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Abstract / Summary 
For the past half-century, structural biologists relied on the notion that similar protein sequences 
give rise to similar structures and functions. While this assumption has driven research to explore 
certain parts of the protein universe, it disregards spaces that don't rely on this assumption. Here 
we explore areas of the protein universe where similar protein functions can be achieved by 
different sequences and different structures. We predict ~200,000 structures for diverse protein 
sequences from 1,003 representative genomes1 across the microbial tree of life, and annotate 
them functionally on a per-residue basis. Structure prediction is accomplished using the World 
Community Grid, a large-scale citizen science initiative. The resulting database of structural 
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models is complementary to the AlphaFold database, with regards to domains of life as well as 
sequence diversity and sequence length. We identify 148 novel folds and describe examples 
where we map specific functions to structural motifs. We also show that the structural space is 
continuous and largely saturated, highlighting the need for shifting the focus from obtaining 
structures to putting them into context, to transform all branches of biology, including a shift from 
sequence-based to sequence-structure-function based meta-omics analyses.  

Introduction 
Structural biology follows the sequence-structure-function paradigm, which states that the 
sequence of a protein determines its structure, which in turn, determines its function2–5. 
Experimental structure determination efforts were unable to keep up with the exponential growth 
of available sequences, yet recent breakthroughs in protein structure prediction and renewed 
focus on machine learning approaches, through methods like AlphaFold26, now allow for closing 
the sequence-structure gap. While disordered sequences, large complexes, multiple chains, and 
protein-protein interactions remain to be addressed, the large number of available protein 
structures and models has drastically shifted the perspective in the field. Here, we predict the 
structures of ~200,000 metagenomic sequences leveraging a citizen-science approach. We 
annotate these models in terms of protein function7, specifically providing residue-specific 
annotations, and analyze the features of the resulting protein structure-function universe, 
including fold novelty and structure-function relationships. Our work demonstrates how to 
integrate massive structural datasets into a sequence and function context and motivates a shift 
in perspective to include structurally informed functional annotations as the starting point to 
understand biological questions.  

Methods 
Here we performed large-scale structure prediction on representative protein domains from the 
Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome database across 
the microbial tree of life1. A summary of our workflow is shown in Fig. 1a. From a non-redundant 
GEBA1003 gene catalog we extracted protein sequences without matches to any structural 
databases and which produced multiple-sequence alignments deep enough for robust structure 
predictions using Rosetta8 or DMPfold9 (N_eff > 16, see supplement). For computational 
tractability we prioritized sequences according to their length and exhaustively sampled all 
putative novel domains between 40 and 200 residues. For each sequence we generated 20,000 
Rosetta de novo models8 using World Community Grid (formerly IBM) via the Microbiome 
Immunity Project and up to 5 models per sequence using DMPfold9; unless otherwise stated, we 
use Rosetta models for the figures in this manuscript. We then curated the initial output dataset 
(MIP_raw) of about 240,000 models to arrive at high-quality models comprising about 75% of the 
original dataset (MIP_curated). All analyses in this paper are either on MIP_curated or a subset. 
Putative new folds were identified by comparing our models against  representative domains in 
CATH10 and the PDB, using a TM-score cutoff11,12 of 0.5. Putative novel folds were also verified 
by AlphaFold2. To contextualize our structural findings, we projected 42-dimensional graphlet 
vector representations of each model in a representative subset encompassing 10,000 models 
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from MIP_curated onto a 3D space, along with CATH representative structures, using UMAP 
dimensionality reduction. Functional annotations of the entire dataset were created using 
structure-based Graph Convolutional Network embeddings from DeepFRI7.  

Results & Discussion 
Recent advances in the availability of predicted protein structures, including the AlphaFold 
database and the MIP database presented here, change the view on protein sequence-structure-
function relationships from a relative paucity of structural information to a relative abundance of 
it. This puts us in a position to start answering fundamental questions previously out of reach. 
How much of the protein structure and fold space is still unexplored? And can we learn anything 
new about the sequence-structure-function universe of microbial proteins? Here, we try to answer 
some of these and other questions by large-scale structure prediction efforts that we relate to the 
sequence space and residue-specific function prediction.   
 
