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Abstract

Motivation: DNA data is transcribed into single-stranded RNA, which folds into specific molecular

structures. In this paper we pose the question to what extent sequence- and structure-information

correlate. We view this correlation as structural semantics of sequence data that allows for a differ-

ent interpretation than conventional sequence alignment. Structural semantics could enable us to

identify more general embedded ‘patterns’ in DNA and RNA sequences.

Results: We compute the partition function of sequences with respect to a fixed structure and con-

nect this computation to the mutual information of a sequence–structure pair for RNA secondary

structures. We present a Boltzmann sampler and obtain the a priori probability of specific sequence

patterns. We present a detailed analysis for the three PDB-structures, 2JXV (hairpin), 2N3R

(3-branch multi-loop) and 1EHZ (tRNA). We localize specific sequence patterns, contrast the energy

spectrum of the Boltzmann sampled sequences versus those sequences that refold into the same

structure and derive a criterion to identify native structures. We illustrate that there are multiple se-

quences in the partition function of a fixed structure, each having nearly the same mutual informa-

tion, that are nevertheless poorly aligned. This indicates the possibility of the existence of relevant

patterns embedded in the sequences that are not discoverable using alignments.

Availability and Implementation: The source code is freely available at http://staff.vbi.vt.edu/

fenixh/Sampler.zip

Contact: duckcr@vbi.vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

2015 is the 25th year of the human genome project. A recent signa-

ture publication (The 1000 Genomes Project Consortium, 2015) is a

comprehensive sequence alignment-based analysis of whole genome

nucleotide sequence variation across global human populations.

Notwithstanding the importance of this achievement, there is the

possibility of information encoded as patterns in the genome that

current methods cannot discover.

In this paper we study the information transfer from RNA se-

quences to RNA structures. This question is central to the processing

of DNA data, specifically the role of DNA nucleotide sequences

being transcribed into RNA, stabilized by molecular folding. In a

plethora of interactions it is this specific configuration and not the

particular sequence of nucleotides (aside from, say small docking

areas, where specific bindings occur) that determines biological

functionality. We find that here are multiple sequences in the parti-

tion function of a fixed structure, each having nearly the same mu-

tual information with respect to the latter, that are nevertheless

poorly aligned. This indicates the possibility of the existence of rele-

vant patterns embedded in the sequences that are not discoverable

using alignments.

RNA, unlike DNA, is almost always single-stranded and all

RNA is folded. (There are double-stranded RNA viruses.) Here we

only consider single-stranded RNA. An RNA strand has a backbone

made of alternating sugar (ribose) and phosphate groups. Attached

to each sugar is one of four bases – adenine (A), uracil (U), cytosine

(C), or guanine (G). There are various types of RNA: messenger

RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA) and

many others. Recent transcriptomic and bioinformatic studies sug-

gest the existence of numerous of so called non-coding RNA,
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ncRNAs, that is RNA that does not translate into protein (Cheng

et al., 2005; Eddy, 2001).

RNA realizes folded molecular conformations consistent with

the Watson–Crick base as well as the wobble base pairs. In the fol-

lowing we consider RNA secondary structures, presented as dia-

grams obtained by drawing the sequence in a straight line and

placing all Watson–Crick and Wobble base pairs as arcs in the upper

half-plane, without any crossing arcs, see Figure 1.

DNA information processing refers to replication, transcription

and translation. Additionally, RNA information processing includes

replication (Koonin et al., 1989), reverse transcription (from RNA

to DNA in e.g. retroviruses; Temin and Mizutani, 1970) and a direct

translation from DNA to protein (in cell-free systems, using extracts

from E. coli that contains ribosomes; McCarthy and Holland, 1965;

Uzawa et al., 2002).

In the following we offer an alternative view of DNA–RNA in-

formation processing. We focus on the information transfer from

DNA/RNA sequences to the folded RNA (after transcription). We

speculate that the sequential DNA information may transcribe into

single-stranded RNA in order to allow subsequent biological proc-

esses to interpret DNA data.

DNA data are viewed as sequences of nucleotides. We currently

use sequence alignment tools as a means of arranging the sequences

of DNA, RNA, or proteins to identify regions of similarity that may

be a consequence of functional, structural, or evolutionary relation-

ships between the sequences (Mount, 2004). Here we suggest that

the transcription into RNA with the implied self-folding is a way of

lifting DNA information to a new and different level: RNA struc-

tures provide sequence semantics.

