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Sequence Spaces Generated by Moduli
of Smoothness

J. MUSIELAK and A. WASZAK

ABSTRACT. There are defined sequential moduli in the remainder form
for real sequences. Properties of sequence spaces generated by means of the
above moduli are investigated.

1. INTRODUCTION

In many problems of mathematical analysis, one of the important
tools form moduli of continuity and smoothness and variations of a func-
tion. The modulus of continuity may be defined in spaces of continu-
ous functions and in L¥-spaces. In [6] and {7] we transfered the no-
tion of modulus of continuity to spaces of sequences, by the formula
w(z,r) = sup sup |tm4i — ti|, where z = (£)2,, r = 0,1,2,.... We

ma2rizm
developed a theory of modular spaces of sequences generated by the

modulus (see also [3]).
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In the present paper we transfer the definition of L¥-modulus to
the sequential case, introducing the remainder form of the sequential
modulus. Moreover, we replace the power p by a sequence of ¢-functions,
w = {(9i)i2,, (for definition of -function see for instance [4], 1.9). There
are analysed structural properties of modular spaces generated by means
of the above notions. In a subsequent paper we shall show application
to problems of two modular convergence of sequences with aid of moduli
of smoothness and ®-variations and we shall derive some inequalities.

2. MODULUS OF SMOOTHNESS

We introduce the remainder form of the sequential modulus in the
space X of all real sequences. Let z = (¢;)2, € X, then we denote
(z); = t; and we write (Tz); = ¢t; for § < m and (Tmz); = tmy; for
j 2 m where m,j = 0,1,2,.... The sequence Tmz = ((Tm2);)52, is
called the m-translation of the sequence z (see [6]). Let ¢ = (9;)2,
be a sequence of ¢-functions. The remainder form of the sequential
@-modulus of the sequence z will be defined as

w(e,) = sup Y pi(|(rma)i = ()il), 1 =0,1,2,....

s
m2r i=1

Obviously, we have

[» o]
wy(z,7) = sup Z @i(ltmti — ta)).
m2r. o
For any two sequences z and y we have
wWo(z 4 y,7) S we(2z,7) + w,(2y,1).

Let ¥ be a nonnegative, nondecreasing function of u > 0 such that
¥(u) — 0 as « — 04, ¥(u) not vanishing identically, and let (a,) be
sequence of positive numbers with ¢ = irgg a, > 0. We define the set

r—

X(¥)={r€ X: a,¥wy,(Az,r)) — 0as r — oo for a A > 0}.
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3. ¢-FUNCTIONS AND THEIR PROPERTIES

We shall need the following conditions concerning the function ¥
and functions ¢;, 1 =1,2,....

The function ¥ is said to satisfy the conditions (A;) for small u
(for all u), if there are ug > 0 and K > 0 such that ¥(2u) < K¥(u) for
all 0 < u < ug (for all u > 0).

This implies that for every u; > 0 there exists K; > 0 such that
V(2u) < K ¥(u) for all 0 < u < u;.

The sequence ¢ = (¢;)72, will be said to satisfy the condition (A),
if for every € > 0 there exist A > Q) and @ > Osuch thatforall0 < u < A
foralli=1,2,...
pilan) < eilu).

The sequence ¢ = (p;)2, will be said to satisfy the condition (A’),
if there exists an o > 0 such that for every u > 0, for all : = 1,2,...

2pi(au) < pi(w) .

Let us remark that if the functions ¢, are all s-convex with a fixed
s € (0,1) then @ = (;)2, satisfies both conditions (A} and (A"), (for
definition of s-convex function see e.g. {2], [4], [6]). A converse statement
is not true. For example, taking

1
pi(u) = p(u) =1 - 1+

for 0 < » < wp, with vy sufficiently small, we see easily that (A) is
satisfied but ¢ is not equivalent to an s-convex function for 0 < s < 1.