The MIP database is orthogonal to existing databases 
Fig 1b shows the length distributions of protein structures in various databases. The baseline is 
the PDB90, which are sequences from the Protein Data Bank with a pairwise sequence identity 
£ 90%. CATH superfamilies are a non-redundant subset of the PDB90, covering over 6,000 folds 
(v4.3.0). The AlphaFold protein structure database6,13 contains almost 1 million protein models, 
vastly increasing the known structure space, and covers a wide range of organisms and sequence 
lengths, primarily from Eukaryotes. Our MIP database is distinct from the other databases 
because it consists of proteins from Archaea and Bacteria, whose protein sequences are 
generally shorter than Eukaryotic14,15. MIP models drastically increase the available structure 
space of smaller proteins and domains from 40 to 200 residues (Fig 1b). We further split the 
sequences into domains before structure prediction, unlike structures in the AlphaFold database. 
Also, only about 3.6% of structures in the AlphaFold database belong to Archaea and Bacteria, 
indicating that AlphaFold and MIP databases are complementary.  
 
The Rosetta models in our MIP database generally contain fewer coil residues than the DMPfold 
models (Figure S4), yet the quality of the DMPfold models is higher for larger proteins (see 
Supplement). Further, the model quality assessment score (average TM-score of 10 lowest 
energy models from Rosetta and the raw score from DMPfold) correlates with the TM-score16 
between the Rosetta and DMPfold models (Supplement section MIP dataset curation), indicating 
that models that agree better between Rosetta and DMPfold, are generally of higher quality.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 27, 2022. ; https://doi.org/10.1101/2022.03.18.484903doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.18.484903
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

 
Fig 1: The fold space covered by the microbial protein structure universe is continuous.  
(a) Flowchart of our process to arrive at ~200,000 de novo protein models covering a diverse 
sequence space. (b) The sequence length distribution shows that our sequences are shorter than 
many of the proteins in the PDB, CATH or AlphaFold databases. Our proteins are between 40 
and 200 residues long, which is in agreement with the fact that microbial protein sequences are 
often shorter than eukaryotic sequences. (c) The protein structure universe in UMAP space is 
color-coded according to features, such as similarity to CATH classes, sequence length, number 
of helical transmembrane spans, and relative contact order. !"#$%&'()$*&)"+$!,)-($"&.+#$/0($+10(/"$
.20&-32&-.$.2($*&)"$+1/4($56.2$*(5(0$0(10(+(7./.6'(+$67$.2($1-0()8$9:2()64/)$/7"$1-0()8$;:+2((.$
*&)"+<$ 
 
The microbial protein universe maps into a continuous fold space 
We wanted to contextualize the MIP dataset in relation to existing structures and to investigate 
the features of a more complete and less biased protein structure universe17–20. Visualization was 
created by generating a 42-dimensional graphlet vector representation21 for each model in the 
vizualization dataset and CATH superfamilies and mapping these vectors into 3D space using 
UMAP dimensionality reduction (Fig 1c and d). Visualization was done in Emperor22.  The 
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surfaces of the 3D structure cloud are outlined in black. We investigated several features in this 
mapping, including sequence length, relative contact order, number of transmembrane spans, 
and mapping to a CATH class. The 3D mapping of the protein universe allows to distinguish 
different sequence lengths, the number of helical transmembrane spans and the relative contact 
order of the protein folds, as different shadings show in Fig 1c. The visualization further illustrates 
that the protein universe space is continuous, indicating that folds may evolve along a trajectory 
where small changes in the tertiary structure can eventually lead to a different fold, which is in 
agreement with prior work23,24. In contrast, a discrete fold space would display distinct clusters of 
folds that require larger conformational changes to interconvert between them. We identify 438 
previously unseen structures in our MIP dataset that cluster into 148 distinct, novel folds (46 
clusters with multiple proteins and 102 singletons). Fig 1d shows that the majority of novel folds 
are distributed throughout 9=;$*&)"$+1/4($!4&>1/0($56.2$Fig$?4#$56.2$*(5$7&'()$*&)"+$67$9$&0$;$*&)"$

