
Sequence Query Processing

Praveen Seshadri * Miron Livny Raghu Ramakrishnan t

Computer Sciences Department,

University of Wisconsin-Madison, W153706, U.S.A.

{praveen,miron, raghu}@cs.wise. edu.

Abstract

Many applications require the ability to manipulate se-

quences of data, We motivate the importance of sequence

query processing, and present aframework for the optimiza-

tion of sequence queries based on several novel techniques.

These include query transformations, optimizations that uti-

lize meta–data, and caching of intermediate results. We

present a bottom-up algorithm that generates an efficient

query evaluation plan based on cost estimates. This work

also identifies a number of directions in which future research

can be directed.

1 Introduction

Many real life applications manipulate data that is in-

herently sequential. Such data is logically viewed and

queried in terms of a sequence abstraction and is of-

ten physically stored as a sequence. Databases should

(a) allow sequences to be queried in a declarative man-

ner, utilizing the ordered semantics of the data, and (b)

take advantage of the opportunities available for query

optimization. Relational databases are inadequate in

this regard; data collections are treated as sets, not se-

quences. Consequently, expressing sequence queries is

tedious, and evaluating them is inefficient. Sequence

databases therefore require techniques that are distinct

from established relational database techniques. This

paper deals with issues of query optimization and eval-

uation for sequence queries. The techniques developed

are applicable to a broad class of sequence data do-

mains, including temporal databases, execution mon-

*The work of Praveen Seshadri was supported by IBM

Research Grant 93-F153900-000

tThe work of Raghu Ramakrishnan was supported by a

Packard Foundation Fellowship in Science and Engineering, a PYI

Award with matching grants from DEC, Tandem and Xerox, and

NSF grant IRI-9011563.

and/or stkcific ~ennission.

SIGMOD 94- 5/94 Minneal.ds, Minnemta, USA
@ 1994 ACM 0-89791-639-~94/0005..$3.50

itors, trigger mechanisms [GJS92], and list processing

systems [Ric92].

Example 1.1 Consider the following motivating exam-

ple. A weather monitoring system records information

about various meteorological phenomena. There is a se-

quentiality in the occurrence of these phenomena; the

various meteorological events are sequenced by the time

at which they are recorded. A scientist asks the query:

“For which volcano eruptions was the strength of the

most recent earthquake greater than 7.0 on the Richter

scale ?“. It is a seemingly innocuous query, but it is dif-

ficult to express in a relational query language like SQL

and inefficient to evaluate. One possible attempt uses a

nested sub-query as follows:

SELECT V. name

FROM Volcanos V, Earthquakes E

WHERE E. strength > 7.0 AND

E.time = (SELECT max(El time)

FROM Earthquakes El

WHERE El time < V.time)

Other ways of representing the same query in SQL

are not particularly simpler. A conventional relational

query optimizer as described in [SMALP79] would prob-

ably generate the following query evaluation plan. For

every Volcano tuple in the outer query, the sub-query

would be invoked to find the time of the most recent

earthquake. Each such access to the subquery involves

an aggregate over the entire Earthquake relation. The

time of the most recent earthquake is used as a join

condition to probe the Earthquake relation in the outer

query. Finally, the selection condition to check that the

strength is greater than 7.0 would be applied. Even

the knowledge that the Earthquakes and Volcano rela-

tions are sorted by time would not significantly alter

the query plan. A more efficient evaluation strategy

does however exist; the two sequences can be scanned

in lock step (similar to a sort merge join). The most

recent earthquake record scanned can be stored in a

temporary buffer. Whenever a volcano record is pro-

cessed, the value of the most recent earthquake record

430

stored in the buffer is checked to see if its strength was

greater than 7.0, possibly generating an answer. This

query can therefore be processed with asingle scan of

the two sequences, and using very little memory. The

key to such optimization is the sequentiality of the data

and the query.

2 Sequence Model

In this paper, we use a simple model of sequences and a

set of query operators. A more comprehensive model of

sequences is under development [SLR]. A record schema

R is defined as R = < Al :Tl, ... , AN:TN > for some

finite N. Each of the Tts are indivisible atomic types of

fixed size, and each A, is a named attribute. The type

domain TR of R is (TI x Tz x ... x TN). A record of

schema R is an element of T~l. The domain of every

record type TR is associated with a special Null record

NU1lR. A sequence S is a function from the integers to

TR U NU1lR. Every integer i is called a position, and

the function is called the sequence ordering, denoted

typically as S(i)2. The positions that map to Nu1lR

are called empty positions. Every record in TR U NU1lR

maps to zero or more positions.

We consider three basic categories of sequences:

●

●

●

✎✍✘

Base sequences: A base sequence is specified by an

explicit materialized association of positions with

records. All other records are assumed to map to no

positions. All positions that do not explicitly map

to a record are assumed to map to the Null record.

Constant sequences: In a constant sequence, every

position maps to the same unique record. We model

constants as sequences so that the constructs of the

model deal uniformly with sequences.

Derived sequences: A derived sequence is defined by

a sequence operator. Intuitively, this is similar to

the definition of views in a relational database using

relational operators. The next section describes

operators that are used in the definition of such

sequences.

,4.1 Sequence Operators

All operators in our model are compositional; they op-

erate on sequences producing a single derived sequence.

The derived sequence defined by a sequence operator

is called the output sequence of the operator, while the

sequences used in this definition are called the input

1Not~tionallY, a record is represented by a list of attributes

between the symbols <>.

2For the sake of convenience, our model defines positions as

integers. In general, positions could be elements of any totally

ordered, countable domain. The Null records are introduced

solely in order to model sequences cleanly. We stress that this

does not mean that an implementation would actually need to

materialize such records.

sequences. The arity of an operator is the number of

input sequences. For an operator Op with output se-

quence S..t and input sequences S1 through S’n, for all

positions i, SOUt(Z) = Op(S1, S2, S’n, i). We consider

the following specific operators in this paper:

Simple Unary Operators: The output sequence

S.tit of a unary operator Op is defined by Soui(i) =

Op(sin,2).