We shall say that the function ¥ satisfies the condition (B), if there
exists a v > 0 such that for every § > 0 there is an 7 > 0 satisfying the
inequality ¥(nu) £ 6¥(u) for any 0 < u < v.

The sequence ¢ = (;)$2, of y-functions will be said to satisfy the
condition {C), if for every n > 0 there exists an £ > 0 such that for all
2 > 0 and all indices i, the inequality ¢;(u) < ¢ implies u < 7.
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Let us remark that (C) implies that ¢;(u) > 0if v > 0.

4. SPACE X(¥)
We give now some characteristic of the space X(¥) defined in 2,

and we investigate the vector structure on X ().

Theorem 1. Let us suppose that ¥ satisfies the condition (Ay) for
small u and let the functions @; satisfy (A3) for all u with a constant
K > 0 independent of i. Thenz € X(V) if and only if a, ¥ (w,(Az,r)) —
0 asr — oo for every A > 0.

The easy proof will be omitted.

Remark 1. It is easy to verify that if ; satisfy (Az) for small u
with K and ug independent of ¢ and the sequence z is bounded, then
the thesis of Theorem 1 is true.

Theorem 2. Let one of the following two eonditions hold:

1°. ¥ satisfies (Az) for small u,

2°. p satisfies (A°).

Then X(¥) is a vector space.

Proof. Supposing z,y € X(¥) and applying the inequality ¢{u +
v) < @(2u) + (2v), we obtain for z = (¢;), y = (si)

we(z +y,7) < sup ¥ [@il2Mtirm — til) + @il 2lsipm — sil)] <

mA2r -
= =m

< we(23,7) + we(2y,r)

for every 7 > 0. Now, by the definition of X(¥) there exists a A > 0
such that a,¥(w,(Az,7)) — 0 and @, ¥(w,(Ay,7)) — 0 as r — co. We
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have
or¥ (g (33 + 90,7 ) € 00 ¥logOha,) + O] €

< 0, W(2w,(Az,7)) + 2, ¥(2w,(Ay, 7)),

by monotonicity of the function ¥.

Now, let us suppose 1°. By assumptions, there are constants M,§ >
G such that 0 < ¥(u) < § implies u < M. Since a,¥(w,(Az,7)) — 0
asr — oo and a = ig{}a, > 0, we have ¥(w, (Az,r)) - 0 as 7 — o0.

Hence there exists an r; > 0 such that ¥(w,(Az,r)) < é for r > ry.
Consequently, w,(Az,r) < M for r > ry. Similarly w,(Ay,r) < M for
r 2 1y with some r; > 0, and we may suppose r; = r;. Taking u; = M,
by 1° there is a K; > 0 such that ¥(2w,(Az, 7)) < K1 ¥(w,(Az,r)) and
U(2w,(Ay,r)) € K1¥(we(Ay,r)) for r > 71. Hence for r > r; we obtain

ot (g (332 +9)7) ) < Kilar ¥ 0,1)) + 0, Bars O] 0

as r — oo. Hence z + y € X(¥).
Next, let us suppose 2°. Then

o0
we(adz,r) = sup 3 pi(@Altism — til) <

ma2r

=" i{=m
1 > 1
<z {Atizm — i) = = ,
< 35 3 piltiem ) = o)

and similarly )
we(aAy,r) < Eww()\y,r)
forr>0, A>0.
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Thus
a,¥ (ww(%)\a(z + y),’r)) < a, ¥ (2w,(Aaz,7)) + a,¥(2w,(Aay, r)) <

< a:¥(we(rz, 1)) + a, ¥(we(Ay, 7)) — 0
as r — oo for sufficiently small A > 0. Hence z +y € X(¥). This proves
the thecrem.
5. MODULAR STRUCTURE ON X (V)
For every ¢ € X we define the functional

¢{z) = supa,¥(wy,(z,r)) = supa,.¥| su i([tivm — til)]-
(2) = supa, Uog(e,r)) = supa-¥| sup 3 it = t)

Theorem 3. Let ¢ = (p;)2, and ¥ satisfy one of the following
two conditions:

1° ¥ is concave,

2° functions y; are conver.
Then X(V¥) is a vector space and ¢ is a pseudomodular in X.