+1/4(<  
 
MIP dataset explores the sequence-structure-function universe 
We computed pairwise similarities between 3,052 random sequences in the curated dataset 
(MIP_random5000_curated - see Table S3) in terms of sequence identity, structural similarity 
(TM-score) and functional similarity (cosine similarity score). This was compared against a PDB 
baseline of 1000 protein chains, covering pairwise sequence similarities between 0 and 100%. 
 
By design, protein sequences in the MIP dataset are dissimilar (30% sequence identity cutoff). 
When correlating sequence similarities to structural similarities for pairs of proteins, the vast 
majority of dissimilar sequences fold into different structures. However, there are a fair number of 
proteins that have vastly different sequences and still fold into similar structures (Fig 2b). The 
PDB baseline that covers sequence similarities across all ranges from 0 - 100% confirms this 
expected trend, and it also confirms the general notion that similar sequences fold into similar 
structures (Fig 2a).  
 
When correlating sequence identity and functional similarity, the majority of sequences have 
different functions, but still a fair number of dissimilar sequences have similar functions. This 
originates in the multiplicity of biological systems (Fig 2d). i.e. achieving the same functional 
outcome by different pathways (for example 25,26). The PDB baseline gives the same trend and 
has an additional known population where similar sequences achieve similar functions (Fig 2c).  
 
When correlating structural similarity (of dissimilar sequences!) to functional similarity, we find 4 
populations (Fig 2f): (a) the largest population following expectations of dissimilar structures 
having different functions - quadrant III, (b) the 2nd largest population of dissimilar structures 
having similar functions - quadrant I, (c) the third largest population of similar structures having 
different functions - quadrant IV, and (d) the smallest population following expectations of similar 
structures having similar functions. Quadrants I and IV are the most interesting ones with 
examples shown in Fig 4. The PDB baseline covers all sequence similarities and follows mainly 
known expectations of quadrants II and III (Fig 2e).  
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Fig 2: Sequence-structure-function relationships in both PDB and the MIP dataset.  
Pairwise comparisons of protein sequences (using sequence identity), structures (TM-score), and 
functions (cosine similarity between DeepFRI output vectors) for two datasets: a baseline from 
the PDB and the MIP_random5000_curated dataset, containing 3,052 Rosetta generated models 
(see Table S3). The PDB baseline dataset contains 1000 chains covering pairwise sequence 
similarities between 0 and 100% while the MIP dataset is a non-redundant set with mostly 
dissimilar sequences (sequence identity < 30% threshold was imposed before sequential domain 
splitting). Analyses of these two datasets in this way lead us to the following conclusions: 
sequence identity correlates with structural similarity (a), yet high structural similarity can be 
achieved by low sequence identity (b). High sequence identity leads to high functional similarity 
(d), yet high functional similarity can be achieved by proteins with low sequence identity (d). 
Structural similarity often correlates with functional similarity ((e) and quadrants II and III in (f)). 
However, there are plenty of examples where low structural similarity can be seen in proteins with 
high functional similarity (quadrant I in (f)), and highly similar structures can exhibit different 
functions (quadrant IV in (f)). 
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Most functions are produced by the same structural motifs, even for dissimilar 
sequences 
For each of the 148 novel fold structural clusters, we compared functional similarities for each 
protein pair by computing the cosine similarity for the function vectors; this is shown as a heatmap 
in Fig 3. We then picked several proteins for each structural cluster and mapped selected top-
scoring functions onto the predicted structures (right panel in Fig 3). Residues that our function 
prediction network DeepFRI predicts to have high importance to achieve a particular function are 
highlighted in red, whereas blue residues are not involved in generating that particular function. 
Many examples of this analysis are outlined in the supplement, some of which are shown in Figs 
3 and 4. We find that the majority of functions in those structural clusters map to the same residues 
in the structure ("structural motif") as shown for the largest cluster 161 in Fig 3. However, we also 
find more complicated structure-function relationships in these clusters as shown in Fig 4 and 
discussed in the next section. Note that the sequences in each structural cluster (and in the MIP 
dataset) are dissimilar to each other and neither structural nor functional prediction could be 
inferred by sequence identity for these proteins due to lack of homology.  
 