●

●

●

●

A Selection applies a selection predicate o to the

input sequence record r at each position i. If

(a(S,n(i), i)), Op(S,m, i) = Sin(i), else Op(Sin, i) =

Null. Note that it does not matter if a predicate

evaluates to true or false on a Null input record.

A Projection r projects a subset of the attributes

of the input sequence record r at each position i.

Any projection of a Null record is a Null record.

Op(s,n,i) = f’r(s,n(i)).

A Positional Offset takes as a parameter an integer

specifying an offset 1. For each record r at position

i in the input sequence, Op(S,n, i) = SL~(i + i).

Intuitively, this operator “shifts” the input sequence

by the number of positions specified by the offset.

A Value Offset takes as a parameter an integer

specifying an offset 1. For each record r at position

i in the input sequence, Op(Sin, il) = S,n (i) iff the

number of non-empty positions between il and i = 1.

If the input sequence has no empty positions, this is

identical to the positional offset operator. Examples

are the Previous operator that has an offset of -1,

and the Next operator with an offset of +1.

Aggregate Unary Operators: The Aggregate

Operators are unary operators that are defined by

two functions. One function agg.pos(i) selects a

set P of positions for each position i. The other

function agg-func is an aggregate function over the

records in S,n (p) at the positions p in P. Op(S,~, i) =

agg.-f~nc({S~n (p) [P E ctgg.pos(i) }). For example,

the moving 3-position average of a sequence would have

agg-func - Avg and agg-pos(i) s {p I z > p > i – 2}.

A special case is where the agg.pos function is always

true (thereby selecting all positions). The aggregate

functions allowed are Avg, Count, Min, Max and Sum.

For all these aggregates, Null records in the inputs are

ignored if there is at least one non-Null record; else the

output is a Null record.

Compose Operator: Compose is a binary operator

that composes the records rl and r2 of the two input

sequences at each position i. OP(Sinl , sin2, ~) =

S,nl (i) .S,n2 (i). If either of the records is a Null record,

the output is a Null record. A Compose operator is also

referred to as a positional join operator. Note that in an

implementation, the Compose operator would probably

allow the specification of additional “join” predicates.

431

+

PROJECT

V.NAME

o VOLCANOS

EARTHQUAKES

Figure 1: Motivating Example

2.2 Sequence Queries

A sequence query is an acyclic graph of operators such

that the inputs of each operator are either the output

of another operator or are base or constant sequences.

The output of a query is the output sequence of the

root operator of the query graph. As an example

of the use of the operators described, we present a

graphical representation of the query of Example l.lin

Figure 1. Thegraphical representation is a declarative

specification of the query. In this paper, we restrict the

graph to be a tree; i.e. we do not allow the output of any

operator to act as the input to more than one operator.

We discuss the effects of relaxing this restriction in

Section 5.

2.3 Operator Scope

We now introduce the concept of the scope of an

operator. This is used in the optimization and

evaluation of sequence queries. Consider a derived

sequence SOUt defined by an operator Op of arity n such

that for all positions i, SOUt(z) = Op(Sl, ... Sn, i). The

operator can be described by two functions: Scope that

defines the positions of the input records to look at, and

the operator function OpFunc that actually manipulates

those input records to define the output sequence,

Definition 2.1 The scope of the operator Op is a

function Scope (k, i) that for each input sequence Sk,

and for each position i, returns a minimal set of positions

that satisfies the following property: whatever the

actual data in the input sequences,

● V/c ~ {l..n}, Vj, Sk, (j) = Sk(j) if j E Scope (k,2), else

Sht (j) = Null, and

. ‘V’i, SOUt,(Z) = O(SII, ... SnT, Z), and

● vi,Sou,f(2)= Sout(q

u

When the input sequence Sk is implicit from the context

of the discussion, it is omitted from the notation.

Further, when the operator in question is not implicit,

it is explicitly specified as Op. Scope. Since Scope(S~, i)

returns a set of positions, the notation is extended

to specify the set of records at those positions as

S~(Scope(2)).

OUTPUT SEQUENCE

d I I I I I I I I I I I I I I I I I 1 I I I I

POSITION I

‘pERAToRm
J I I I I i I I I I 1 I I I I

INPUT SEQUENCE

Figure 2: Operator Scope

Definition 2.2 The output record at position i is given

by SOtit (i) = Opl?unc(Sl (Scope(i), ..~Sn(Scope(i~), z),

❑

In Figure 2, the operator function accesses the current

input record and the last seven input records in order to

derive the output record at a particular position i. Note

that these positions are specified relative to the position

i (in this case, i, i-1, i-2, i-7). This defines Scope(i)

as the position i and the previous seven positions. The

value of Scope(j) for some other position j need not

necessarily be similar; this depends on the nature of

the operator. The following properties of the operator

may be identified:

●

●

●

The scope ~ at position z is the number of

positions in Scope(i). The scope size could be fixed

for all i or could vary with i. A special case is the

unit scope (of size one). For example, a Selection

operator has a fixed scope of size one, while a

Previous operator has a variable scope size.

The scope sequentiality indicates how the scopes at

successive positions overlap. For all positions i,

if Scope(i) ~ Scope(i – 1) U z, then the scope is

sequential. For example, the scope of an aggregate

over the most recent three positions is sequential,

while the scope of a positional offset operator is not.

The scope relatwity at position i indicates how the

positions in Scope(i) are defined with respect to

i. If the positions in the scope are defined as

{Kl + i, ... K~ + i}, where each value Kj is a

constant independent of i, it is considered a relative

scope. Otherwise, the scope is non-relative. All

the operators that we have considered have relative

scopes.

Acyclic compositions of basic operators result in

complex operators. Every complex operator can be

modeled as an instance of the generalized operators dis-

cussed in the previous section. Consider two operators

A and B composed as follows. Let A(SA1, ... SAm, i) =

SA(Z), and let B(SA, SBI, ... S~~,i) = Sotit(i). The

composition forms a complex operator Op such that

OP(SA1, ... SAm, SB1, ... SBn, i) = SOUi(i). The scope

Op. ScOpe(SA,, Z) = {j I k ~ ~.ScOPe(SA,Z) A j C

432

A. Scope (SA,, k) }. The operator function

@~Unc(SAl (ScOPe(~)), .. . S~n(ScOPe(l)), Z) =

B. O@(SA(ScOpe(i)), SB1 (Scope(z)), . . . sk?n(scope(~))z)

The following properties of complex operator Op can

be proved:

Proposition 2.1

(a) If both A and B have fixed scope sizes on all their

input sequences, then Op has a fixed scope size on

all its input sequences.