Proof. If ¥ is concave and ¥(0) = 0 then ¥ satisfies the condition
(Ag) for all v > 0, because ¥(2u) < 2¥(u). Hence, by Theorem 2, X (¥)

is a vector space. Moreover, if z,y € X, z = (&), ¥ = (si), a,8 >
0, a+ 3 =1, then

s(az + By) < sup ar‘I‘[ sup > pile [tigm — il + B |sipm — s;l)] <
r> m2r —

< ¢(z) +<(y)-

Consequently, < is a pseudomodular.
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Now, let us suppose ¢; to be convex for : = 1,2,.... Then ¢ =
()32, satisfies (A’) and so, by Theorem 2, X(¥) is a vector space.
Moreover, with the same notation as above, we have

' [=9]
s(ez + By) < supa, ¥ [ sup > wila ftigm =t + B |sipm - s.-l)] <
- T2 mae2r i=m

(e o]
< sup ar‘I‘[ sup E wi([tigm — til)] +
r2>0 ma2r .

o0
+ sup a,.\Il[ sup Z wi(|8igm — s.-l)] = ¢(z) + <(v).
r>0 mzrl-:m

Hence ¢ is a pseudomodular in X.

As well-known, the pseudomodular ¢ defines an F-pseudonorm

|z]¢ = inf {u) 0: c(-:—) < u}

in the modular space

X;:{IEX:((/\z)—»OasA—»0+}
(compare [5], {8]). '
We shall investigate ¢ in case when ¥ is s-convex with 0 < s < 1.

Remark 2. Let ¥ be s-convex with 0 < s < 1 and let ; be convex
for £ =1,2,.... Then ¢ is an s-convex pseudomodular, i.e.

s(az + By) < a’c(z) + B(¥)
ifa,>0, o +4°<1.

For proof, let us remark that by Theorem 3, < is a pseudomodular.
Moreover, taking z = (¢;), ¥ = (8;), a,8 2 0, a®* + 3* < 1, we have
a4 <1andso
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s
¢(az + fy) < supa,¥ [a sup Z Pi([tigm — i)+
r>0 o om2r

=" i=m

+B5up 3 pllsien — si)] < a%s(z) + B%(v).

Theorem 4. Let the function ¥ be increasing, continuous and s-
convez and let the functions p; be convez, 1 = 1,2,..., where0 < s < 1.
Then the s-homogeneous pseudonorm

llz|| = inf {u >0: c(uff’) <1}

satisfies the following inequalities:

1°ifz € X, ||z||f < 1, then
wel(z,7) \°
3 > W ]
lell > sup (22l
22 ifz e X, ||z||2 > 1, then

”ﬂl?SsEp (E%)s |

where U _, 15 the inverse to U,

Proof. Since, by Remark 2, ¢ is s-convex, so || - || is an homoge-
neous pseudonorm. Let ||z}|? < u < 1, then

1 = |
¥z 1 Y wiltem — i) <1

i=m

for all 7 > 0. Hence

o0
e Z @il[tigm — til} < wM*¥_y(1/a,) ,
m.oT

= i=m
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i.e.

wo(z,r) < ul/*¥_y(1/a,)},
which gives the inequality 1°, when we take u — [|z[|Z,.

Now, if ||#||2 > u > 1, then we have

1
sup a, ¥ [;17-; ww(x,r)] >1
and we obtain the inequality 2° easily.
Corollary. By the assumptions of Theorem 4, if
wy(z,1)
SUp ———== =1,
 W_1(1/a,)
then ||z||2 = 1.

