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Transcription, mRNA decay, translation and protein degradation are essential processes during
eukaryotic gene expression, but their relative global contributions to steady-state protein
concentrations in multi-cellular eukaryotes are largely unknown. Using measurements of absolute
protein and mRNA abundances in cellular lysate from the human Daoy medulloblastoma cell line,
we quantitatively evaluate the impact of mRNA concentration and sequence features implicated in
translation and protein degradation on protein expression. Sequence features related to translation
and protein degradation have an impact similar to that of mRNA abundance, and their combined
contribution explains two-thirds of protein abundance variation. mRNA sequence lengths, amino-
acid properties, upstream open reading frames and secondary structures in the 50 untranslated
region (UTR) were the strongest individual correlates of protein concentrations. In a combined
model, characteristics of the coding region and the 30UTR explained a larger proportion of protein
abundance variation than characteristics of the 50UTR. The absolute protein and mRNA
concentration measurements for 41000 human genes described here represent one of the largest
datasets currently available, and reveal both general trends and specific examples of
post-transcriptional regulation.
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Introduction

Proteins and their absolute concentrations determine the
physiological state of a cell. Transcription regulation, albeit
extremely important, is insufficient by itself to completely
describe protein abundance (MacKay et al, 2004). Each gene
also has many features and regulatory elements that modulate
translation and protein degradation, and their actions impact
the steady-state protein abundance, on top of transcription and
mRNA decay (Hieronymus and Silver, 2004; Mata et al, 2005).
Such extensive post-transcriptional regulation leads to
generally low correlation between mRNA and protein
concentrations. For many prokaryotic and eukaryotic organ-
isms, only 50% or less of variation in protein abundance is

explained by variations in mRNA concentrations (de Sousa
Abreu et al, 2009).

Eukaryotic translation influences protein abundance in
multiple ways through initiation, elongation and termination,
each requiring a number of specialized factors. Translation
initiation mostly occurs in a cap-dependent manner, but
exceptions exist, for example Internal Ribosome Entry Sites
(Filbin and Kieft, 2009). The translation start codon is
normally placed within a highly conserved short sequence,
also known as Kozak sequence (Kozak, 1987). Translation
initiation can be influenced by several features and specific
sequences in the 50 untranslated region (UTR), for example
secondary structures, sub-optimal initiation sites or upstream
Open Reading Frames (uORFs). Secondary structures and
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uORFs can slow down the passage of the ribosome and
subsequently reduce translation of the main ORF (Calvo et al,
2009).

In addition to initiation, the efficiency of translation
elongation influences steady-state protein abundance. It is
thought that frequent codons have more tRNAs available than
infrequent codons; as a result, codon usage and tRNA
adaptation may impact elongation rates and have been used
as proxies of translation efficiency, in particular in bacteria and
single-cellular eukaryotes (Ermolaeva, 2001). However, recent
work in bacteria suggests that codon usage may have a
different function than assumed so far (Kudla et al, 2009;
Welch et al, 2009), a topic of active debate (Tuller et al, 2010;
Waldman et al, 2010). In eukaryotes, mRNA processing and
modification, such as poly-adenylation, influences mRNA
stability and translation: the length of the poly(A) tail
generally correlates with translation efficiency (Preiss and
Hentze, 1998). Finally, the action of cis-regulators influence
translation: RNA-binding proteins and miRNAs recognize
specific binding motifs and modulate the interaction of
members of the translation machinery with the mRNA (Abaza
and Gebauer, 2008). The human genome encodes, for
example, B600 RNA-binding proteins (Wilson et al, 2009)
many of which may have regulatory functions.

Likewise, protein degradation impacts protein abundance.
During ubiquitin-proteasome-mediated proteolysis, target
proteins are initially ubiquitinated and then degraded by the
proteasome. Regulation takes place during poly-ubiquitinyla-
tion; the most important event is dictated by E3 ubiquitin
ligases that specifically recognize degradation or destruction
signals (degrons) on target proteins and promotes the
attachment of a poly-ubiquitin chain (Ang and Wade Harper,
2005; Ravid and Hochstrasser, 2008). The protein’s sequence
can contain several degradation signals. For example,
N-degrons relating the identity of the N-terminal residue to
the protein half-life (N-end rule; Bachmair et al, 1986), or PEST
sequences, named after richness in proline, glutamic acid,
serine and threonine (Rogers et al, 2008). PEST sequences
lead to rapid protein turnover by directing a protein to the
ubiquitin-proteasome pathway (Rechsteiner and Rogers, 1996;
Spencer et al, 2004). Intrinsically, unstructured protein
regions, that is regions that do not assume a particular three-
dimensional structure, can also destabilize a protein (Dyson
and Wright, 2005; Gsponer et al, 2008; Tompa et al, 2008).