Per-residue functional annotations reveal a more complex picture of protein 
structure-function relationships 
Some of the structure-function relationships map to quadrants I and IV in Fig 2f, where similar 
structures can have different functions or different structures can have similar functions. To a first 
approximation this is not surprising. Similar structures can achieve different functions due to the 
fact that the gene ontology database is organized in a hierarchical manner and that parent or child 
functions are related but still different27. Different structures can generate similar functions due to 
the multiplicity of functional pathways25,26 as a back-up plan for organisms to survive. However, a 
closer look at some of the structure-function disparities reveals some surprises.  
 
Figs 4a and b show two proteins that use the same structural motif for different functions. While 
the overall sequence identity between these proteins is low (~30 and 25% for panels A and B, 
respectively), a short sequence motif underlies the structural motif, which in turn has different 
functions. Fig 4a shows two proteins where the terminus of the central helix is involved in 
phosphatase activity, where the same motif in a different protein is involved in actin binding. The 
sequence motif for this region is GGWDXP. In Fig 4b, the N-terminus of one protein is involved in 
zinc ion binding and 'catalytic activity, acting on a protein', whereas the N-terminus of another 
protein of that structural cluster is involved in DNA binding and 'identical protein binding'. The 
underlying sequence motif for this structural motif is CXCCG.  
 
Figs 4c, 4d, and 4e show examples where a different structural motif in the same protein fold 
achieves the same function. This seems unusual and doesn't seem to rely on a short sequence 
motif. In the first example (Fig 4c), transferase activity either maps to a beta-sheet or a C-terminal 
short helix in two different proteins. In the second example transmembrane transporter activity 
maps to either two helices or a beta-sheet (Fig 4d). Fig 4e shows that ion transmembrane 
transporter activity maps to different structural motifs for different proteins. This entire structural 
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cluster (cluster 146) has very high similarity across predicted functions, indicated by the heatmap 
showing mostly yellow hues. 
 

 
Fig 3: Functional diversity of proteins with the same structure.  
We show examples from several structural clusters (Rosetta models) that exhibit novel folds. The 
heatmaps show functional similarity (cosine similarity of the function vectors) of protein pairs 
within the cluster. Proteins that have predicted functions with scores < 0.1 are shown in gray in 
the heatmaps. Asterisks highlight the examples shown below. (a) and (b) show cases where the 
same structural motif in two different proteins produces different, unrelated functions. (c), (d), and 
(e) show cases where the same function is generated by different structural motifs in different 
proteins, even though the proteins have the same fold.  
 
Higher functional specificity is carried out by fewer possible folds 
We investigated different protein functions and examined the structures with these functions (Fig. 
4 and Figs. S88 – S94). Some protein functions are sufficiently general such that they can be 
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achieved by different folds, examples are 'carbohydrate binding' (GO:0030246), 'protein tyrosine 
kinases' (EC 2.7.10.), and 'mitigation of host immune response by virus' (GO:0030683). More 
specific functions are accomplished by fewer folds. Examples of specific functions with a single 
fold in our MIP dataset are 'thymidine kinase' (EC 2.7.1.21) and 'sole sub-class for lyases that do 
not belong in the other subclasses' (EC 4.99.1.).  
 
The functional cluster for carbohydrate binding (Fig. 4a) covers many different folds with high β-
sheet propensity, including β-barrels, twisted sheets, and stacked sheets. This class contains a 
single helical protein, indicated by the single blue line in the heatmap in Fig. 4a with the structure 
shown in (F). The largest structural cluster in this functional category corresponds to the largest 
novel-fold cluster (yellow square in the heatmap) and the salient residues in this cluster show a 
high degree of overlap.  
 