(b) If both A and B have sequential scopes on all their

input sequences, then Op has a sequential scope on

all its input sequences.

(c) If both A and B have relative scopes on all their

input sequences, then Op has relative scopes on all

its input sequences.

•1

The properties of the scope of a complex operator

can therefore be described in terms of the properties

of its composite operators. A sequence query is a

complex operator all of whose input sequences are base

or constant.

3 Query Optimization Techniques

Sequence query processing offers a number of unique op-

portunities for query optimization that are not available

in relational queries. In particular, the notion of opera-

tor scope plays an important role in query optimization.

Sequence query optimizations fall into three categories:

●

●

●

Those that transform the declarative query into an

equivalent query. These optimizations are indepen-

dent of the actual data in the input sequences, and

are described in Section 3.1.

Those that use meta-information in the input se-

quences to perform global query optimizations. One

such optimization is described in Section 3.2.

Those that use meta-information in the input se-

quences to perform local optimizations of each of the

query operators. Such optimizations are described in

Sections 3.3 and 3.5.

This section provides the motivation for individual op-

timization, illustrating them with examples. Sec-

tion 4 integrates the various optimizations into the

framework of a single optimization algorithm. For

base sequences, the following kinds of meta–information

may be available in the underlying physical sequence

representation3:

3These are ~imilar to the properties associated with a Time

Sequence in [SS87, SK86]

●

●

●

●

Sequence Span Density

IBM 200.. 500 0.95

DEC 1.. 350 0.7

HP 1.. 750 1.0

Table 1: Example Sequence Data

A start and end position that determine the valid

range or span of the sequence. Any position outside

of this range is mapped to a Null record.

A density which specifies the fraction of the positions

within the valid range that map to non-Null records.

Other statistical information about the base se-

quences, including the distributions of values in the

columns (used to determine the selectivity of predi-

cates) and the correlations between sequences in the

positions of Null records.

Available access paths to base sequences, and the

costs of access along these paths.

For the purposes of this section, we shall use the

following three daily stock market sequences: the IBM

sequence, the DEC sequence and the HP sequence

displayed in Table 1.

3.1 Query Transformations

The first set of optimizations transform a query into

an equivalent query that might be more efficient to

evaluate.

Definition 3.1 Two sequence queries Q1 and Q2 are

equivalent if they both have the same input sequences,

the same scopes on the input sequences, and the same

operator function. ❑

Note that this definition of query equivalence is inde-

pendent of the actual data in the input sequences. Var-

ious transformations may be applied to a query graph

to generate an equivalent query graph.

Proposition 3.1 Consider a transformation that al-

ters a sub-graph of a query, but does not affect the rest

of the query graph. If the complex operator correspond-

ing to the altered sub-graph is equivalent to the original

sub-graph, then the transformed query is equivalent to

the original query. ❑

It is typically difficult to reason about the correctness

of transformations that affect the entire query graph.

However, an important class of transformations acts at

the level of individual pairs of operators. The above

proposition notes that such local transformations can

be used to transform the entire query.

Depending on the particular set of basic operators

chosen in a model, various equivalence transformations

may be specified based on this proposition. Some

results are well known for relational queries and carry

433

t 200..350 ,200..350

Compose
Compose

#1 #2 #1 #2

200..500 200..350

#1 .Cloee > #2.cloee
#1 close> #2.clOse

Compose 1..350 Compose 200..350

#1
=

200., 500 /1 ..750

& m

(A)

Figure 3: Using

over to sequence queries as well. For instance, two

successive projections can be combined, as can two

successive selections. A projection can be “pushed

through” a relational join if the attributes projected

out do not participate in the join. A similar result

holds for projections and compose operators in sequence

queries. Relational joins are reflexive and associative;

similarly the positional joins or compose operators are

reflexive and associative. We informally state here a

list of interesting additional transformations using the

restricted set of operators of Section 25.

. A projection can be pushed through any sequence

operator O iff all the attributes that participate in

the projection are in the input sequences of O, and

all attributes that participate in O are among the

projected attributes.

● A positional offset can be pushed through any

operator of relative scope on all its inputs.

Ftu-ther, it is possible to identify some transformations

that are incorrect in general:

● A selection cannot be pushed through an aggregate

●

●

operator or a value offset operator (i.e. an operator

of non-unit scope).

An aggregate operator or value offset operator

cannot be pushed through a Compose operator.

An aggregate operator cannot be pushed through a

value offset operator and vice versa.

It is a good heuristic to propagate selections, pro-

jections and positional offsets as far down the query

graph as possible. Selections cannot be pushed through

4An attribute of an input sequence record whose value is used

by an operator function is said to participate in the definition

of the output sequence. The term “pushed through” is well

understood in relational queries and we do not bother with a

formal definition here for reasons of conciseness.
5Formal statements and proofs are omitted for lack of sPace

Spi

200..350 / 200.. 350\

m=

(B)

an Information

operators of non-unit scope (like aggregates and pre-

vious/next), and such operators cannot commute with

compose operators. The non-unit scope operators there-

fore break up the query into blocks, inside which the

positional joins can be reordered. The blocks are sim-

ilar to query blocks in SQL that need to be indepen-

dently optimized. Each block is described by a set of

input sequences that participate in positional joins. Se-

lections and projections are applied to the result of the

positional joins. The output sequence of a block can

feed into the input of another block. The operators of

non-unit scope form special blocks that contain a single

operator.