In order to study this idea we consider the folding of RNA se-

quences into minimum free energy (mfe) secondary structures

(Waterman, 1978). Pioneered by Waterman more than three dec-

ades ago (Smith and Waterman, 1978) and subsequently studied by

Schuster et al. (1994) in the context of the RNA toy world

(Schuster, 1997) there is detailed information about this folding. In

particular we have fairly accurate energy values for computing loop-

based mfe (Mathews et al., 1999, 2004; Turner and Mathews,

2010) that are employed by the folding algorithms (Hofacker et al.,

1994; Zuker and Stiegler, 1981). More work has been done on

loop-energy models in Do et al. (2006) and Mathews (2004). We

plan on a more detailed analysis of the framework proposed here in

the context of the MC-model (Parisien and Major, 2008).

McCaskill (1990) observed that the dynamic programming rou-

tines folding mfe structures allow one to compute the partition func-

tion of all possible structures for a given sequence. The partition

function is tantamount to computing the probability space of struc-

tures that a fixed sequence is compatible with. Predictions such as

base pairing probabilities are obtained in Hofacker et al. (1994) and

Hofacker (2003) and are parallelized in Fekete et al.(2000). Ding

and Lawrence (2003) and Tacker et al. (1996) derive a statistically

valid sampling of secondary structures in the Boltzmann ensemble

and calculate the sampling statistics of structural features.

In view of the above we are led to consider the ‘dual’ of

McCaskill’s partition function, i.e. the partition function of all se-

quences that are compatible with a fixed structure. More generally

we consider the pairing

e : Qn
4 � Sn ! R

þ; (1)

where Qn
4 and Sn denote the space of sequences, r, and the space of

secondary structures, S, respectively and eðr; SÞ ¼ e�
gðr;SÞ
RT as well as

the energy function gðr; SÞ 2 R are discussed in Section 2.1.

We show in Section 3 how e allows us to capture the mutual in-

formation between sequences and structures, where the mutual in-

formation between x and y is given by

Iðx; yÞ ¼ Pðx; yÞ log
Pðx; yÞ

PðxÞPðyÞ

� �

:

Here Pðx; yÞ denotes the joint probability distribution. In our case,

Pðr;SÞ¼ �ðr;SÞ=
P

r2Qn
4 ;S2Sn

�ðr;SÞ;PðrÞ¼
P

S2Sn
Pðr;SÞ and PðSÞ¼

P

r2Qn
4
Pðr;SÞ.

In addition, e allows us to express folding by considering

fSjeðr; SÞ ¼ max
S2Sn

eðr; SÞg;

and inverse folding as to compute frjeðr; SÞ ¼ maxS2Sn
eðr; SÞg, for

fixed S. Accordingly, the dual to folding is tantamount to computing

for fixed S

frjeðr; SÞ ¼ max
r2Qn

4

eðr; SÞg:

This has direct implications to the ‘inverse’ folding of structures.

Inverse folding is by construction about the sequence constraints

induced by a fixed structure while avoiding competing config-

urations. Point in case: it has been observed in Busch and

Backofen (2006), Levin, A., et al. (2012) and Reinharz,V., et al.

(2013) that starting with a sequence that is mfe w.r.t. to a fixed

structure, without necessarily folding into it, constitutes a signifi-

cantly better initialization than starting with a random sequence.

The paper is organized as follows: we first recall in Section 2.1

the decomposition of secondary structures as well as the loop-based

thermodynamic model. This in turn facilitates (Sections 2.3 and 2.4)

the derivation of the partition function and Boltzmann sampling. In

Sections 2.3 and 2.4 we compute Q(S), Boltzmann sampling and the

a priori probability of sequence patterns.

2 Method

2.1 Secondary structures and loop decomposition

RNA structures can be represented as diagrams where we con-

sider the labels of the sequence to be placed on the x-axis and the

Watson–Crick as well as Wobble base pairs drawn as arcs in the

upper half plane see Figure 1. That is, we have a vertex-labeled

graph whose vertices are drawn on a horizontal line labeled by

½n� ¼ f1; 2; . . . ; ng, presenting the nucleotides of the RNA

sequence and the linear order of the vertices from left to right in-

dicates the direction of the backbone from 50-end to 30-end.