Fig. 4b shows the function 'maintenance of CRISPR repeat elements'. CRISPR repeats are short 
DNA sequences in bacteria and archaea. They derive from DNA fragments of bacteriophages 
that previously infected those organisms and allows them to identify recurring invaders. Hence, 
the CRISPR-Cas system functions like a microbial immune system28. Cas1 and Cas2 identify the 
site in the bacterial genome where viral DNA is inserted and ultimately cleaved by Cas929. The 
structural cluster in Fig. 4b (A) overlays with part of Cas2 (PDB ID 5sd5 or 5xvp, chains EF) and 
the predicted salient residues bind DNA in the structure. Cluster (D) in Fig. 4b is similar to parts 
of Cas1 (PDB ID 5sd5 or 5xvp, chains ABCD) but doesn't overlay perfectly. 
 
Fig. 4c shows the function 'sole sub-class for lyases that do not belong in the other subclasses'.  
Lyases are enzymes that catalyze the breaking of chemical bonds by means other than hydrolysis 
or oxidation. None of the lyases in the other classes (EC. 4.1 - EC.4.6) have the same fold as our 
predicted MIP models, even though there are structural similarities. Our models have an (9;)x3 

fold with sequential strand connections – the other lyases have various (9;)xN folds but their 
strand connections are non-sequential.  
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Fig 4: Structural diversity of proteins with the same function.  
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We examine proteins that have the same function and plot the TM-score as a measure of 
structural similarity as a heatmap, with larger numbers (more yellow) representing more similar 
structures. We also map the residue-specific function predictions onto the structures on the right, 
where residues in red are responsible for the functions. (a) Gene ontology molecular function 
carbohydrate binding with GO number GO:0030246. Except for the protein shown in (F) which 
has high helical propensity, the proteins in this functional cluster have high β-sheet content. The 
largest cluster in the heatmap in yellow is also the largest novel-fold cluster. The salient residues 
responsible for this function overlay nicely across the proteins in this cluster. (b) Gene ontology 
biological process function 'maintenance of CRISPR repeat elements' with GO number 
GO:0043571. The largest cluster highlighted in yellow superimposes with Cas2 and the salient 
residues in red interact with DNA. (c) Enzyme commission number EC 4.99.1. with the function 
'Sole sub-class for lyases that do not belong in the other subclasses'. All structures in this 
functional cluster have the same fold and the salient residues responsible for this function overlay 
onto the same structural motif in the protein. More details in the text.  

Conclusion 
In this study, we used a citizen-science approach to predict ~200,000 protein structures for non-
redundant microbial sequences across the tree of life. Structures were predicted by two state-of-
the-art independent methods (Rosetta and DMPfold) and evaluated by quality metrics to indicate 
model quality. Functional annotations give us a unique look at the microbial protein universe in 
terms of sequence, structure, and function. Our database is orthogonal to the AlphaFold database 
in terms of domains of life, sequence diversity and sequence length. We predicted 148 novel folds 
which were verified by AlphaFold. With functional annotations, we can more closely relate 
sequence-structure-function relationships in this universe, that go beyond the main homology 
assumption of similar sequences, structures and functions. In fact, we frequently see that these 
dissimilar sequences fold into similar structures, indicating that the sequence diversity is much 
greater than the structural diversity. From a structure prediction standpoint, this highlights the 
importance of distant homology detection and fold recognition methods for dissimilar sequences. 
Moreover, we provide examples that challenge our classic understanding of biological sequence-
structure-function relationships. We hope that this research inspires the scientific community to 
advance our understanding of site-specific protein function by developing experimental and 
computational tools for high-quality measurements and predictions. Only these new tools can lead 
to a more complete understanding of the complexities of how proteins fold, function, evolve and 
interact, to address questions related to health, disease and engineering applications to solve 
some of the world's biggest problems. 
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Online Methods 
Sequence clustering of GEBA dataset 
The MIP dataset is constructed on the basis of GEBA1003 representative bacterial and archeal 
genomes from across the tree of life1. The dataset includes environmental samples from soil, 
ocean water, human gut microbiome and was designed to sample the microbial tree of life evenly. 
For each genome, we generated a list of predicted genes using Prodigal30. The raw gene catalog 
was processed using an incremental clustering approach, similar to the one employed by 
UniClust31. First, redundancy in the dataset was removed by using linclust (ie. clustering at 
100% sequence identity), as implemented in MMSeqs232,33. Then, the dataset was further 
clustered into 90%, 70% and 30% sequence identity clusters, with the last step (70% to 30% 
clustering) executed using the MMSeqs2 clust module. The resulting dataset was sorted 
according to sequence length, sampling the entirety of sequences between 40 and 200 residues. 
 