3.2 Global Span Optimization

Consider the span of the sequences in the example of

Figure 3. In Figure 3.A, the original query asks for

the price of DEC stock when the close of the IBM

stock was greater than the close of HP stock. In the

figure, the composition of the IBM and HP sequences

followed by a selection condition on their “close” values

is condensed into a single operator for conciseness of

representation. Note that the span of DEC is from

position 1 to 350, IBM is from 200 to 500 and HP

is from 1 to 750. The spans of derived sequences are

computed by the operators that define them, based on

the spans of the input sequences to the operator. This

query is equivalent to the query in Figure 3.B where

the spans of all the base sequences are restricted to the

period from position 200 to position 350. This reduces

query processing costs, since a smaller range of each

sequence is accessed. The ability to restrict the span

of a sequence based on the other sequences used in the

query holds a tremendous potential for query processing

efficiency. For every operator, given the span of the

input sequences, the span of the output sequence can

be determined. Similarly, if the span of the output

sequence is known, the spans of the inputs may be

modified, while retaining equivalence to the original

434

t 200..350

A

Compose

#1

selectivity 0.5 /

close >25 /T \

/
\

density 0.7

density 0.95 width 20

width 100

0
IBM o

DEC

200..350 200..350

(A)

t 200..350

Compose
A

‘1
density 0.48

#1
selectivity 0.5

close >25

7
density 0.7

density 0.95

0
IBM o

DEC

200..350 200..350

(B)

Figure 4: Using Statistical Information

query.

3.3 Access Modes

Consider a Compose operator with two input sequences

as in Figure 4.A. In order to generate the output

sequence, one possibility y is to retrieve every non-Null

record of the DEC sequence, and the corresponding

record from the other input sequence (labeled #1

in the figure). Another possibility is to retrieve

all the non-Null records in sequence #1 first, and

to then look up the corresponding record from the

DEC sequence. These represent two variants of Join-

Strategy-A which streams one input sequence and

probes the other6. Another strategy is to stream both

sequences in lock step, performing the positional join

at common positions. This is Join-Strategy-B. Access

mode refers to whether the access to a sequence is

“stream” or “probed”. The per-record access cost of a

stream access can be significantly different from that of

a probed access. The basic operation for a stream access

is to get the nezt non-Null record. This is as opposed to

the basic operation for a probed access, which is to get

the record at a specific position. The statistical meta-

information that needs to be considered in choosing

between the join strategies includes the density of the

base sequences, the correlation in their densities, their

access costs and the selectivity of the operator that

generates the #1 sequence.

~This is analogous to the choice of two possible choices of outer

and inner relations in a nested loop join

3.4 Stream–Access Evaluation

The goal of sequence query optimization is to choose

a query evaluation plan of low estimated cost 7. Our

model of a sequence query evaluation associates a cache

(a randomly accessible buffer) with each basic operator.

Caches operate on a FIFO basis and can store records

for efficient subsequent retrieval. Some mechanism is

provided for accessing the cached records associatively

by position. A query evaluation plan can specify the

sizes of the caches used by each of its operators.

Definition 3.2 A query evaluation is cache-finite if

the size of the cache at every operator is a constant

determined independent of the actual data in the

input sequences. A query evaluation possesses the

stream–access property if it is cache-finite and performs

a single scan of its input (base) sequences in positional

order. ❑

It seems intuitively that the stream–access property

would be the ideal property for a query evaluation

to possess. The cost of a stream access query is

limited to the cost of a single scan of the input

sequences in positional order, the cache access costs

and the computation costs. The caches are assumed

to be small, and the cache access cost is typically

negligible. It is however not the case that a stream

access evaluation implies an optimal evaluation. For

instance, the accesses to a particular sequence may be

to a very few positions so that it may be preferable

to directly access them using an indexing mechanism.

This may also be the case if the data is not physically

organized to favor stream access8.

Theorem 3.1 If every operator in a query graph has

a sequential, fixed-size scope on all its inputs, and if

caches of the size of the scopes are used, then the query

has a stream–access evaluation.

Lemma 3.1 If the scope of a query on all its inputs is

sequential and of fixed size, and if caches of the size of

the scopes are used, then the query has a stream–access

evaluation.

If the scope of an operator does not satisfy these

conditions, it might still be possible to execute the

query in a stream-access fashion. This can be done by

“broadening the scope” of the operator.

Definition 3.3 The effective scope of an operator over

an input sequence IS is a function EffScopelS such

that for all positions i, ScopelS (i) C E f f ScopeIS(i). ❑

71n certain domains in which input data records arrive

dynamically(eg. [GJS92]), it is important to optimize the cost

of processing each arriving input record.

8The actual physical organization of a sequence can vary. A

relation with an uncluttered index on a position attribute does

not particularly favor stream access.

435

+

SUM

[pos, pos - 5]

#l

Project

C105e

z
IBM

(A)

-!-
#4

Previous

#3

A
#lclose < #2.close

Compose

#1 #2

IBM HP

(B)

Figure 5: Caching of Derived Sequences

If the effective scope of every operator in a query is

defined on all its inputs, then this defines the effective

scope of the query on the input sequences. The

properties of scope like size and sequentiality can be

associated with effective scope as well.

Lemma 3.2 If every operator in a query graph has a

sequential, fixed-size effective scope on all its inputs, and

if caches of the size of the eflective scopes are used, then

the query has a stream–access evaluation.

Consider the positional offset operator with an offset

of -5. This operator has a scope of size 1, but the

scope is not sequential. By making the effective scope

the current position and the five most recent positions,

the effective scope becomes sequential of size six. A

stream–access evaluation is now possible. Permitting a

stream access therefore requires the identification of a

sequential fixed-size effective scope for every operator in

the sequence. Obviously, this can be trivially satisfied

by including all positions in the valid range into the

effective scope of an operator. As will be evident from

the next section, it is important to find the minimal

such effective scope.

3.5 Caching of Derived Sequences

Operators like aggregates and value offsets have a non–

unit scope on their input sequences. The purpose of

caching is to ensure in conjunction with a stream mode

of access that the records at positions in the operator

scope are found in the cache. Consider for example the

query in Figure 5.A that computes for each position, the

sum of the close of the IBM sequence over the previous

six positions. The aggregate operator has a scope of size

six. If the access to the Sum sequence is a stream access,

the last six values of the derived sequence marked #1

ASTART

ACOMPOSE

Fw%d’‘bsQG

POSITION

Figure 6: Sequence Query Template

can be cached. Since these values are repeatedly used in

the computation of the aggregate, the Sum operator at

every position needs to access the input sequence only

at that position. This caching strategy is referred to as

Cache-Strategy-A. When the effective scope is large or

of variable size, it may not be feasible to cache the entire

scope of the input sequence. However another caching

strategy described below could be used.