Furthermore each vertex can be paired with at most one other ver-

tex by an arc drawn in the upper half-plane. Such an arc, (i, j),

represents the base pair between the ith and jth nucleotide (here

we assume j� i > 3 to meet the minimum size requirement of a

hairpin loop.).Fig. 1. tRNA: its secondary structure and its diagram presentation
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Two arcs (i, j) and (r, s) are called crossing if and only if i< r and

i < r < j < s holds. An RNA structure is called pseudoknot-free,

or secondary structure, if it does not contain any crossing arcs.

Furthermore, the arcs of a secondary structure can be endowed with

the partial order: ðr; sÞ � ði; jÞ if and only if i < r < s < j.

A filtration based on the individual contributions of base pairs of

RNA structures was computed via the Nussinov model (Nussinov

et al., 1978). Smith and Waterman (1978) were the first bringing en-

ergy into the picture, computing the free-energy accurately via loops.

A loop in a diagram consists of a sequence of intervals on the back-

bone ð½ai; bi�Þi; 1 � i � k, where ða1;bkÞ; ðbi; aiþ1Þ, for all 1 � i

< k are base pairs. By construction, each base pair (i, j) is involved

in exactly two loops: one where (i, j) is maximal respect to �, and

one where (i, j) is not. Furthermore, there is a distinguished loop,

Lex, called the exterior loop, where a1 ¼ 1, bk¼n and ða1; bkÞ is not

a base pair. Depending on the number of base pairs, and unpaired

bases inside a loop, a loop is categorized as hairpin-, containing

exactly one base pair and one interval, helix, containing two base

pairs and two empty intervals, interior-, containing two non-empty

intervals and two base pairs, bulge-, containing two base pairs and

two intervals, where one of them is empty and the other one is not

and multi-loops, see Figures 2 and 3.

Further developments on RNA secondary structure prediction

were given by Zuker and Stiegler (1981) and Hofacker et al. (1994).

In particular, accurate thermodynamic energy parameters can be

found in Mathews et al. (1999, 2004), Turner and Mathews (2010),

Parisien and Major (2008), Deigan et al. (2009), Hajdin et al.

(2013) and Lorenz et al. (2016).

In the following, we briefly recall the Turner energy model

(Mathews et al., 1999, 2004; Turner and Mathews, 2010) for RNA

secondary structures. Let r ¼ ðr1; r2; . . . ; rnÞ be a sequence, where ri

2 fA;U;C;Gg for all 1 � i � n. To an arbitrary loop, L, we assign

the energy gðr;LÞ, where gðr;LexÞ ¼ 0 and gðr;LÞ depends on two

factors: its type and the underlying backbone. Specifically this is the

number of bases pairs, the number of unpaired bases and the particular

nucleotides involved. The energy of a structure S over an RNA se-

quence r is then given by the sum of the energies of individual loops i.e.

gðr; SÞ ¼
X

L2S

gðr;LÞ: (2)

A hairpin, LH is a loop having exactly one base pair with a non-

empty interval containing k unpaired bases, where k � 3 due to

flexibility constraints imposed by the backbone of the molecule.

In case of 3 � k � 4 we call L a tetra-loop, which has a particu-

lar energy that depends on the two nucleotides incident to its unique

arc ðri; riþkþ1Þ as well as the particular nucleotides corresponding to

the unpaired bases of its unique non-empty interval ðriþ1; . . . ;riþkÞ.

For any other number of unpaired bases, k, the energy calcula-

tion depends only on k and not the particular nucleotide sequence,

except of ðri; riþkþ1Þ and riþ1 and riþk. We have

gðr;LHÞ ¼
gHððri; riþkþ1Þ; riþ1; . . . ;riþkÞ if 3 � k � 4

gHððri; riþkþ1Þ; riþ1; riþk; kÞ otherwise :

(

(3)

An interior, bulge or helix loop, L�, can be represented as two inter-

vals and two base pairs L� ¼ f½i; r�; ½s; j�; ði; jÞ; ðr; sÞg. The energy of

L� is computed as

gðr;L�Þ ¼

g�ððri; rjÞ; ðrr;rsÞÞ ðhelixÞ

g�ððri; rjÞ; ðrr;rsÞ; riþ1; rr�1;

rsþ1; rj�1Þ; k1Þ ðbulgeÞ

g�ððri; rjÞ; ðrr;rsÞ; riþ1; rr�1;

rsþ1; rj�1Þ; k1;k2Þ ðinteriorÞ

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(4)

where k1¼maxfr� i�1;j�s�1g and k2¼minfr� i�1; j� s�1g.

