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Laboratory mouse strains carry - 35 major urinary protein
(MUP) genes per haploid genome, tightly clustered together
on chromosome 4. Most belong to two main groups (Groups
1 and 2). The available evidence strongly suggests that the
Group 1 genes are active while the Group 2 genes are pseudo-
genes. Here we present the complete sequence of a Group
1 gene and a Group 2 gene and 700 bp of flanking sequence.
The sequence of the Group 1 gene is consistent with its being
active. The Group 2 gene contains two stop codons and a
frame-shift mutation in the reading frame defined by the
Group 1 gene, and would code for a signal peptide 25 rather
than 19 amino acids long. The Group 2 gene differs from the
Group 1 gene in other ways: a deletion upstream of the TATA
box and another in intron 3, a base change in the TATA box
itself, a 2 bp duplication at the splice acceptor boundary of
intron 6, an altered poly(A) addition signal and a 1-base de-
letion 5' to the initiation codon. Some of these differences may
explain the 10- to 20-fold higher level of Group 1 mRNA in
mouse liver, and the fact that Group 1 and Group 2 tran-
scripts are mainly spliced differently. The presence of the stop
codon means that the Group 2 gene is a pseudogene in the
context of the Group 1 gene. However, there is some evidence
that the mature hexapeptide that it would code for may have
biological activity. The 12 acceptor splice sites of the two genes
all contain the identical sequence ACAG at the exon bound-
ary. As a result this region shows an unusually high level of
base-pairing homology with the splice donor site. A sequence
showing a moderate to high homology with the sequence
CTGAC is found between 17 and 35 bp 5' to the acceptor
site boundary in every intron.
Key words: mouse/major urinary protein/pseudogene/sequence/
comparison

Introduction

The mouse major urinary proteins (MUPs) are a closely related
group of small acidic proteins which are synthesised in the liver,
secreted into the blood and subsequently excreted in the urine.
There are 35 MUP genes in the mouse genome (Bishop et al.,
1982). On the basis of nucleic acid hybridisation experiments
the 35 genes can be subdivided into two groups (Group 1 and
Group 2), each with 15 members, and a small number of other
genes not closely related to either group. The Group 1 and Group
2 genes are part of large units of DNA organisation which are
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-45 kb long (Clark et al., 1984b; Bishop et al., 1985). Each
unit contains one Group 1 gene and one Group 2 gene, - 15 kb
apart, in a divergent transcriptional orientation (i.e., head-to-head
organisation). Here we present the full sequence of the transcrip-
tion units of a Group 1 and a Group 2 gene, and also some 700 bp
of flanking sequence. We show that the Group 2 gene, with two
stop codons and a frame-shift mutation, is a pseudogene in the
context of the Group 1 gene. However, we cite evidence that
raises the possibility that the hypothetical oligopeptide product
of the Group 2 gene may have biological activity. Several other
differences between the Group 1 and Group 2 genes were observ-
ed, some of which may impair the efficiency of transcription or
translation of the latter.

Results

Figure lA shows the basic arrangement of Group 1 and Group
2 genes and the regions of DNA sequenced. Figure lB and C
shows M13 clones that were generated, respectively, from BS6
(Group 1) and BS2,3 and sequenced. BS2,3 is the name given
to a Group 2 gene which, with its flanking regions, is defined
by two overlapping clones. In the case of BS6, 568 bp of
5'-flanking sequence, the 3917 bp transcription unit and 136 bp
of 3' flanking sequence were determined. Approximately 80%
of the sequence was determined on both strands. The region of
BS2,3 homologous to that determined for BS6 was sequenced
primarily on one strand.

Determination of the Group 1 mRNA cap site

We previously described the sequence of the combined exons
of BS6. The gene encodes a short mRNA of - 750 nucleotides
within six exons and a long mRNA of 882 nucleotides within
seven exons (Clark et al., 1984a). The two forms are generated
by different splicing events. The long mRNA is considerably
more abundant. Previously we positioned the mRNA cap site
provisionally. On the basis of two criteria, SI nuclease protec-
tion and primer extension, we now confirm that it is located 30

1 bp downstream from the TATA box (Figure 2).