Given such plethora of regulatory mechanisms that modify
cellular protein abundance, defining the relative contributions
of each feature is still a challenging task (de Sousa Abreu et al,
2009), and has so far been possible only for bacteria and yeast
(Nie et al, 2006; Brockmann et al, 2007; Tuller et al, 2007; Wu
et al, 2008). Here, we present the first comprehensive
measurement of the influence of measures of translation and
protein degradation on protein abundance variation in a
human cellular system. We experimentally measure absolute
protein and matching mRNA concentrations for 41000 genes
in the Daoy medulloblastoma cell line, using shotgun
proteomics and microarrays, respectively (Figure 1). These
data comprise one of the largest such sets available today for
human (de Sousa Abreu et al, 2009). We analyze B200
sequence features including length, nucleotide composition
and structure of the coding sequence and UTRs, composition

of the translation initiation site, presence of uORFs, putative
target sites of miRNAs, codon usage, amino-acid composition
and protein degradation signals. We identify sequence
characteristics, which have dominant functions in the regula-
tion of translation and protein degradation. Our combined
model including mRNA and sequence features can explain
67% of the variation of protein abundance in this system—and
thus has the highest predictive power for human protein
abundance achieved so far.

Results and discussion

A large-scale dataset on absolute mRNA
and protein concentrations

We measured absolute mRNA and matching protein concen-
trations for 41000 genes, describing the average concentra-
tion of each mRNA or protein across a population of Daoy
medulloblastoma cells. The data are presumed to reflect the
population’s steady state, as cells were harvested during
logarithmic growth (at 80–90% confluency) and were neither
under nutrient deprivation or other stressors. Concentration
measurements are estimated to be accurate to within two- to
three-fold on average (Vogel and Marcotte, 2008) (Supple-
mentary Figure S5), with both mRNA and protein concentra-
tions spanning four orders of magnitude (Supplementary
Figures S2 and S8). We extracted a high-confidence dataset of
512 genes, which we examine more closely; however, all
general trends hold true for the entire dataset (Supplementary
information).

Steady-state protein concentrations are the combined result
of cellular processes that impact mRNA (transcription or RNA
decay) and protein (translation and degradation) expression.
First, we evaluated individual correlations of sequence
features with protein abundance, accounting for what can be
explained by variation in mRNA abundance already. Second,
we combined information on mRNA abundance and sequence

Figure 1 Flowchart of methods. We measured absolute mRNA and protein
concentrations in cellular lysate from the Daoy medulloblastoma cell line. We
integrated transcript level information with data on sequence characteristics
to explain variation in protein abundance. All sequence characteristics analyzed
are listed in the Supplementary information. MARS, Multivariate Adaptive
Regression Splines.

Explaining variation in human protein concentrations
C Vogel et al

2 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited



features to derive a model predicting steady-state protein
abundance variation.

We observe a significant positive correlation between
mRNA and protein concentrations (Figure 2; Spearman’s
rank correlation Rs¼0.46 (P-valueo2E�16), Pearson’s cor-
relation of log-transformed abundances R2¼0.29, R¼0.54,
P-valueo2E�16)—larger than many previous measurements
in mammalian systems (de Sousa Abreu et al, 2009). We also
estimated the correlation coefficient corrected for errors
in the underlying protein and mRNA measurements, using
Rcorr¼RPR/sqrt(rPP� rRR) (Spearman, 1904, 1910), in which
RPR is the Pearson’s correlation coefficient between logged
protein and mRNA abundances, and rPP and rRR are the
reliabilities of the protein and mRNA measurements, respec-
tively. Measurement reliabilities can be estimated from the
Pearson’s correlation coefficient between technical replicates
in test–retest experiments, as is shown in Supplementary
Figures S1B and S3. Thus, Rcorr¼0.54/sqrt(0.92� 0.97)¼0.57
and Rcorr

2 ¼0.32. This estimate implies that the correlation
coefficient between perfectly measured protein and mRNA
concentrations is very similar to the observed one, and
measurement reliabilities are of minor influence.