A multi-loop LM contains p base pairs and p intervals, some of

which being possibly empty, where p � 3. gMðr;LMÞ is computed by

gMðr;LMÞ ¼ aþ p 	 bþ u 	 c: (5)

Here a is the constant multi-loop penalty, b and c are constants and

u is the number of all unpaired bases contained in the respective

intervals.

2.2 The partition function

DEFINITION 1 Let S be a secondary structure over n nucleotides. Then

the partition function of S is given by

QðSÞ ¼
X

r2Qn
4

e�
gðr;SÞ
RT ; (6)

where gðr; SÞ is the energy of S on r, R is the universal gas constant

and T is the temperature.

In analogy to the partition function of a fixed sequence QðrÞ

(McCaskill, 1990), Q(S) can be computed recursively. Given the struc-

ture S, we consider an arbitrary arc (i, j), where i< j. Let Si;j denote the

substructure of S over the interval ½i; j�. Since S contains no crossing arcs

all arcs of Si;j are contained in ½i; j�, whence Si;j is well defined. Let

Qðri; rjÞ ¼
X

r 2 Q
j�iþ1
4

rji ¼ ri;rjj ¼ rj

e�
gðr;Si;j Þ

RT :

Since S has no crossing arcs, the interval ½i; j� is covered by the arc

(i, j), i.e. (i, j) induces a loop L for which (i, j) is maximal. Suppose L

consist of intervals ½i;p1�; ½q1;p2�; . . . ; ½qk; j�, where ðp1; q1Þ . . . ;

ðpk;qkÞ are L-arcs different from (i, j). Removal of L renders sub-

structures covered by ðp1;q1Þ . . . ; ðpk; qkÞ. Considering all combin-

ations of the nucleotides in position pi and qi, 1 � i � k, we derive

the following recursion, see Figure 4:

Qðri; rjÞ ¼
X

rpt ;rqt 2Q4

e�
gðr;LÞ
RT

Y

k

t

Qðrpt ; rqt Þ: (7)

The partition function Q(S) is then obtained as the weighted sum of

the terms Qðrat ; rbt Þ, where (at, bt), 81 � t � k are base pairs in

the exterior loop Lex:

QðSÞ ¼
X

rat ;rbt2Q4

e�
gðr;Lex Þ

RT

Y

k

t

Qðrat ;rbt Þ: (8)

Fig. 2. Hairpin-, helix-, bulge-, interior- andmulti-loops in secondary structures

Fig. 3. Loops and their correspondence in a diagram
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REMARK. The routine of computing Q(S) is similar to the one

for finding an optimal sequence for a given structure inBusch and

Backofen (2006), Levin, A., et al. (2012) and Reinharz,V., et al.

(2013). Passing to a topological model for RNA structures (Bon

et al., 2008; Orland and Zee, 2002; Penner, 2004; Reidys et al.,

2011), the above recursions can be extended to pseudoknotted

RNA structures, i.e. RNA structures containing crossing arcs. The

key here is a general bijection between maximal arcs and topo-

logical boundary components (loops).

2.3 Boltzmann sampling and patterns

Having computed the partition functionQ(S) as well as theQðri; rjÞ

terms, puts us in position to Boltzmann sample sequences for fixed

secondary structure S. Here the probability of a sequence r to be

sampled is given by

PðrjSÞ ¼
e�

gðr;SÞ
RT

QðSÞ
:

We build r recursively from top to bottom, starting with

the exterior loop, Lex. Suppose (pt, qt) are base pairs contained in

Lex and let u denote the number of unpaired bases in Lex.

Since gðr;LexÞ ¼ 0, the unpaired nucleotides in Lex are sampled

uniformly, i.e. with probability 1/4. Then the probability of the

event rr being the nucleotide in position r 2 Lex, is given by

PðrrjSÞ ¼
e�

gðr;Lex Þ
RT
Qk

t¼1 Qðrpt ; rqt Þ

QðSÞ
¼

1
4

� �uQk
t¼1 Qðrpt ; rqt Þ

QðSÞ
;

where the dependence on rr of the RHS stems from rjr ¼ rr or

potentially pt ¼ r or qt ¼ r. We continue the process inductively

from top to bottom. Suppose we are given a loop L with the

maximal base pair (i, j). Since any two arcs in S are not crossing, any

arc (i, j) is contained in exactly two loops (except for the exterior

loop) where (i, j) is the maximal arc for one and not for the other.

