Biol．143：1 178.

Stokes，H．W．，and B．G．Hall．1984．Topological repression of gene activity by a transposable element．Proc．Natl．Acad．Sci．USA 81：6115－6119．
———1985．Sequence of the ebgR gene of Escherichia coli：evidence that the EBG and L⿷⿱⺈⿸⿻口丿乚丶BC operons are descended from a common ancestor．Mol．Biol．Evol．2：478－483（in this issë户⿱⿰㇒一也口

WALTER M．FITCH，reviewing editor
Received May 13，1985；revision received June 27， 1985.