Comparison of BS6 and BS2,3
Figure 3 shows the sequences of BS6 and BS2,3, aligned to maxi-
mise base-pairing homology between them. The boxes surround
the exons previously defined for BS6 (Clark et al., 1984a).
Insertions and deletions. The comparison shows that there are

three large insertions or deletions (> 17 bp) and 20 smaller inser-
tions or deletions ( < 9 bp). Otherwise the two sequences are co-

linear over the entire sequenced region. The most 5' large inser-
tion or deletion occurs within a very A-rich tract located 50 bp
5' to the start of each transcription unit. In BS6 this tract (pri-
marily A, occasionally interrupted by C) is 44 bp long, whereas
it is only 16 bp long in BS2,3. To date, the corresponding regions
of nine different MUP genes (five Group 1 and four Group 2)
have been sequenced. Many show variation in the length of the
A-rich tract, from a minimum of 11 bp to a maximum of 61 bp
(P.Ghazal, unpublished observations). The second major inter-
ruption in the co-linearity of the two sequences occurs in the first
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Fig. 1. Sequencing strategy for BS6 and BS2,3. A: The predominant arrangement of Group 1 and Group 2 genes and their flanking sequences in the BALB/c

genome. Regions of inverted symmetry are shown as boxes with arrows above them. The Group 1 and Group 2 transcription units are marked as boxes

containing arrows which indicate the direction of transcription. The continuous lines below show the relationship of the lambda clones to the chromosome

map. BS2,3 is a composite of two Group 2 lambda clones which overlap extensively and have identical restriction enzyme sites in this region of overlap.

Indicates the regions that were sequenced. B: Sequencing strategy for BS6. H, the plasmid subclones from which M13 clones were derived.J-E, M13

clones which were cloned at specific sites: continuous line, region sequenced; broken line, remainder of the clone which was not sequenced. -, M13 clones

for which the RF was prepared and the insert progressively shortened by the method of Hong (1982). Arrows indicate the regions sequenced. Arrowheads

show the direction of sequencing. The restriction map covers the region sequenced and shows the sites employed for the M13 cloning; 0, BamHI;
0, EcoRI; [, HindJII; A, KpnI; A, PvuII; 7, PstI; o, AhaII; *, SauIIIA; *, AluI. The numbered, open boxes show the positions of the exons, and

the dashed extension of exon 6 shows the position of those sequences that are present in short MUP mRNA. C: Sequencing strategy for BS2,3. Symbols are

the same as in B. The scale is the same for B and C.

exon within the region which codes for the signal peptide. BS6
has a 19 amino acid and BS2,3 a 25 amino acid signal peptide,
the difference being due to a net insertion of six leucine residues
(6 x CGT) in BS2,3. The length of this region is different in
each of four Group 2 MUP genes. In contrast, the sequences

of the entire signal peptide region of five Group 1 genes are ident-
ical (Ghazal et al., 1985). The third major insertion or deletion
is in the third intron and occurs in a region ofDNA that consists
primarily of runs of GT and GTT. In BS6 this region (+ 1537
to + 1633) is 97 bp long, whereas the homologous region in

BS2,3 (+ 1542 to + 1557) is only 16 bp long. Comparable se-

quence data from other MUP genes are not available. However,
restriction site mapping suggests that there are no large differences
in length between different Group 1 genes or between different
Group 2 genes.

Transcription initiation signals. The DNA sequence signals which
are presumed to be required for transcription are listed in Table
I. There is a possible 'CAAT' box at -109 in BS6 and -77
in BS2,3, although the sequences are considerably diverged from
the published consensus, sharing only 5/9 positions, one of which
is an unspecified pyrimidine in the consensus sequence. Both BS6
and BS2,3 have a consensus 'TATA' box at -31. BS2,3, how-
ever, contains a G at a position normally occupied by an A (Table
I).