As a result, the nucleotides ri; rj associated with (i, j) are sampled as

part of the preceding loop (in which (i, j) is not maximal). It remains

to sample the nucleotides other than ri and rj in L. Let rr be the nu-

cleotides in L and r 6¼ i; j. The probability of the event rr being the

nucleotide in position r, r 6¼ i; j is given by

PðrrjSÞ ¼
e�

gðr;LÞ
RT
Qk

t¼1 Qðrpt ; rqtÞ
Qðri;rjÞ

:

Here (pt, qt), for 1 � t � k; k � 0 are base pairs contained in L,

that are different from (i, j). In particular, L is a hairpin loop in case

of k¼0, an interior-, bulge- or a helix-loop in case of k¼1, and a

multi-loop for k � 2.

By construction, for any arc there is a unique loop for which the

arc is maximal and a unique loop where the arc is not. As a result,

the probability of a sequence r to be sampled is given by

PðrjSÞ ¼
Y

ði;jÞ2S

e�
gðr;Lði;jÞÞ

RT

Qk
t¼1 Qðrpt ; rqt Þ

Qðri;rjÞ
	

1
4

� �uQk
t¼1 Qðrpt ; rqt Þ

QðSÞ

In view of Eq. (2) and the fact that the termQðrpt ;qt Þ appears exactly

once for each arc (pt, qt), we arrive at

Y

ði;jÞ2S

ð
Y

k

t¼1

Qðrpt ; rqt ÞÞ ¼
Y

ði;jÞ2S

Qðri; rjÞ:

This in turn implies

PðrjSÞ ¼

Q

ði;jÞ2S e
�

gðr;Lði;jÞÞ
RT

� �

Q

ði;jÞ2S Qðri;rjÞ
� �

QðSÞ
Q

ði;jÞ2S Qðri; rjÞ
¼

e�
gðr;SÞ
RT

QðSÞ
:

The time complexity for computing the partition function of a

structure and Boltzmann sampling depends solely on the complexity

of the energy function, gðr;LÞ. Clearly, there are O(n) loops in the

structure and reviewing Eqs. (3), (4) and (5), at most eight nucleo-

tides are taken into account. From this we can conclude that the

time complexity isO(n), as claimed.

Next, we compute the probability of a given sequence pattern,

i.e. the subsequence of r over ½i; j� being pi;j. We shall refer to a se-

quence containing pi;j by rjpi;j .

The partition function of all sequences r containing pi;j is

given by

QðSjpi;jÞ ¼
X

rjpi;j
2Qn

4

e�
gðr;SÞ
RT (9)

and the probability of pi;j is Pðpi;jjSÞ ¼
QðSjpi;jÞ
QðSÞ .

We have shown how to compute Q(S) recursively in Section 2.3.

It remains to show how to compute QðSjpi;jÞ. To do this we use the

same routine as for computing Q(S), but eliminating any subse-

quences that are not compatible with pi;j. By construction, for any

pattern, this process has the same time complexity as computing

Q(S).

3 Discussion

Let us begin by discussing the mutual information of sequence–

structure pairs. Then we ask to what extent does a structure deter-

mine particular sequence patterns and finally derive a criterion that

differentiates native from random structures.

The mutual information of a sequence–structure pair can be

computed by normalizing �

Pðr; SÞ ¼
e�

gðr;SÞ
RT

P

r2Qn
4

P

S2Sn
e�

gðr;SÞ
RT

;

where U ¼
P

r2Qn
4

P

S2Sn
e�

gðr;SÞ
RT is a constant. Then we have

Iðr; SÞ ¼ e�
gðr;SÞ
RT log

ðe�
gðr;SÞ
RT Þ

QðrÞQðSÞ

 !

=U þ e�
gðr;SÞ
RT logU

� �

=U:

Since U is a large constant, we observe that one term of Pðr; SÞ,

namely

e�
gðr;SÞ
RT log

e�
gðr;SÞ
RT

QðSÞQðrÞ

contributes the most. Accordingly, Q(S) and QðrÞ allow us to quan-

tify how a probability space of structures determines a probability

space of sequences.

Fig. 4. The recursion for computing the partition function QT ðri ; rj Þ
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In Figure 5 we display three sequences sampled from Q(S) where

S is the PDB-structure 2N3R (Bonneau et al., 2015), see Figure 9.