Consider the query in Figure 5.B. The Previous

operator generates as an output record, the most recent

input record at an earlier position than the current

position. Note that the scope of this operator is variable

since it may have to go back an arbitrary number of

positions in the input sequence. If the input sequence

is a base sequence, this involves repeated retrievals,

and for a derived sequence this involves recomputation

as well. For inst ante, if the close of IBM is usually

greater than the close of HP, a large number of IBM

and HP records may need to be accessed to generate

each record of the sequence marked #4. If instead of

this naive algorithm, the value of the #4 sequence at

the previous position were cached, then the record at

a particular position in the #4 sequence is either the

cached record at the previous position, or the record

from the #3 sequence at the previous position if it is

non-Null, We refer to this incremental cache strategy

as Cache-Strategy-B. Such an optimization could be

viewed as a graph transformation in which an operator

is replaced by an equivalent operator that can be more

efficiently evaluated. It could also be viewed as allowing

a restricted form of cycles in the query graph (since

the output sequence is being used to derive itself).

However, it is most intuitive to present this as a caching

optimization,

4 Query Plan Generation

Using the basic set of operators that have been de-

scribed, we now consider an algorithm for the optimiza-

tion and evaluation of sequence queries. Many minor

details have been omitted for the sake of conciseness

but the important details are mentioned either along

with the algorithm or as part of the description of the

optimizations in the preceding section.

A sequence may be queried by asking for its records

at (a) specific positions, or (b) all positions in a range.

In both cases, the query is associated with a Position

Sequence that has non-Null records at those positions

436

for which an answer is desired. Figure 6 shows a query

specification. The sequence being queried is labeled

SQG(Sequence Query Graph) to signify that this is

not necessarily a base sequence, but could well be a

derived sequence represented by a query graph. The

Start operator is a special operator that initiates query

evaluation by invoking a stream access on its input. The

query optimizer needs to produce a query evaluation

plan that will generate the output sequence at the lowest

estimated cost.

We now examine the steps involved in the query

optimization algorithm. The algorithm explores the

space of possible query evaluation plans in a bottom-

up fashion.

Step 1- Query Specification: The query is specified

as a Sequence Query Graph (SQG) composed with the

query template. At this stage, the query is a hierarchical

graph of operators, with base and constant sequences

at the leaves of the graph and the Start operator at the

root.

Step 2- Meta–Information Propagation: In this

stage, the meta–information associated with the base

sequences is propagated so that the entire query graph

is adorned with appropriate information.

Step 2.a - Bottom Up Annotation: The query graph

is adorned with schema and meta–information in a

bottom-up traversal. The purpose of this step is

to perform type checking of the query and to define

the meta–information associated with the derived se-

quences in the query. Every operator uses the span

information from its input sequences to determine the

span of its output sequence. Further, the densities of

the input sequences can be used to determine the den-

sit y of the output sequence. The semantics of each op-

erator plays a part in the density propagation. With

our definition of aggregate operators, a Null record

is produced only if all the input records in the scope

are Null. Similarly, for a positional join operator, the

density of the output sequence would be a function of

the input sequence densities, the selectivity of the join

predicates and the correlation in the Null positions of

the input sequences.

Step 2.b - Top Down Annotation: This step prop-

agates span information down the graph using a top-

down traversal starting from the root. Each operator

modifies the spans of its input sequences based on the

span of its output sequence. The importance of this

stage was illustrated in Section 3.2.

Step 3- Query Transformations: Section 3.1 pre-

sented the rules for the various graph transformations.

At this stage, the transformations discussed in Section

3.1 that are heuristically expected to prove beneficial

are applied.

if (single operator of non-unit scope) {

Find cheapest plan for each access mode;

} else { /* collection of positional joins */

Curr_Set : = Cheapest plans for each input

sequence for each access mode;

Repeat till all sequences have been joined {

liew_Set : = Cheapest plans for joining one

more input sequence t 0 Curr.Set

for each access mode;

Curr_set := New_Set; } }

Figure 7: Block-wise Plan Generation

Step 4 - Identification of Query Blocks: As

described in Section 3.1, the operators with non-unit

scope divide the query into “blocks”, At this stage,

these query blocks are identified and ordered in a partial

ordering as follows: if the output sequence of a query

block A is an input for another block B, then A < B in

the block ordering.

Step 5 - Block-wise Plan Generation: For each

block in increasing topological sort order, a set of

possible query evaluation plans needs to be generated.

This step is described in detail in the next subsection.

Step 6 - Plan Selection: Finally, when the Start

operator at the root of the graph is reached, the most

efficient stream access query evaluation plan for the

entire query is selected.

4.1 Plan Generation Algorithm

The approach taken to generate a plan for each block

is similar in spirit to the plan generation algorithm

for SQL query blocks described in [SMALP79], which

we will refer to as the Selinger algorithm. A brief

explanation of the Selinger algorithm is in order. An

SQL query block consists of a list of relations to join,

a list of selection predicates on the relations, a list

of join predicates and a list of projection attributes.

The primary emphasis is on choosing an efficient order

to join the relations involved in the query. While

evaluating the cost of each join, different join methods

are considered. At the first stage, the cheapest way

of accessing each individual relation is determined for

each “interesting” order. Interesting orders are defined

as sort orderings on columns that might benefit Group-

By or Order-By operators at higher levels, or that might

help in a subsequent sort-merge join. At the next stage,

one additional relation is joined to the existing relations

to produce all joined pairs of relations. If there are

multiple methods for computing a particular join, only

the most efficient method is retained for each interesting

order. This process is repeated until a join order has

been chosen for all relations in the query.

There are many factors that make the problem of

sequence query optimization different. As explained in

Section 3.1, each query block is either an operator of

437

non-unit scope, or consists of a set of positional joins on

input sequences with possibly additional join predicates.