Let ¢ be the space of all sequences z = (2;){2, such that t; = iy,
for 1 =1,2,.... There holds the following

Remark 3. Let us remark that if ¥({u) > 0 for « > 0, then ¢ € €
if and only if |z|c = 0.
6. COMPLETENESS

Taking the assumptions of Theorem 2, we may consider the quotient
spaces: X, = X/ and X(¥) = X(¥)/¢, with elements Z,... (see [1]).
The F-pseudonorms resp. s-convex pseudonorms may be defined by
|2l = |zl¢, ||Z]]Z = ||=[|2, where z € Z, respectively.

Theorem 5. Let ¥ be increasing, continuous and satisfying the
condition (B). Let ¢ = (p:)52, satisfy conditions (A) and (C). Moreover,
let at least one of the following two conditions hold:

1° ¥ is concave,
2° i are convez.
Then X, is a Fréchet space with respect to the F-norm |.|..

Proof. Let (Z,) be a Cauchy sequence in X, Ty € #py 2y =
(t")2,- Without loss of generality, we may suppose that ¢ = 0 for
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n=1,2,.... We denote by ¥_, the inverse function to ¥. Since a =
igt{') ar > 0, for every £ > 0 one can find an N such that |z, — 2| <
r

aTI'(e) for p,q¢ > N. By the definition of |.|;, there exists u. such that
0 < ue < a¥(¢) and ¢(22"2) < u, for p,g > N. Consequently,

T, — T
ar‘p(%( pu q’r')) St
£

for p,¢ > N and r > 0, whence

() 5o (2) sea(2)

for p,g > N, r > 0. By the definition of w,, we obtain in particular

T

5
1 U
S e et - +all) < ¥ (%) <e @
. &
=M

for p,g > N, s > mand ¢« > m > r > 0. By condition (C), for every
77 > 0 one can find an £ > 0 such that

W = e — 8] < (@)
for p,g,> N, i > m > 0. Hence
[ = el < 18— t]] 4 e <87 — t]] + na¥(e)
forp,g > N, i > m > 0. Sincet} = 0forn = 1,2,..., the above inequal-

ities imply (7)22, to be Cauchy sequences for i = 1,2,.... Hence these
sequences are convergent. Let us write ¢; = lim " fori=1,2,..., ty =
o0

0, & = (t:)32,. Taking ¢ — oo in (1), we obtain

iw;(ltﬁm —titm —tf+ti|) < "I’-l(ﬁ)
U ar

i=m
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forp> N, s> m 2 r > 0. Again, taking s — oo, we get

> = tim —tP 41 u
Z‘P‘(l i+m Lkl 3 tl) S‘I’—l(—i)
= < 1L ar

12

forp> N, m > r > 0. Thus,

forp> N, r > 0. Hence
a, ¥ (“’w( urﬁ < ue 3)
Ue

We are going to prove that z, — z € X, for large p, i.e. ¢(A(zp -
z)) > 0as A — 04. Let £ > 0 be fixed and let N be chosen as above.
Let p > N. We havefor A > 0

forp> N and r > 0.

Tp— T

T =

0ulAlz = 2),7) = (3.

£

— —t7 + ti
—SILPZ(PTG’\_L“_IM_‘ )

Taking ¢ — oo in (2) we obtain

|t:+m t:’+m - tf - ti'l <
Ue
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for i > m > 0. We apply the condition (A) with £in placeof £, A < a/u,,
and we choose 7 = A. Then for v = [t = tigm — €7 + 8| we get