The relationship between protein and mRNA concentration
is non-linear, but can be approximated by a piece-wise linear
function (Supplementary Figure S12). The protein-per-mRNA
ratio is approximately log-normally distributed (Figure 2).
Log-normal distributions are, in general, the result of multi-
plicative independent random variables, in the same way as
normal distributions are the result of additive independent
random variables. In many biological and physical processes,
independent effects act in a multiplicative manner and
produce log-normal distributions (Koch, 1966). We identified
two populations of extreme protein-per-mRNA ratios—the
genes in these populations are likely subject to stronger
translation or protein degradation regulation (Figure 2).
A gene with a large protein-per-mRNA ratio may be very
efficiently translated and/or may encode a very stable protein;
a gene with few protein molecules per mRNA may be subject to
the opposite regulation.

Deviations from the correlation between protein and mRNA
concentration result from regulation at the level of translation
and protein degradation, and the relationship between protein
and mRNA in our data (Figure 2) implies that 470% of the

variation in protein abundance can be attributed to some
combination of these processes and biological and measure-
ment noise. To evaluate the contribution of translation
and protein degradation to gene expression, we examined
sequence features related to translation and protein degrada-
tion in their ability to explain these remaining 70% of variation
in protein expression.

We conducted three types of tests: (a) we examine partial
Spearman’s rank correlation of numerical features (e.g. length,
uORFs) with protein concentration, accounting for variation in
mRNA concentrations; (b) for numerical and categorical
features (e.g. function), we compare two extreme populations
with Welch’s t-test and (c) using a Multivariate Adaptive
Regression Splines (MARS) model, we analyze the combined
contributions of mRNA expression and sequence features to
protein abundance variation (Figure 1). To account for the
non-linearity of many relationships (e.g. Figure 2), we use
non-parametric approaches throughout the analysis (Supple-
mentary Sections S2 and S4).

Individual correlations

We tested B200 sequence features for their impact on protein
abundance, that is the remaining variation in steady-state
protein concentrations after accounting for the variation that
can be explained by mRNA expression levels (Figure 1).
We correlated each individual feature with protein concentra-
tions, accounting for variation of mRNA expression (partial
correlation). In this manner, we explicitly focused on transla-
tion and protein degradation. For example, mRNA concentra-
tions alone, representing combined effects of transcription and
mRNA stability, correlate weakly with coding sequence length
(Rs¼�0.22, P-value¼9E�7). In comparison, when examining
sequence length and protein abundance through partial
correlation and factoring out the effects of variation in mRNA
concentration, the negative correlation strengthens consider-
ably (RS¼�0.53, P-value¼5E�46; Table I). Translation and/or
protein degradation are strongly inversely correlated with
protein sequence length, and more so than transcription and
mRNA decay. As partial rank correlation is sensitive to
measurement noise, we consider this part of the analysis
exploratory rather than confirmatory.

Figure 2 Human protein and mRNA concentrations. Left: protein and mRNA concentrations correlate significantly at a log–log scale (N¼512, R2¼0.29, Rs¼0.46 with
P-valueo2.2e�16). Right: genes with extremely high (red) or low (green) protein-per-mRNA ratios are likely regulated at the level of translation or protein stability.
Source data is available for this figure at www.nature.com/msb.
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Table I lists a subset of sequence features with the strongest
correlation with protein abundance (each with P-value
p0.0001), as well as additional tested features of biological
interest. Complete results are in Supplementary Section 3
(Supplementary information). Measures of mRNA sequence
length are the strongest correlates: expression is significantly
lower among proteins with long coding and 30UTR sequences
than among proteins with short sequences (Table I). Correct

protein folding is a major determinant of expression levels
(Drummond et al, 2005), and the ability to fold fast and
correctly may decrease with sequence length, rendering the
inverse correlation plausible. In addition, ribosome density
decreases in long yeast sequences (Ingolia et al, 2009),
resulting in lower translation rates. Short mRNAs tend to be
more stable than long mRNAs (Feng and Niu, 2007), are more
efficiently translated (Lackner et al, 2007) and tend to have
higher transcript levels (Coghlan and Wolfe, 2000). Other
evidence suggests a decrease of translation initiation in long
sequences (Arava et al, 2003, 2005; Lackner and Bahler, 2008).
Indeed, the length of the 50UTR and its folding energy are
strongly correlated (Supplementary information). In compar-
ison, short 30UTRs have on average fewer binding sites for
potential repressor molecules, such as miRNAs and RNA-
binding proteins, than long 30UTRs, and thus a short sequence
may be advantageous for high protein abundance (Sandberg
et al, 2008; Mayr and Bartel, 2009; Santhanam et al, 2009).