The input sequences may be base sequences, constant

sequences or the outputs from lower blocks. The order

of evaluation of the positional joins and the method

used to evaluate each of them remains important

to determine. However, issues like access modes,

caching and operator scopes need to be introduced

into the algorithm. The plan generation phase for

each block provides evaluation plans and cost estimates

for the output sequence of the block accessed in both

stream and probed modes. This information is then

used to generate plans for the higher blocks. We now

present the algorithm for processing a single block; the

pseudo–code is presented in Figure 4.1. The algorithm

deals separately with blocks of positional joins and

blocks comprised of single operators of non-unit scope.

We first discuss the access costs to base sequences,

followed by each part of the algorithm.

4.1.1 Access Costs to Base Sequences

The stream mode access cost of a base sequence is

determined by the size of the valid range of the sequence,

the density of the sequence and the access paths

available. The cost is measured as a product of the

number of pages to be accessed and the cost of each

access. The probed mode cost is determined by the

average cost of accessing the record at a given position,

multiplied by the number of positions in the valid range

of the sequence. A constant sequence has no access cost

and a density of one.

4.1.2 Blocks with Non-Unit Scope

Our model considered two types of operators with

non-unit scope: aggregates and value offset operators.

The scope of the aggregate operators is fixed but is

not of unit size. The scope of value offset operators

is of variable size. Both the naive algorithm and

the incremental algorithm (if applicable) need to be

considered. The probed access cost is the probed access

cost of the input sequence multiplied by the size of the

operator scope. For operators of variable scope, some

reasonable estimate needs to be made of the number of

input positions that will have to be accessed on average.

This estimate can be made from the density of the

input sequence, and multiplying this estimate by the

probed access cost of the input sequence provides the

probed access cost of the output sequence.

For stream access, if the naive algorithm is used,

a possibility is to cache the entire effective scope

as in Cache-Strategy-A. This is possible for fixed-

size sequential scopes that are reasonably small (for

instance, a scope of the last million records in the

sequence would probably not be cached!). If the

incremental algorithm is applied, Cache- Strategy-B can

be used. For operators like Previous and Next, this

is the case, The stream access interacts with caching

to produce a cost that is the sum of the stream cost

of the input sequence, the cost of storing each record

in the cache, the cost of accessing the cache for

each output record and the computational cost. The

incremental algorithm is not usable in conjunction with

a probed access.

4.1.3 Blocks with Positional Joins

Consider a positional join of two sequences Sl(Al,al,dl)

and S2(A2,a2,d2), where AI (A2) corresponds to the

stream access cost, al (a2) to the probed access cost and

dl (d2) to the density of sequence S1 (S2). The costs for

the output sequence are evaluated as follows:

●

●

Stream Access Cost = rnznzrnum(Al + dl * a2, A2 +

d2 * al, Al+ A2) + cil * d2 * output-span * K, where

the value K is the constant cost associated with

a single application of the join predicates. This

corresponds to the cheapest of the evaluation plans

suggested by Join-Strategy-A and Join-Strategy-B.

The first plan accesses the input sequence S1 in a

stream access, and for every non-Null record, invokes

a probed access on S2. The second plan is the

converse of the first, while the third plan invokes

a stream access on both sequences. The value

dl * d2 * output-span is the number of times the join

predicates need to be applied.

Probed Access Cost = minimum(al + dl * a2, a2 +

d2 * al) + dl * d2 * output.span * K. This corresponds

to the cheapest of two evaluation plans. The first

accesses the sequence S1 in a probed access and

invokes a probed access on S2 for eath non-Null

record, while the other plan does the converse.

Plan generation for other operators like projections and

selections is trivial and we do not explain them here.

The number of sequences joined is increased in steps of

one until finally all the input sequences to the block have

been joined and there are two access plans generated

corresponding to the cheapest ways of accessing the

output sequence in stream and in probed modes.

4.1.4 Algorithmic Analysis

The Selinger algorithm has been extensively studied

and is known to generate the class of “left-deep tree”

join plans. [GHK92] contains a detailed analysis of this

algorithm. Our optimization algorithm too explores the

class of left-deep query trees within each block. The

entire query evaluation plan however is not restricted

to be a left-deep tree because the graph may be bushy

across query blocks. Given a block with N

joins, we can make the following statements

complexity of the optimization algorithm on

block:

positional

about the

the query

438

Property 4.1

a) Thetime complexity interms of thenumber of join

plans evaluated = O (N* 2N-1)

b) The space complexity in terms of the maximum

number of plans that need to be stored = O
() [N~21

Given a complete query plan, the actual query

evaluation is straightforward. The Start operator at

the root of the plan induces a stream access on its

input sequence (i.e. it repeatedly asks for the next

non-Null record). When asked to provide its next non-

Null record, the operator immediately below the Start

operator invokes the appropriate access on its inputs

sequences. Alltheoperators inthequery graph operate

as specified by the query plan.

5 Extensions

The sequence model presented in this paper is limited

in the sequences it can represent and in the queries

that can be posed. We are currently extending the

model to capture a much broader class of sequence

databases [SLR]. In this section, we briefly describe

some of the directions in which the model is being

extended, and the corresponding extensions needed to

the optimization framework. Note that we do not

consider query language issues which though important

are beyond the scope of this paper.

5.1 Extensions to the Model

General Sequences: The model of a sequence can be

generalized as a many-many mapping from positions to

records. Each position is therefore associated with a set

of records, and vice-versa. This extension allows the

model to represent the kind of temporal data typically

represented by temporal databases. A record could be

associated with an interval of positions, and at any one

position, more than one record might overlap. New

operators are required that are based on the view of

a sequence as a collection of records, each associated

with a set of positions. The new operators include

overlap-join, contain-join and precede-join[LM93], as

well as typical relational operators like cross-product

that operate on the records.

Ordering Domains: Instead of assuming that posi-

tions are integers, the existence of explicit ordering do-

mains can be introduced. These ordering domains may

be related in a well-known fashion (for instance, the do-

main of days and the domain of months are related).