Rosetta structure prediction 
The structure of each MIP sequence was predicted using version 2016.32.58837 of the Rosetta 
Macromolecular Modeling Suite, modified to run on the IBM World Community Grid. Residue-
residue contacts from sequences closely-related to the target sequence were inferred using 
GREMLIN34 (version 2.0.1) and incorporated as constraints during the folding protocol. For each 
MIP sequence, 20,000 models were generated. Models were ranked using the REF2015 energy 
function35 and the lowest energy model was used for further analysis. Details of the fragment 
selection, contact prediction, and Rosetta model building can be found in the supplement. 
 
DMPfold structure prediction 
We additionally predicted the structures of all MIP sequences using DMPFold9. The same multiple 
sequence alignments used for contact prediction in the Rosetta structure prediction pipeline were 
used, instead of DMPfolds default method of generating an MSA from the uniclust30 database. 
All other parameters were kept to their default values. Details of the DMPfold model building can 
be found in the Supplement. 
 
Quality metrics: pairwise sequence identity, TM-score, cosine similarity 
Model quality measures and construction of the MIP curated is discussed in detail in the 
Supplement (see section MIP dataset curation). MQA score for AlphaFold2 predictions is the 
mean pLDDT (in some places we also provide pTM values). Pairwise sequence identity and 
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structural similarity (TM-score) were generated using TM-align. Two structures were identified as 
similar (including novel fold identification) if the corresponding TM-score >= 0.5 (unless otherwise 
stated).  Pairwise function similarity was computed as a cosine similarity between concatenated 
DeepFRI output vectors (which comprise scores for 6315 GO terms/EC numbers) with threshold 
0.1 i.e. scores < 0.1 were replaced with 0 (we noticed that using full output introduces too much 
noise). 
 
Protein universe visualization 
For every structure in the MIP visualization dataset (comprising 10,000 Rosetta and 
corresponding DMPfold models plus 6,631 CATH 4.3.0 superfamily structures - see Tables S2 
and S3), we generated a contact map (representing residues closer than  < 6Å from each other), 
which was then transformed into graph. Such graph representation was subsequently used to 
form a 42-dimensional graphlet vector21. The collection of graphlet vectors (26,631 x 42 matrix) 
was then projected onto a 3D space using two standard dimensionality reduction methods i.e. 
UMAP and PCA. For UMAP we used the following set of parameters (which provided reasonable 
spread of the data with clear CATH class separability):  n_neighbors = 100, min_dist = 
0.001, N_components = 3, metric = cosine. Visualizations were created with Emperor22. 
An overview of the pipeline is depicted in Fig. S36. 
 
Meta-data 
MIP models were superimposed against all CATH 4.3.0 superfamilies  (http://www.cathdb.info/, 
accession January 5, 2021) using TM-align in order to filter out novel folds (see below) and 
annotate them using CATH classification i.e. the most similar CATH structure to a given protein 
(with the highest TM-score normalized by MIP model size) is used as a template. The annotation 
quality drops with decreasing TM-score (which is important for novel folds) but we noticed that in 
general the quality is high (especially at the class level). Proteins were annotated as alpha 
transmembranes if their OCTOPUS output contained at least one “M“ segment. Similarly, proteins 
were annotated as beta transmembranes if their BOCTOPUS output contained at least eight “pL“ 
segments. All the other metadata are discussed in the Supplement. 
 