A second set of significant correlations arises from
frequencies and properties of amino acids (Table I). These
compositional biases can have several origins: (i) amino acids
have different costs associated with their use in the cell, that is
essential amino acids may be depleted in highly expressed
proteins; (ii) the amino-acid sequence may influence a
protein’s folding and stability; (iii) some amino acids are
post-translationally modified and thus not detectable by mass
spectrometry and (iv) some peptide sequences are more easily
ionizable and hence observable by electrospray mass spectro-
metry than others, and the differential ionization impacts the
observed protein concentration.

Mechanism (iv) is accounted for by the quantitative
proteomics method (Lu et al, 2007) (Supplementary Section
1.2; Supplementary Figures S6 and S7). We could not find
biases regarding essential amino acids (mechanism i, not
shown). The other reasons can be evaluated by concurrent
correlations of other features. For example, protein phosphor-
ylation does not correlate with expression (mechanism iii),
whereas intrinsic protein unstructuredness, that is the fraction
of intrinsically unstructured protein regions, and the presence
of PEST motifs correlate strongly and negatively with protein
abundance (Table I). These findings suggest a dominant
influence of protein degradation (mechanism ii) on biases in
the amino-acid composition of proteins with different expres-
sion levels. This interpretation is supported by a weak positive
correlation with experimental protein degradation data (Yen
et al, 2008).

A third set of features relates to translation initiation
(Table I). The more structured the 50UTR of an mRNA is, the
more difficult it is for scanning ribosomes to reach the
translation start site, suppressing translation. Indeed, we
observe a significant positive correlation between local mRNA
stability of the 50UTR (measured by a negative score) and
protein abundance (Rs¼0.20, P-valueo2.5E�5). Recent work
in Escherichia coli and yeast confirms the function of
secondary structures in protein expression regulation, in
particular in the 50 end of the mRNA (Ringner and Krogh,
2005; Kudla et al, 2009; Gu et al, 2010; Tuller et al, 2010). In
addition, we observe an enrichment in upstream start codons
(AUG) and uORFs in the 50UTRs of genes with low protein
abundance, suggesting ribosome stalling at these secondary

Table I Individual correlations

Partial correlation:
Spearman’s Rs to

protein abundance
(given mRNA

abundance
variation)

Rs to mRNA
abundance

Sequence lengths
Coding sequence length �0.53*** �0.22***
50UTR length �0.10 �0.10
30UTR length �0.19*** �0.26***

Nucleotide frequencies and properties
Local secondary structures
at the 30 end of the 50UTR
(window size 40 or 60,
significance score)

0.20*** 0.06

AUG frequency in 50UTR �0.21*** �0.17***
uORFs frequency in 50UTR �0.18*** �0.14*

Amino-acid frequencies and properties
Serine �0.24*** �0.30***
Glutamine �0.18*** �0.14*
Leucine �0.18*** �0.13*
Glycine 0.17*** 0.05
Polar amino acids �0.18*** �0.04
PEST region frequency �0.37*** �0.18***
Intrinsic protein
unstructuredness

�0.18* �0.12

Experimental data
Polysomes (rank ordered)
(Mazan-Mamczarz et al, 2005)

0.19* 0.17*

Phosphorylation
(Bodenmiller et al, 2008)

0.06 0.18***

Protein stability index (PSI)
(Yen et al, 2008)

0.09 0.15

mRNA decay rate
(Yang et al, 2003)

�0.37*** �0.32***

Other features (not significant)
miRNAs per 30UTR (TargetScan90) �0.08 �0.03
Polyadenylation sites/30UTR 0.02 �0.11
Codon bias index 0.08 0.12*
G+C (total, in coding strand) 0.04 0.11*
G+C (third codon position) 0.06 0.15**

Variation in human steady-state protein abundance is dominated by measures of
sequence length, protein and mRNA decay, amino-acid composition and
translation initiation (upstream Open Reading Frames). The table lists
significant sequence features, as well as some other sequence features of
interest and experimental data for comparison. Spearman’s rank correlation
with protein abundance is calculated as the partial correlation between protein
concentration and the feature of interest, accounting for variation in mRNA
concentration. P-values are the result of testing of the hypothesis of zero partial
correlation with protein expression (given mRNA abundance variation).
Spearman’s rank correlation with mRNA abundance is calculated as direct
correlation between mRNA concentration and the feature of interest.
Rs—Spearman’s rank correlation. Significance: *P-valuep0.01, **P-valuep0.001,
***P-valuep0.0001. Stability of the secondary structures in the 50UTR is defined as
the difference between the lowest free energy calculated for a segment of the real
RNA sequence and the average of the lowest free energies of a large number of
randomized segments with the same base composition and the same size divided
by the s.d. of the free energies from the random sample (Supplementary Table S2).
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initiation sites and lowered translation of the main open
reading frame (Rs¼�0.21, P-value¼2E�6 and Rs¼�0.18,
P-value¼6E�5, respectively). Concordantly, the translation
initiation site is marked by a position-specific nucleotide
composition (Kozak, 1987): we find weak differences between
the two extreme populations at the nucleotide positions �5
and þ 4 (Supplementary Figure S9), suggesting a sub-optimal
translation initiation for genes with few protein molecules
observed per mRNA. Secondary structures of the 30UTR do not
have significant individual effects on protein abundance in our
dataset, although they have recently been shown to positively
influence translation as measured by association with the
translation initiation factor eIF4E (Santhanam et al, 2009).