All three sequences have similar mutual information and more than

50% of the nucleotides in the sequences are pairwise different.

We point out that replacing a G- C base pair in a helix by a C- G

base pair does change the energy, see Figure 6. This due to the fact

that the loops are traversed in a specific orientation. The isolated re-

placement of G-C by C-G changes this sequence and hence the

energy.

Since the energy model underlying the current analysis does not

take non-canonical base pairs into account, we defer a detailed ana-

lysis of the mutual information to a later study where we use the

MC-model (Parisien and Major, 2008).

Let pi;j be a subsequence on the interval ½i; j� with concrete

nucleotides, having probability Pðpi;jÞ. Its Shannon entropy Ei;j is

given by

Ei;j ¼ �
X

8pi;j

Pðpi;jÞ log4Pðpi;jÞ:

By construction, 0 � Ei;j � ðj� iþ 1Þ, where Ei;j ¼ ðj� iþ 1Þ

when all pi;j have the same probability, i.e. uniformly distributed,

and Ei;j ¼ 0 when pi;j is completely determined, i.e. Pðpi;jÞ ¼ 1. Let

Ri;j ¼ 1� ðEi;j=ðj� iþ 1ÞÞ be the heat of ½i; j�, i.e. Ri;j ¼ 0 for

random sequences and Ri;j ¼ 1 if there exists only one pattern pi;j.

We display the collection of Ri;j as a matrix (heat-map), in which we

display Ri;j ¼ 0:59 as black and Ri;j ¼ 0 as white. For a proof of con-

cept, we restrict ourselves to Ri;j for j� iþ 1 � 8.

The heat-maps presented here are obtained by Boltzmann sam-

pling an ensemble of 104 sequences from Q(S). We present the en-

ergy distribution of this ensemble in Figures 8, 10(A) and 12(A) and

in addition the energy spectrum of those sequences that actually fold

into S via the classic folding algorithm using the same energy func-

tions here. The Inverse folding rate (IFR),

IFR ¼
#of sequences folding into S

#of sampled sequences

measures the rate of successful re-folding from that ensemble.

Let r be a sequence from a Boltzmann sample w.r.t. the structure

S. Let �S denote the structure that r folds to. We consider

DgðrÞ ¼ jgðr; SÞ � gðr; �SÞj

and compare the DGðr; SÞ of several native structures contained in

PDB with those of a several random structures (obtained by uni-

formly sampling RNA secondary structures).

The PDB structure 2JXV (Cevec et al., 2008) represents a seg-

ment of an mRNA, having length 33. The structure exhibits a tetra-

loop, an interior loop and two stacks of length 8 and 5, respectively,

see Figure 7. We Boltzmann sample 104 sequences for this structure

observing an AU ratio of 18.18%, while CG ratio is 81.82%. The

IFR reads 95.16%, i.e. almost all sampled sequences refold into

2JXV. The heat-map of 2JXV is given in Figure 7 and we list the

most frequent 10 patterns of the largest interval having Ri;j > 0:52

in Supplementary Table S1 together with their a priori pattern prob-

abilities. We observe that the tetra-loop determines specific patterns.

This finding is not entirely straightforward as the hairpin-loops are

the last to be encountered when Boltzmann sampling. I.e. they are

the most correlated loop-types in the sense that structural context in-

fluences them the most.

The energy distribution of the Boltzmann sample is presented in

Figure 8 and we observe that the inverse folding solution is not sim-

ply the one that minimizes the free energy w.r.t. 2JXV with the best

energy. DgðrÞ-data are not displayed here in view of the high IFR.

The PDB structure 2N3R (Bonneau et al., 2015) consist of 61

nucleotides and has a 3-branch multi-loop, two tetra-loops, interior

loops and helixes, see Figure 9. The ratios of AU and CG pairs are

19.67% and 80.33%, respectively, again in a Boltzmann sample of

Fig. 7. The secondary structure of 2JXV and its heat-map. We display the

most frequent sampled patterns for the largest interval having Ri ;j > 0:52.