The knowledge of these relationships leads to operators

that can “collapse” or “expand” a sequence from one

ordering domain to another. For instance, this would

allow a daily sequence to be treated as a weekly se-

quence so that a weekly average could be computed.

Multiple Orderings: In bitemporal databases[JCG+92]

a set of records is typically associated with transaction

time as well as valid time orderings. In general, it is

useful to be able to associate multiple orderings with

the same set of records.

Sequence Groupings: In some situations, it might

be desirable to collectively query a group of sequences

of similar record type. For instance, given a database

of experimental result sequences, a query might ask for

those sequences that satisfy some condition. This is

a query that operates on “sequence groupings”. The

model needs to be extended so that the operators

manipulate sequence groupings instead of sequences.

5.2 Extensions to the Queries

Generalized Query Graphs: So far, we have re-

stricted the query graph to be hierarchical. One ob-

vious extension is to allow the graph to be a DAG (i.e.

to allow the output sequence of an operator to act as the

input for more than one other operator). This sharing of

sequences raises optimization issues in terms of caching

strategies and choice of access modes. The placement

of the caches becomes an important issue. For instance

caches may be “pushed down” the operator graph to a

shared operator, thus avoiding the duplication of cached

values. The identification of query blocks may also need

to be revisited. A further extension would allow a lim-

ited form of recursion into the query graph. This raises

a whole set of issues regarding the semantics and cor-

rectness of such queries.

Correlated Queries: There is a class of queries that

are difficult to express using the model presented in

this paper. For instance, consider Example 1.1 dealing

with volcanos and earthquakes. Let the query be

slightly modified to ask: “For which volcano eruptions

was the strength of the most recent earthquake in the

same region greater than 7.0 on the Richter scale?”.

Suddenly, the query becomes difficult to express in our

model. A relational language like SQL uses nested

queries so that the region of each volcano is used as a

“correlation” value that is used to determine the most

recent earthquake of interest. Such a feature could be

added to our model. However, it can no longer be

evaluated with a stream access using the techniques

described here. The problems raised by correlation

are very similar to the issues raised by correlated SQL

queries that have been extensively studied[SPL, Day87,

GW87, Kim82]. Using the model of sequence groupings

though, it is possible to declaratively represent such

queries. Further it is possible to devise optimization

strategies that can sometimes lead to a stream-access

evaluation ![SLR].

439

5.3 Extensions to the Framework

●

●

6

In terms of the optimization framework, the criterion

of minimizing the total execution cost of a sequence

query may not always be the most appropriate. For

instance, in applications where the data sequences

are dynamic, and where the queries are acting

as triggers, it may be important to optimize the

incremental cost of processing each new arriving

data item. This requires a different optimization

algorithm, and different evaluation techniques.

In estimating the costs of various access modes, one

possibility that was not considered in this paper was

materialization of derived sequences. This is defi-

nitely an option to consider, especially when stream

access is not possible. Further, if the model were

extended to allow for sequences with more than one

ordering domain, it might be desirable to material-

ize and sort intermediate sequences. Finally, with

regard to the base sequences, it might be efficient to

first reorganize their physical representations before

running the query (for example, sort them so that

stream access is efficient).

Related Work

Since temporal sequences are among the most com-

monly occuring sequences in real life, there has been

much research on temporal databases. We refer the

reader to [S0091] for a bibliography of recent work.

Most of the research has concentrated on temporal mod-

els and languages[Gad86, CC87, SS88, NA89, WD92,

Sno87]. Much of this research has focused on extend-

ing existing data models to support temporal data,

or extending existing query languages to allow tem-

poral queries to be expressed. Typically, the rela-

tional model is extended by associating a “times-

tamp” with each tuple(object). The “timestamp” rep-

resents the positions in time at which the tuple(object)

was “true”. The associated query language is extended

with predicates that access the “timestamp” of the tu-

ples(objects). There has been some work on query op-

timization based on such models[GS89a, LM93, NG93].

For instance [GS91, LM93] propose efficient stream ac-

cess techniques of processing various types of temporal

“joins”, and [GS89b] proposes an optimization frame-

work for temporal data based on such techniques. Our

approach to sequences presented in this paper takes a

strongly “positional” view of sequences, as opposed to

the models mentioned above. In this aspect, it has

been influenced by the model of Time Sequences in

[SS87, SK86]

Research into sequence data in contexts other than

temporal data include [GJS92], [RIc92], and [SP90],

[GJS92] presents techniques for expressing and evalu-

at ing patt em-match queries over a sequence of events.

[RIc92] presents a model and operators for manipulating

lists in a database. While our paper does not directly

cover such issues, the broader model that we are cur-

rently developing [SI,R] does cover some of these aspects

of sequence query processing. [SP90] studies stream

processing techniques using a logic language as the un-

derlying data engine. While the emphasis was not on

a cost-based query optimization for sequence queries in

the database context, the emphasis on stream process-

ing is similar.

Some of the optirnization techniques used in this pa-

per are similar to other proposals in the literature. For

instance, our concept of operator caches is similar to the

notion of “working-memory” in [LM93, SP90]. [GS89b]

argues like we do that the kind of statistical information

that needs to be maintained in a temporal database is

significantly differerk from that maintained by relational

systems. Transformations like the bidirectional propa-

gation of span information are not common in relational

systems. The magic rewriting optimization [BR91] and

predicate pushdown which propagates selection predi-

cates into sub-queries come close to the spirit of this

kind of optimization. Finally, we have not addressed

physical storage and access structure issues, and there

have been a number of specialized access structures

proposed for temporal data that are of relevance(eg.

[EWK90, LS89, RS87]).

7 Conclusion

We have presented a framework and an algorithm for

optimizing sequence queries. Many of our optimization

techniques rely upcm the sequentiality of the data and

query, and have no counterparts in the domain of rela-

tional databases. VVe have studied these optimizations

using a simple model of sequences and a restricted set

of query operators. The concept of operator scope and

the importance of access modes and caching strategies

have been introduc~d and emphasized. The query plan

generation algorithm is the first such concrete algorithm

presented for sequence queries to the best of our knowl-

edge. This paper raises a number of fresh research issues

that are challenging and that have significant practical

benefits.