We examined a number of other features of which many had
a surprisingly small contribution (Supplementary informa-
tion). For example, the presence of putative miRNA-binding
sites only shows very weak negative impact on protein
abundance in the dataset, confirming recent evidence that
miRNAs fine-tune expression regulation, rather than affect
gross changes in protein concentrations (Baek et al, 2008;
Selbach et al, 2008). Further, codon bias index does not
correlate significantly with human protein abundance, in
agreement with recent observations in E. coli (Kudla et al,
2009) (Table I). It is, however, a selected feature in the
combined model (see below). The codon bias index is weakly
positively correlated with mRNA concentration (Rs¼0.12,
P-valueo0.01). Measures of GC content display positive
correlations with mRNA, but not protein abundance. As high
GC content positively correlates with translation initiation
(Santhanam et al, 2009), mRNAs may be stabilized and
translated more efficiently, but the overall protein production
per mRNA may not be affected. Correspondingly, we find
codon usage biases in some amino acids, which could be
explained by differences in the GC content, but not by the
number of available tRNA genes (Supplementary Figures S10
and S11). Thus, weak codon usage preferences in our dataset
may be a by-product of the observed biases in nucleotide
composition and mRNA secondary structure.

Finally, we observe a significant enrichment in glycolytic
enzymes (P-valueo0.05) among genes with high numbers

of proteins produced per mRNA, for example MDH1, PKM2,
DLD, PGK1, TPI1, LDHB, LDHA, TXN, ETFA, MDH2 and PDHB
(Supplementary Table S3). The essential functions of these
enzymes concur with their high expression levels. Some
translation initiation factors (EIF3C, D, F, M and EIF4B) have
extremely low protein-per-mRNA ratios, although this bias is
weak (P-valueo0.05).

Explaining two-thirds of the variation in protein
abundance

In addition to examination of individual correlations, we
assessed the combined contributions of mRNA expression and
sequence features to protein steady-state abundance. Our
model uses MARS, approximating non-linear relationships
with continuous piece-wise linear functions. The MARS model
analysis differs from the individual partial correlations
described above in that features are selected successively
based on their additional contribution to explaining variation
in protein concentration. Using the full MARS model, we are
able to account for two-thirds (67%; Figure 3A; Supplemen-
tary Figure S13) of the variation in protein abundance across
the proteins using 25 sequence features (Supplementary Table
S4). In a pruned model, the top 11 features combined with
mRNA expression explain 57%. These results apply specifi-
cally to our dataset; when generalizing the model, we can
explain B30–60% of protein abundance variation (Supple-
mentary Section 4.4). Compared with mRNA data or sequence
length alone (Figure 2; Supplementary Figure S15), we can
thus more than double the amount of variance explained in
protein abundance by using additional sequence information.

Although the order and relative contributions of the
individual features may vary from dataset to dataset, we
attempted to extract general trends on the types of features that
explain variation in protein abundance (Figure 3B). When
grouping features of similar types, we observe that character-
istics of the coding sequence are the largest contributors,
explaining 30% of protein abundance in addition to what can
be accounted for by mRNA concentration, that is transcription

Figure 3 Combined contributions. (A) Predicted protein abundance using the entire, combined MARS model, R2¼0.67 (log scale, P-valueo0.001). (B) Contributions
of different feature groups to explanation of protein abundance variation. Yellow, green, blue: length, composition, structure and other characteristics of the coding
sequence, 50UTR and 30UTR, respectively. Details are provided in Supplementary Section S4. See Supplementary Figure S14 for a different feature grouping. Source
data is available for this figure at www.nature.com/msb.
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and mRNA decay. These features include length, nucleotide
and amino-acid composition, as well as other characteristics.
Codon bias again has only a minor function (2%). Character-
istics of the 30UTR and of the 50UTR, that is lengths, nucleotide
composition and secondary structures, describe another B9%
of the variation, leaving 33% expression variation unexplained
(Figure 3B). The unexplained fraction may be accounted for by
mechanisms not considered in this analysis (e.g. regulation by
RNA-binding proteins or gene-specific structural motifs), as well
as expression and measurement noise. Measurement noise
arises, for example, from batch and sampling effects both in the
RNA and protein analyses. Overall, these results suggest that
the contributions of translation and protein degradation
regulation to protein abundance are comparable with those of
transcription and mRNA decay.