The sample size is 104

Fig. 8. The energy distribution of the Boltzmann sample for 2JXV. We display

the frequency of sequences having a particular energy (right bars) and the

frequency of sequences that fold into 2JXV (left bars)

A B

Fig. 6. Isolated replacement of G- C by C- G: (A) L1 ¼ ðU;G;C;AÞ and

L2 ¼ ðG;U;G;CÞ, (B) replacement induces the new loops: L
0

1 ¼ ðU;C;G;AÞ and

L
0

2 ¼ ðC;U;G;GÞ, which changes the free energy

Fig. 5. Three sequences, having nearly the same mutual information with re-

spect to the PDB structure 2N3R. The sequences differ pairwise by more than

50% of their nucleotides which indicates that there is information that cannot

be captured by conventional sequence alignment. Accordingly BLAST out-

puts no significant homology between the sequences
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104 sequences. The IFR is at 0.69 quite high, despite the fact that

2N3R is much more complex than 2JXV. We illustrate the heat-

map of 2N3R in Figure 9 and list the most frequent 10 patterns in

the largest interval having Ri;j > 0:52 in the Supplementary

Material, Supplementary Table S2 together with their a priori pat-

tern probabilities computed by eq. (9)

Comparing the sequence segments ½17; 24� and ½37;44�, both of

which being tetra-loops with additional two nucleotides. The Ri;j

values of these segments are similar, approximately 0.59, however,

their most frequently sampled patterns appear at different rates. For

½17; 24� this pattern is CGGAAGGC and it occurs with a Boltzmann

sampled frequency of 1.69% and pattern probability 1.44%, while

for ½37; 44� it is CGUGAGGG with sampled frequency 3.27% and

pattern probability 3.24%. This makes the point that pattern fre-

quency distributions are strongly correlated with structural context.

The energy distribution of the Boltzmann sample is given in

Figure 10(A) and we display the DgðrÞ-data in Figure 10(B) where

we contrast the data with DgðrÞ-values obtained from Boltzmann

sampling 104 sequences of 5 random structures of the same length.

We observe that the DgðrÞ-values for 2N3R are distinctively lower

than those for random structures.

The PDB structure 1EHZ (Shi and Moore, 2000) is a tRNA over

76 nucleotides exhibiting a 4-branch multi-loop. We display the

heat-map of 1EHZ in Figure 11 The IFR is 1:3� 10�3 w.r.t. our

Boltzmann sample of size 104 and we display the energy distribution

of the sampled sequences in Figure 12(A). Interestingly we still find

many inverse fold solutions by just Boltzmann sampling Q(S) and

these sequences are not concentrated at low free energy values.

In Figure 12(B) we display the DgðrÞ-data and contrast them

with those obtained by the Boltzmann samples of five random struc-

tures. We observe a significant difference between the DgðrÞ-distri-

bution of the 1EHZ sample and those of the random structures.

The three above examples indicate that sequence–structure cor-

relations can be used to locate regions where specific embedded pat-

terns arise. Furthermore we observe that studying Q(S) has direct

implications for inverse folding. This is in agreement with the find-

ings in Busch and Backofen (2006), Levin, A., et al. (2012) and

Reinharz,V., et al. (2013), but leads to deriving alternative, unbiased

starting sequences for inverse folding. Although at present we can

only estimate the mutual information, we can conclude that there

are sequences that cannot be aligned but obtain almost identical mu-

tual information.

We observe that biological relevant sequences exhibit a DgðrÞ-

signature distinctive different from that of random structures.

Therefore, the DgðrÞ-signature is capable of distinguishing biological

relevant structures from random structures. In Mikl�os et al. (2005),

the expected free energy and variance of the Boltzmann ensemble of

a given sequence has been employed in order to distinguish biologic-

ally functional RNA sequences from random sequences. This result

is in terms of the pairing e : Qn
4 � Sn ! R

þ, dual (the flip side of the

coin, so to speak) to our approach. Our DgðrÞ-signature characterize

the naturality of a fixed structure and Mikl�os et al. (2005) the

Fig. 11. The secondary structure of 1EHZ and its heat-map. We display the

most frequent sampled pattern for the largest interval having Ri;j > 0:52. The

sample size is 104

A B

Fig. 10. (A) The energy distribution of Boltzmann sampled sequences. The fre-

quency of sequences having a particular energy level (right bars), the fre-

quency of sequences folding into 2N3R (left bars). (B) DgðrÞ-data of 2N3R

versus DgðrÞ-data of five random structures

Fig. 9. The secondary structure of 2N3R and its heat-map. We show the

most frequent patterns for the largest interval having Ri;j > 0:52. The sample

size is 104

A B

Fig. 12. (A) The energy distribution of the Boltzmann sampled sequences. The

frequency of sequences having a particular energy level (right bars), the fre-

quency of sequences folding into 1EHZ (left bars). (B) DgðrÞ-data of 1EHZ ver-

sus DgðrÞ-data of five random structures
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naturality of a fixed sequence. Accordingly, Q(S) augments the ana-

lysis of QðrÞ in a natural way, capturing the correlation between

RNA sequences and structures.