Splice sites. Table I also tabulates the donor and acceptor splice
sites of the six introns of each gene. All 24 sites accord with

the GT/AG rule and show a good agreement with the consensus

sequences derived by Breathnach and Chambon (1981). In the

six donor sites, BS6 and BS2,3 differ in a total of two positions
(2/36 bp). Similarly the two genes differ by a total of two pos-

itions in five of the six acceptor sites (2/50 bp). The acceptor

site in intron 6 of BS2,3 has a net insertion of 2 bp compared
with BS6. The mRNA transcribed from Group 2 genes is mainly
of the short variety which lacks exon 7 and contains an extended
exon 6, while the mRNA transcribed from the Group 1 genes

is mainly the longer variant which contains the short exon 6

spliced to exon 7 (Clark et al., 1984a). It seems possible that
the net insertion of 2 bp in BS2 may underly this difference by
partially inactivating the acceptor site of intron 6.

Transcription termination signals. Most Group 1 MUP mRNA
contain the 250 bp long untranslated exon 7. In this exon at

+3895 there is a poly(A) addition signal (AATAAA). By com-

parison with the sequence of a number of MUP cDNA clones
(Kuhn et al., 1984; Clark et al., 1985) this sequence is found
to be located 22 bp 5' to the beginning of the poly(A) tract. An
identical poly(A) addition signal is present in the homologous
position in the BS2,3 sequence. The less abundant short forms
of Group 1 mRNA which terminate at the end of an extended
exon 6 are polyadenylated at sites that relate to the rare poly(A)
addition site ATTAAA at +2964 in the BS1 sequence and the
usual AATAAA site at +2979 (Clark et al., 1984a). The se-

quence in BS2,3 that corresponds in position to the first of these
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Fig. 2. SI protection and primer extension. A: Restriction map of the 5'
region of MUP BS6 showing its relationship to the probes used for SI
protection and primer extension. Open and closed boxes show the
untranslated and translated regions of exon 1. B: Electrophoretic analysis of
the products of SI protection and primer extension. Lanes 1-4, sequence

ladder of an M13 clone used to provide mol. wt. markers. Lane 5, primer
extension of liver poly(A)+ RNA. Lane 6, SI protection of liver poly(A)+
RNA. Lanes 7-9, primer extension controls: 7, kidney poly(A)+ RNA;
8, no RNA; 9, primer extension probe alone. Lane 10, SI protection of
kidney poly(A)+ RNA (S1 protection control). The primer extension probe
is 93 bp long (see C). In the two tracks with liver poly(A)+ RNA, both the
S1 analysis and the primer extension analysis yield bands 127- 128 bp long
which positions the mRNA cap site 30 bp s 1 bp downstream from the
TATA box. An artifactual band at 144 bp is observed in lane 6 which
results from partial homology of the MUP mRNA sequences immediately 3'
to the AluI sequences to the polylinker region of M13 that was present in
the Sl probe. C: The sequence from the TATA box through the cap site (-)
to beyond the AluI site. The primer extension probe is the fragment from
Sau961A to AluI.

is AATAAA (+2893) and to the second GATAAG (+2907)
which has not been reported to be a poly(A) addition site. There
are no other AATAAA or ATTAA sequences in the region of
BS2,3 within which short mRNA terminates. The present results
offer a second explanation of the preponderance of short mRNA
among the Group 2 transcripts: differences in the extent to which

exon 7 is spliced into the mRNA may be due to differences in
these 'internal' poly(A) addition signals rather than to the dif-
ferences in the splice sites described above.