Novel fold identification 
To identify new folds we started from high quality MIP models i.e. the MIP curated dataset. First, 
we performed a TM-align structural superposition against CATH 4.3.0 superfamilies (see above). 
For the models without any significant structural similarity to CATH (TM-score < 0.5), we 
performed a superposition against representative structures from the PDB90 (time stamp January 
15, 2021). A putative novel fold is a high quality (i.e. MIP curated) single domain predicted by both 
Rosetta and DMPfold with satisfactory confidence (agreement TM-score >= 0.5 between Rosetta 
and DMPfold predictions) with a maximum TM-score < 0.5 against CATH and the PDB90. Note 
that when comparing MIP and CATH/PDB structures we use the TM-score normalized by the MIP 
sequence length. The output set contained 452 structures grouped into 161 clusters. AlphaFold2 
verification found 14 false positives which resulted in 438 novel structures grouped into 148 novel 
fold clusters. See the Supplement for more information.  
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DeepFRI prediction 
DeepFRI computes saliency maps for each predicted GO term7. These maps identify residues 
that are important for this function but that does not mean that these are active residues, they 
could be important for protein stability or short sequence motifs away from the active site to 
identify the function of this protein. Heatmaps in Fig. 4 were generated based on curated MIP 
(Rosetta) models with DeepFRI score >= 0.2. Models were then grouped by GO-term and 
pairwise structural similarity was computed as the maximum TM-score of two superimposed MIP 
models (i.e. the larger of TM-scores normalized by the first and second sequence lengths was 
chosen). 

Data availability 
All sequence, structure and function data generated in the project, along with relevant metadata 
are deposited on Zenodo with the DOI 10.5281/zenodo.6477242 and on Github at 
https://github.com/microbiome-immunity-project/protein_universe. Information on the directory 
structure and how to search the database are available both on Zenodo.  

Code availability 
TM-align v.20190822 (https://zhanggroup.org//TM-align/) was used for computing TM-scores and 
sequence identities of aligned structures11. Structure visualizations were created in Pymol v.2.4.0 
(https://github.com/schrodinger/pymol-open-source). Secondary structure assignments were 
generated using Stride v.2002102236. Alpha-helical transmembrane annotations were generated 
using OCTOPUS (as a part of TOPCONS2 software37; singularity image downloaded on July 17, 
2020, dependencies: Blast v.2.2.26, Uniref90 v.20200119, Pfam 20191204). Beta-strand 
transmembrane annotations were generated using BOCTOPUS238 (zip downloaded on August 
8, 2020; dependencies: HH-suite v.2.0.16, Blast v.2.2.26, Uniprot20 v.20160226). Absolute and 
relative contact order was computed from definition39. For disordered sequence identification we 
used MobiDB-lite40 v.1.0 (March 2016) and DISOPRED341 (zip downloaded on September 16, 
2021; dependencies: Blast42 v.2.2.26, Uniref90 v.20210731). Putative new fold clusters were 
computed using Python package NetworkX v.2.7.1. For putative new fold verification, we used 
AlphaFold2 with “preset” flag set to full_pdb (repository downloaded on August 16, 2021; 
reference databases which includes the PDB downloaded on July 31, 2021). A cosmetically 
modified version of the Rosetta Macromolecular Modeling Suite43,44, based on release 
2016.32.58837, was used for protein structure prediction on the World Community Grid. The 
fragment picking pipeline45 is also part of the standard Rosetta distribution. Both are obtainable 
from the Rosetta Commons (https://www.rosettacommons.org/). Residue-residue pair constraints 
were obtained using GREMLIN34 version 2.0.1.  DMPfold9 (https://github.com/psipred/DMPfold, 
downloaded September 2019) was used to predict the structures of all MIP sequences.  
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