[¢F . - - t + I
(P"(Au’ itm ~ litm < &y _"lt:+m = litm — tf +4l),

g

for p> N, : > m > 0. Hence

m)r

Ty — T u _
:5%( "’u ,r)gé\p_l(—‘)ge-e.
€ ar

Hence for 0 < A < &/u, we have

1
wu(Mzp —2),7) < Esup Z cpt( [tf, = tigm — 15 + t,-|) =

(((a» = 2) = 530 6, ¥(u (N(zp = 2),7) < sup. ¥ (rea(2)) -

Now, we apply the condition (B) with v = W_; (%), u = ¥_, (%),

a

Choosing § > 0 arbitrarily and taking £ = 7, we obtain

a ar a,
Consequently,

¢(A(zp — 7)) < supa,d Ze = fu. for0< A< afuc.
r>0

ar

Since u. is fixed, this implies ¢(A(zp, — z)) — 0 as A — 04. Hence
z, — z € X, for p > N. But X, is a vector space; thus, z € X.
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By (3), we have for arbitrary ¢ > 0,

-z
< (310 ) < e
Ue
for p > N. Thus, |z, — z|; < 2. < a¥{e) for p > N, and we get
|zp — x| — 0 as p — oo. This proves the completeness of the space X..

Theorem 6. Let the function ¥ and the sequence ¢ satisfy the
assumptions of Theorems 1 and 5. The X(¥) N X, is a Fréchet space
with respect to the F-norm ||..

_Proof. It is sufficient to show that X(¥)n X: ¢ is a closed subspace
of X with respect to the F-norm |.|c. Let 2, € X(¥)n X, Z, — & in
X.. Let Tp € Tp, T € Z. By the assumption, we have for every A > 0

ar¥(we(Mz —25),7)) =0 asp— oo

uniformly with respect to r. By a property of w,, and the condition
(Az) for ¢;, we have

wWo(Az,7) € we(2M(z — Tp),7) + we(2Az,, 1) <

< Klwo(Mz = 2,),7) + wo(Azp, 7).

By properties of ¥ we have that there exist M > 0, § > 0 such that for
every u satisfying the condition 0 < ¥(u) < & there holds the inequality
u < M. Taking A > 0 fixed we may find a p; such that Clw,(A(z -
Tp),r)] < & for p > p1, and in consequence we obtain that w,(A(z —
rp),7) £ M for p > py, with an' M > 0. Let m be such that K < 2™,
Applying the inequality ¥(u + v) < ¥(2u) + ¥(2v) and condition (Az)
for small u with a constant X > 0, we thus obtain

U(wy(Az, 1)) < ¥2Kw,(A(z — 2p),7)] + ¥[2Kw,(Azy,7)] <

< KPP E(we(Mz = 2p),7)) + U(we(Azp, )]
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for p > p;. Let us choose an arbitrary £ > 0. Then there exists a po > py
such that c
a’f'q?[w'#(A(z - xPo)xr)] < EKl_m_l ’

But z,, € X(¥) and so, by Theorem 1, we have
arV(wy(Azp,, 7)) >0 asr—o00.
Hence there exists an rg such that
a,U(w(Azpy,,T)) < g K™l forr>mp.
Consequently,

a, ¥(w(Az,r)) < % + % =¢ forr2>7o.

This shows that z € X(¥). By Theorem 5, z € X;. Hence z € X(¥)} N
X.,and so Z € X(¥)N X,.

Let us remark that Theorems 5 and 6 may be expressed also in a
form replacing F-norm convergence by means of modular convergence
with respect to the modular ¢(Z) = inf{s(y) : v € z}.

Let us recall that a sequence (Z,) of elements of X, is said to be
¢-Cauchy, if there exists a k£ > 0 such that for every £ > 0 there is an N
such that {(k(Z, — £,)) < € for all p,¢ > N. The space X is called ¢-

complete, if any {-Cauchy sequence is {-convergent to an element f € X ¢
There hold the following theorems, proofs of which are analogous
to those of Theorems 5 and 6:

Theorem 7. Under the assumptions of Theorem 5, the space X,
is ¢-complete. '

_ ThePrem 8. Under the assumptions of Theorem §, the space
X(P)N X, is S-complete.

The authors are indebted to the Referee for this remarks which
helped to improve the paper.
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