7he coding region. The consensus sequence CCRCC has been
shown to be conserved immediately 5' to the AUG of the N-
terminal methionine in a large number of eukaryote mRNAs and
is proposed to be involved in ribosome binding (Kozak, 1984a).
Within this consensus the R (usually A) at -3 from AUG is the
most highly conserved residue, and its mutation to C in the rat
pre-proinsulin gene dramatically reduced the efficiency of trans-
lation (Kozak, 1984b). The sequence immediately 5' to ATG in
BS6, CCAAA, conforms reasonably well with the consensus.
In BS2,3, however, a 1 bp deletion relative to BS6 brings a C
into the -3 position, thus raising a question as to whether BS2,3
transcripts would efficiently initiate translation.
Group 2 genes are transcribed much less abundantly than Group

1 genes (Clark et al., 1984a). The combined exonic sequence
of BS2,3 could not code for a mature MUP protein because it
has stop codons in exon 1 (+ 156) and exon 3 (+ 1422) and a
frame-shift mutation in exon 3 (+ 1472 to + 1473) which gener-
ates a stop codon at + 1482. In the other two frames BS2,3 con-
tains no long open reading frames. Thus BS2,3 is a MUP
pseudogene in that it has three lesions which make it un-
translatable. We showed previously that three other Group 2
genes share the same stop codon in exon 1 and that the mutation
therefore is probably ancestral to the Group 2 lineage (Ghazal
et al., 1985).

Discussion

Splice sites and intronic sequences
An interesting feature of the six acceptor sites in each of the genes
is the absolute conservation of the four 3 '-terminal bp. The splice
acceptor site consensus sequence, derived from many genes, is
NCAG, where A and G are absolutely conserved, C is present
in 80% of cases, and N can be any base. In all six sites of both
MUP genes this sequence is ACAG, the most notable feature
being the conservation of the first A. The consensus NCAG is
drawn from a large sample of different genes (Breathnach and
Chambon, 1981), and would obscure such a feature of any single
gene. We have therefore examined the acceptor sites of a number
of genes that have multiple introns: mouse dihydrofolate reduct-
ase (Nunberg et al., 1980; Crouse et al., 1982; Simonsen and
Levinson, 1983), alpha-fetoprotein (Law and Dugaiczyk, 1981;
Eiferman et al., 1981; Gerin et al., 1981), alpha-amylase (Hagen-
buechle et al., 1981; Young et al., 1981), MHC genes H-2 K-B
(Weiss et al., 1983) and H-2 L-D (Moore et al., 1982; Evans
et al., 1982) and chicken alpha-2 collagen (Dickson et al., 1981;
Wozney et al., 1981). In all cases, the terminal AG of the ac-
ceptor is absolutely conserved, but only in the case of the MUP
genes is either of the two preceding nucleotides absolutely con-
served.
The conserved A and C residues are complementary to the

absolutely conserved G and T of the splice donor sites. We there-
fore asked how many base pairs would be made between five
bases at the donor site of each intron (GTNNN) and the sequence
NNNAC of the same intron. In nine cases three and in two cases
four base pairs could be made (Table II). The probability of this
arising by chance is very small (3 x 10-5), due almost entirely
to the absolute conservation of the donor site T and G residues
and the acceptor site A and C residues. This highly non-random
complementarity between the two regions suggests that they may
come together at some stage in the splicing process. To ask
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Fig. 3. Sequence comparison of BS6 and BS2,3. The sequences of BS6 (Group 1) and BS2.3 (Group 2) were aligned to maximise homology using the GAP
program of Devereux and Haeberli (1984). The BS6 sequence is presented in the top line of the comparison. The regions boxed by the continuous lines show
exons 1-7 of the predominant 882-bp long form of MUP mRNA (Clark et al.,+ 1984). The sequences boxed by the broken lines are those present in the
shorter form of MUP rrIRNA. The numbers refer to the distance, in bp. from the cap site.
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Table I. DNA sequence signals present in BS6 and BS2,3