Summary and conclusions

We present a comprehensive characterization of determinants
of human protein abundance, based on large-scale measure-
ment of absolute protein and mRNA concentrations in a
medulloblastoma cell line. We show that the contribution of
translation and protein degradation is at least as important as
the contribution of mRNA transcription and stability to the
abundance variation of the final protein products—a finding
that may be surprising given that it is commonly assumed that
the first step in expression, that is transcription, is the major
target of regulation. Protein and matching mRNA concentra-
tions correlate significantly, with variation in mRNA
expression explaining B25–30% of the variation in protein
abundance. Another 30–40% of the variation can be
accounted for by characteristics of the sequences, which we
identified in a comparative assessment of global correlates.
Among these characteristics, sequence length, amino-acid
frequencies and also nucleotide frequencies are of strong
influence.

Most of the sequence features in our analysis correlate both
with protein and mRNA abundance (Figure 4), underlined by
the fact that sequence features alone can explain 450% of
protein abundance variation. Some features, for example
amino-acid frequencies and secondary structures in the 50UTR,
appear specific to expression regulation at the level of
translation and protein degradation, as they correlate more
strongly with protein abundance than with mRNA abundance.
This means that during evolution, the overall trends in
expression regulation are concordant between human protein
expression, that is translation and protein degradation, and
mRNA expression, that is transcription and mRNA decay,
similar to what has been observed for yeast (Garcia-Martinez
et al, 2007; Lackner et al, 2007). The bulk of protein expression
regulation in our dataset is explained by features of the coding
or protein sequence, and not by features of the UTRs. Fine
regulation of gene expression may occur through transcription
regulation, but also through the action and interactions of
dynamic post-transcriptional regulators such as miRNAs and
RNA-binding proteins.

The correlations between mRNA and protein concentrations
are typically low (although significant) and variable across
organisms, with most R2 values between 0.30 and 0.50
(reviewed in de Sousa Abreu et al, 2009). Several large-scale

analyses in the bacterium Desulfovibrio vulgaris (Nie et al,
2006) and baker’s yeast Saccharomyces cerevisae (Brockmann
et al, 2007; Wu et al, 2008) have attempted to quantify the
impact of post-transcriptional regulation on protein expression
levels, but the set of features as well as direct measurements of
protein concentrations were often limited. Nie et al (2006)
investigated only sequence features related to translation
initiation (e.g. Shine–Dalgarno sequences), elongation (e.g.
codon usage) and termination (e.g. stop codon identity).
Similarly, Brockmann et al (2007) analyzed only factors
contributing to translational activity, for example ribosome
occupancy and density, and the codon adaptation index.
Wu et al (2008) included properties related to translation and
also an estimate of protein half-life. These studies identified
features that explained B15–33% of the variation in protein
concentrations, in addition to the contribution of mRNA
concentrations.

Our study provides one of the first large-scale measure-
ments of absolute mRNA and protein concentrations in a
human cell line and assesses the relative importance of B200
features describing protein translation, post-translational
modification and protein degradation. In comparison with
previous studies, which primarily used linear regression, we
use non-parametric methods throughout our work. Although
the exact extent of individual feature contributions differs
across systems, the strong function of amino-acid composition
and protein degradation on expression level regulation has
also been observed in bacteria and yeast, respectively (Nie
et al, 2006; Wu et al, 2008). Thus, it may be a universal
characteristic. Amino acid and nucleotide composition (e.g.
codon usage) in the coding region relate to elongation, which
has been identified as an important contributor of protein

Figure 4 Concordance of mRNA and protein expression regulation. The figure
shows the correlation coefficients for features listed in Table I. All correlations are
listed in the Supplementary information; x axis: Spearman’s rank correlation
between the respective feature, and the mRNA concentration, which is the
combined outcome of transcription and mRNA decay; y axis: partial Spearman’s
rank correlation between the respective feature and the protein concentration,
fixing variation in mRNA concentration, which describes the combined outcome
of translation and protein degradation.
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translation efficiency in bacteria (Nie et al, 2006) and yeast
(Brockmann et al, 2007; Wu et al, 2008). We detect some
compositional biases in human sequences, but codon usage only
has minor impact.