Acknowledgements

The authors would like to thank Joe Hellerstein, Navin

Kabra and Jignesh Patel for useful discussions.

References

[BR91] Catriel Beeri and Raghu Ramakrishnan. On the

power of Magic. Journal of Logic Programming,

lo(3&4):2!55–3oo, 1991.

[CC87] James Clifford and Albert Croker. The historical

data model and algebra based on lifespans. In

440

[Day87]

[EWK90]

[Gad86]

[GHK92]

[GJS92]

[GS89a]

[GS89b]

[GS91]

[GW87]

[JCG+92]

[Kim82]

[LM93]

[LS89]

[NA89]

[NG93]

Proceedings of the International Conference on Data

Engineering, pages 528-537, 1987.

Umeshwar Dayal. Ofnests and trees: Aunifiedap-

proach to processing queries that contain nested sub-

queries, aggregates and quantifiers. In Proceedings

of ACM SIGMOD ’87 International Conference on

Management of Data, San Francisco, CA, pages23–

33, 1987.

Ramez Elmssri, Gene Wuu, and Yeung-Joon Kim.

The time index : An access structure for temporal

data. In Proceedings of the International Conference

on Very Large Databases(VLDB), pages l–12, 1990.

S.K. Gadia. Towards amultihomogenous model for

a temporal database. In Proceedings of the Interna-

tional Conference on Data Engineering, pages 390–

397, 1986.

Sumit Ganguly, Waqar Haean, and Ravi Krishna-

murthy. Query optimization for parallel execution.

In Proceedings of ACIvf SIGMOD ’92 International

Conference on Management of Data, San Diego,
CA, pages 9-18, 1992.

N.H Gehani, H.V. Jagadish, and O. Shmueli. Com-

positeevent specification inactive databases: Model

and implementation. In Proceedings of the hsterna-

tional Conference on Very Large Databases(VLDB),

pages 327-338, 1992.

Himawan Gunadhi and Arie Segev. Event-join op-

timization in temporal relational databases. In

Proceedings of the Fifteenth International Confer-

ence on Very Large Databases (VLDB), Amsterdam,

Netherlands, 1989.

Himawan Gunadhi and Arie Segev. A framework

for query optimization in temporal databases. In

Fifth International Conference on Statistical and

Scientific Database Management Systems, 1989.

Himawan Gunadhi and Arie Segev. Query processing

algorithms for temporal intersection joins. In

Proceedings of the International Conference on Data

.Engineerzng, 1991.

Richard A. Ganski and Harry K.T. Wong. Optimiza-

tion of nested sql queries revisited. In Proceedings

of ACM SIGMOD ’87 International Conference on

Management of Data, San Francisco, CA, pages 23–

33, 1987.

C.S. Jensen, J. Clifford, S.K. Gadia, A. Segev, and

R,T, Snodgrass. A glossary of temporal database

concepts. SIGMOD Record, 21(3), sep 1992.

W. Kim. On optimizing an sql-like nested query.

ACM Transactions on Database Systems, 7, Septem-

ber 1982.

Cliff T.Y. Leung and Richard R. Muntz. Temporal

Databases, Theory, Design and Implementation,

chapter 14. Benjamin/Cummings, 1993.

David Lomet and Betty Salzberg. Access methods

for multiversion data. In Proceedings of A CM SIG-
MOD International Conference on Management of
Data, pages 315-324, 1989.

S.B. Navathe and R. Ahmed. A temporal relational

model and a query language. Information Sciences,

49;147–175, 1989.

Sunil S. Nair and Shashi K. Gadia. Algebraic

optimization in a relational model for temporal

databases. In Richard Snodgraes, editor, Proceedings

of the International Workshop on an Infrastructure

for Temporal Databases, pages 390-397, Arlington,

Texas, 1993.

[RS87]

[SK86]

[SLR]

[SMALP79]

[Sno87]

[s0091]

[SP90]

[SPL]

[SS87]

[ss88]

Joel Richardson. Supporting lists in a data model. In

Proceedings of the International Conference on Very

Large Databases(VLDB), pages 127-138, 1992.

Doron Rotem and Arie Segev. Physical organization

of temporal data. In Proceedings of the International

Conference on Data Engineering, pages 547-553,

1987.

Arie Shoshani and Kyoji Kawagoe. Temporal

data management. In Proceedings of the Twelfth
International Conference on Very Large Databases

(VLDB), Kyoto, Japan, pages 79-88, 1986.

Praveen Seshadri, Miron Livny, and Raghu Ramakr-

ishnan. Seq: A framework for sequence databases.

Submitted for publication.

Patricia G. Selinger, D. Chamberlain M. Astrahan,

Raymond Lorie, and T. Price. Access path selection

in a relational database management system. In

Proceedings of ACM SIGMOD ’79 International

Conference on Management of Data, pages 23-34,

1979.

Richard Snodgrass. The temporal query language

tquel. ACM Transactions on Database Systems,

12(2):247-298, June 1987.

Michael D. Soo. Bibliography on temporal

databases. ACM SIGMOD Record, 20(1):14-23,

March 1991.

D. Stott Parker. Stream Data Analysis in Prolog,

chapter 8. MIT Press, 1990.

Praveen Seshadri, Hamid Pirahesh, and Cliff Leung.

Decorrelating complex queries. Submitted for Pub-

lication.

Arie Segev and Arie Shoshani. Logical modelling of

temporal data. In Proceedings of A CM SIGMOD ’87
International Conference on Management of Dataj

San Francisco, CA, pages 454-466, 1987.

Arie Segev and Arie Shoshani. The representation of

a temporal data model in the relational environment.

In Proceedings of the Jth Conference on Statistical

and Sczenti.flc Database Management, pages 39–61,

June 1988.

Gene Wuu and Umeshwar Dayal. A uniform

model for temporal object-oriented databases. In

Proceedings of the International Conference on Data
Engineering, 1992.

441

	Abstract
	Introduction
	Sequence Model
	Query Optimization Techniques
	Query Plan Generation
	Extensions
	Related Work
	Conclusion
	References