As a result, sequences carry embedded patterns that cannot be

understood by considering the sequence of nucleotides. At this point

we have no concept of what these patterns are and provided in

Section 2.4 a rather conventional notion of ‘embedded pattern’.

However, even when considering specific nucleotide patterns in

hairpin loops, we observe significant context dependence on the

structure. Other loops affect the energy of the hairpin loop and thus

determine this particular subsequence. We observe that the

embedded patterns can, for certain structures, be quite restricted,

possibly elaborate and are not entirely obvious. In any case, the ana-

lysis cannot be reduced to conventional sequence alignment. The

heat-maps introduced here identify the regions for which only a few

select patterns appear and computed the a priori probabilities of

their occurrence.

This type of analysis will be carried out for the far more

advanced MC-model (Parisien and Major, 2008), incorporating

non-canonical base pairs, SHAPE-directed model for long RNAs

(Deigan et al., 2009; Hajdin et al., 2013). This will in particular en-

able us to have a closer look at the hairpins of the tRNA structure.

In addition we believe that this line of work may enable us to arrive

at non-heuristic inverse foldings.

Folding of RNA secondary structures including pseudoknots is

studied in Rivas and Eddy (1999) by extending the dynamic pro-

gramming paradigm introducing substructures with a gap. The

framework generates a particular, somewhat subtle class of pseudo-

knot structures, discussed in detail in Rivas and Eddy (2000). A spe-

cific, multiple context-free grammar (MCFG) for pseudoknotted

structures is designed (Rivas and Eddy, 1999), employing a vector of

nonterminal symbols referencing a substructure with a gap.

Our results facilitate the Boltzmann sample RNA sequences for

pseudoknotted structures. Let Si;j;r;s denote a substructure with a gap

where (i, j), (r, s) are base pairs and Qðri; rj; rr; rsÞ denote the parti-

tion function of Si;j;r;s, then one can compute Qðri; rjÞ following the

MCFG given by Rivas and Eddy (1999).

A different approach was presented in Penner and Waterman

(1993) and Penner (2004), where topological RNA structures have

been introduced (Penner and Waterman, 1993; Penner, 2004). In dif-

ference to Rivas and Eddy (1999), which was driven by the dynamic

programming paradigm, topological structures stem from the intuitive

idea to just ‘draw’ their arcs on a more complex topological surface in

order to resolve crossings. Random matrix theory (von Neumann and

Goldstine, 1947) facilitates the classification and expansion of pseu-

doknotted structures in terms of topological genus (Bon et al., 2008;

Orland and Zee, 2002) and in Reidys et al. (2011) a polynomial time,

loop-based folding algorithm of topological RNA structures was

given. The results in this paper are for representation purposes formu-

lated in terms of loops. However they were originally developed in

the topological framework, in which loops become topological

boundary components. This means that we can extend our frame-

work to pseudoknot structures. The key then is of course to be able to

recursively compute the novel partition function, i.e. an unambiguous

grammar. Recent results (Huang and Reidys, 2016) associate a topo-

logical RNA structure with a certain, arc-labeled secondary structure,

called k-structure. The resulting disentanglement gives rise to a con-

text free grammar for RNA pseudoknot structures (Huang and

Reidys, 2016). (More precisely, a k-structures corresponds one-to-one

to a pseudoknotted structure together with some additional informa-

tion, i.e. a specific permutation of its backbone.) We illustrate this

correspondence in Figure 13. This finding facilitates to extend all our

results to pseudoknotted structures and offers insight in patterns and

inverse folding of more general RNA structure classes as well as

RNA-RNA interaction complexes.

As mentioned above, the present analysis is just a first step and dis-

cusses embedded patterns in the sense of subsequent nucleotides.

However our framework can deal with any embedded pattern. We

think a deeper, conceptual analysis has to be undertaken aiming at

identifying how a collection of structures provides sequence semantics.

Quite possibly this can be done in the context of formal languages.

We speculate that advancing this may lead to a novel class of

embedded pattern recognition algorithms beyond sequence alignment.
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