Regulation of translation initiation has a large function, for
example through the flanking 50 and 30UTRs, and we find some
contribution of the nucleotide composition and the resulting
secondary structures of UTRs to protein abundance variation.
Concurrently, in yeast, 1.2% of the variation in protein
concentration can be explained by the minimum free energy
of the 50UTR-predicted structure, possibly by influencing
ribosome scanning (Wu et al, 2008). In human, secondary
structures just after the stop codon correlate with expression
levels of the translation initiation factor eIF4E (Santhanam
et al, 2009). The strong impact of uORFs on protein abundance
(Table I) has, to our knowledge, not been observed before. The
inverse relationship between the lengths (coding sequence,
UTRs) and expression levels or translation activity has been
eluded to directly or indirectly in recent work (de Sousa Abreu
et al, 2009; Santhanam et al, 2009).

About 33% of the variation in protein abundance cannot be
explained by our model (Figure 3B). This unexplained
variation may be accounted for by measurement reliability
(as addressed above and in Supplementary Figures S1B and
S3) and measurement accuracy. With respect to the latter, our
control experiments indicate that measurements of protein
concentrations are B84% accurate (Supplementary Figure
S5), suggesting that we cannot explain at least 16% of the
expression variation unless our methods improve signifi-
cantly. In other words, we achieve already B80% of our
maximal predictability (67% out of 84%).

The remaining, unexplained protein abundance variation may
also be explained by gene expression noise (Raser and O’Shea,
2005) and by sequence features that are not included in this
study. For example, genomic rearrangements such as chromo-
somal duplication should mainly not only affect transcription
regulation, but may also impact the relationship between protein
and mRNA production. Furthermore, the human cells were not
synchronized and expression values of cell cycle genes represent
their average across both the population and the cell cycle—and
this averaging may account for some lack in correlation between
mRNA and protein concentrations.

Our study has some restrictions, which will be addressable
in future. We analyzed a dataset of limited size and focused on
soluble proteins in the cell lysate. Although our combined
model uses cross-validation to show the generality of the
findings, it remains to be shown how trends hold true for
membrane proteins or for other cellular systems. Indeed,
analyses similar to ours may be used to describe cellular
systems and to quantify molecular ‘expression states’ through
a comparison of the contributions of mRNA concentration and
sequence features to protein abundance. Further, our results
may prove useful for parameter optimization during hetero-
logous protein expression optimization—a field of ongoing
scientific debate and investigation (Welch et al, 2009).

Materials and methods
The medulloblastoma Daoy cell line was obtained from American Type
Culture Collection. Cells were cultured, harvested and prepared for

protein and mRNA analysis as described before (Ramakrishnan et al,
2009). Briefly, total mRNA was extracted using the Trizol method, and
analyzed on NimbleGen Homo sapiens 4-Plex (HG18 60mer expr
4plex) arrays using the Agilent Microarray Scanner G2565AA. Soluble
proteins were extracted from lysed cells, enzymatically digested into
tryptic peptides and analyzed 10 times through LC–MS/MS on
a Thermo Electron LTQ-Orbitrap Classic (Ramakrishnan et al, 2009).
We re-analyzed the respective raw datasets published before (Ramak-
rishnan et al, 2009) to obtain estimates of absolute mRNA and protein
concentrations.

Estimates of absolute mRNA concentrations

Gene expression values were generated using NimbleScan expression
Robust Multi-array Analysis (Irizarry et al, 2003). Quantile normal-
ization and background subtraction were performed across replicate
arrays. Report files were further analyzed in the R Project for Statistical
Computing using the Bioconductor packages including limma and
arrayQuality. We assessed array quality by evaluating diagnostic plots and
hierarchical clustering plots. One microarray was eliminated from the study
because of the lack of quality. To achieve the same empirical distribution on
the single-channel microarray intensities of the two biological replicates,
we performed a second quantile normalization. Finally, we averaged gene
expression values to obtain the final values. Supplementary Figure S1A
addresses the accuracy of the concentration estimates. The data is
deposited under the NCBI accession number GSE20492.

Estimates of absolute protein concentrations

Each of the LC–MS/MS runs was analyzed independently with
Bioworks (Thermo Fisher Scientific), searching a database of the
respective amino-acid sequences (ENSEMBL H. sapiens v. 47.36). The
database of protein sequences was made non-redundant with respect
to alternative splice variants: we used only the longest sequence to
represent each protein. The search results were combined for analysis
by PeptideProphet (Keller et al, 2002) and ProteinProphet (Nesvizhskii
et al, 2003), and post-processed in the APEX pipeline (Lu et al, 2007;
Vogel and Marcotte, 2008) to estimate absolute protein abundance
based on weighted spectral counts. We accepted proteins as
confidently identified if their ProteinProphet probability was above a
cutoff corresponding to o5% global FDR.

We estimate absolute protein concentrations for 1025 proteins,
scaling to units of molecules/cell by assuming an average of 8000
molecules/protein. This assumption is based on the findings in yeast
and E. coli of B4000 and B500 molecules/cell, respectively (Lu et al,
2007). All results presented here are valid independent of the precise
number of molecules per cell. Control experiments to assess
measurement accuracy were performed on protein mixes of known
concentrations (Supplementary Figure S5; Supplementary Table S1).

Raw and post-processed data files are provided at http://marcottelab.
org/MSdata/, dataset 05.

Data integration

Using reference sequence (Refseq, ENSEMBL) identifiers, we inte-
grated absolute levels of steady-state mRNA and protein concentra-
tions obtained by microarrays and MS-based shotgun proteomics.
We found a match for 1025 data points; their UTRs and coding
sequences (FASTA format) were obtained from NCBI36 (Ensembl
v.44.36f). We filtered the data to construct a high-confidence dataset of
512 genes with information on mRNA and protein concentration.
These filters removed genes with o7 arbitrary units (mRNA
concentration based on a frequency distribution plot, see Supplemen-
tary Figure S2); genes with transmembrane helices (as the sample was
cytosolic); genes with ambiguous identifiers and/or gene predictions
and genes lacking sequence information (30 or 50UTR).

Sequence features

We selected a set of B200 sequence features that are likely to have
dominant functions in translation and protein degradation regulation:
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composition of the translation initiation site (Kozak sequence); length
and composition of the UTRs and coding sequence; presence and
arrangement of uORFs; over-represented motifs that might function as
regulatory sequences (PEST); putative-binding sites for miRNAs and
secondary structure of the UTRs (Supplementary information;
Supplementary Table S2). To account for high cross-correlation among
the sequence features, we combined any set of the features with
Spearman’s correlation coefficients between features |Rs|X0.90 to a
single feature. For comparison, we also included in the analysis
complementary experimental data for mRNA and protein degradation
and ribosome attachment from references (Yang et al, 2003; Mazan-
Mamczarz et al, 2005; Yen et al, 2008). Details of the source and use of
each feature are described in the Supplement information.

Comparisons

We calculated Spearman’s rank correlation coefficients between
mRNA expression levels and each individual feature. We also
calculated partial correlation coefficients (Spearman’s rank) of each
feature with protein concentrations fixing for the variation introduced
by mRNA concentrations, in this way, focusing on effects specifically
relevant to translation and protein degradation regulatory processes.

In addition, we compared features of sets of genes with extremely
low or high protein-per-mRNA ratios (highlighted in green and red,
respectively, in Figure 2), using Welch’s t-tests. This adaptation of
Student’s t-test is intended for use with samples, which may have
unequal variances. Genes of extreme protein-per-mRNA ratios were
selected according to the following method: assuming a non-linear
relationship between mRNA and protein levels, the protein level was
modeled as a smooth function of mRNA protein level, that is
protein¼f(mRNA), where f is a smooth function. We used robust local
polynomial regression fit in estimating function f(x) (Cleveland et al,
1992). The outliers or extreme values were then selected as the points
in the sample that outer-mostly deviated from the fitted curve f(x),
which is measured as the length of the standardized residual. As a
result, genes were selected with extremely small or large numbers of
protein molecules per mRNA (as highlighted in Figure 2).

In the Supplement information, we comment on the use of partial
correlation tests and of protein-per-mRNA ratios to analyze types of
data similar to ours (Supplementary Section S2).

Multiple regression (MARS)

To describe the non-linear relationship between protein abundance
and biological sequence features and mRNA abundance and the
combined contributions of all features, we used MARS. The MARS
models were fitted in R (Team, 2004) using functions contained in the
‘earth’ library (Milborrow, 2009). In this model, non-linear responses
between protein abundance and biological factors (variables, features)
are described by a series of linear segments of differing slope, each of
which is fitted using a basis function (Friedman and Roosen, 1995;
Hastie et al, 2001). The MARS model uses generalized cross-validation
to choose a best set of variables and their functional forms and is
particularly useful for the automatic selection of a best set of variables
(features) out of all variables in our data. We discuss details of the
MARS models, its generality and performance/advantages compared
with alternative models (linear regression, principal component
analysis) in Supplementary Section S4; Supplementary Figure S16;
Supplementary Tables S5–S8.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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