Signal Gene Sequence Position

Transcription BS6 GACCCATAC -109

initiation BS2 GACCCATAC -77

Consensus* GGYCAATCT -80

BS6 GAGTATATAAGG -31

BS2 GAGTATATGAGG -31

Consensus* GNGTATAWAWNG -30

Donor acceptor splice sites:

Intron 1 BS6 GTATGA/TCTATTACAG +163/+500

BS2 GTACGA/TCTACTACAG + 180/+513

Intron 2 BS6 GTAAGT/TGTTTTACAG +635/+1402

BS2 GTAAGT/TGTTTTACAG +648/+1414

Intron 3 BS6 GTGAGT/TCTTCCACAG +1477/+2113

BS2 GTGTGT/TCCTCCACAG + 1488/+2041

Intron 4 BS6 GTAAAG/CTTCTCACAG +2225/+2565

BS2 GTAANG/CTTCTCACAG +2153/+2493

Intron 5 BS6 GTAAGT/CACACTACAG +2668/+2830

BS2 GTAAGT/CACACTACAG +2596/+2760

Intron 6 BS6 GTGGGC/TGGCTTACAG +2877/+3667

BS2 GTGGGC/TGGCTTACACAG +2806/+3592

Consensus* GTRAGT/YYYYYYXCAG

Poly(A) addition signals:
Exon 5 BS6 ATTAAA, AATAAA +2964, +2979

BS2 AATAAA, GATAAG +2893, +2907

Exon 7 BS6 AATAAA +3895

BS2 AATAAA +3819

Consensus* AATAAA

Translation BS6 CCAAAATG +67

initiation BS2 ACCAAATG +66

Consensus + CCRCCATG

Translation BS6 (exon 6) TGA +2854

termination BS2 (exon 1) TGA +156

BS2 (exon 3) TAA +1422

BS2 (exon 3) TGA +1482

Consensus sequences were taken from Breathnach and Chambon (1981) (*)
and from Kozak (1984a) (+)

whether complementarity between these two regions of an intron
is general, we examined the introns of the genes listed above
and also those of the mouse metallothionein (Glanville et al.,
1981) and alpha (Mishioka and Leder, 1979) and beta (Konkel
et al., 1979) globin genes for evidence of complementarity be-
tween the first five bases of the donor site and the five bases
before the AG of the acceptor site of the same intron. The average
complementarity was 49% which, although less than the 68%
found in the MUP introns, is also high. This is partly due to
the absolute conservation of position 1 of the donor site and the
80% occupancy of position -3 of the acceptor site by C, but
also to the fact that donor site positions 3-5 are nearly always
purines while positions -5 to -7 of the acceptor site are nearly
always pyrimidines. Thus elevated complementarity between the
two regions is very common. If they do associate during splicing,
this could follow the association of the donor (Mount et al., 1983;
Kramer et al., 1984) and possibly also the acceptor sites (Lemer
et al., 1980; Rogers and Wall, 1980) with Ul snRNP, but would
presumably precede the formation of the G5'-2'A lariat junction
20 or so bases upstream (Ruskin et al., 1984).

Keller and Noon (1984) discovered the consensus CTGAC
20-55 nucleotides from the acceptor site boundary in a number
of introns. During the search, the A residue was required to be
present because in some cases it is known to participate in the

Table II. Base-pairing homology between the splice donor sites (GTNNN) and

nucleotides -7 to -3 of the splice acceptor site (NNNAC) of the same intron

Intron BS6 BS2,3

1 NNNAC ATTAC 3 ACTAC 3

111 1 11
NNNTG GTATG GCATG

2 NNNAC TTTAC 4 TTTAC 4

1111 11 11
NNNTG GAATG GAATG

3 NNNAC TCCAC 3 TCCAC 3

111 111
NNNTG GAGTG GTGTG

4 NNNAC CTCAC 3 CTCAC 3

11 11
NNNTG AAATG NAATG

5 NNNAC ACTAC 3 ACTAC 3

III III
NNNTG GAATG GAATG

6 NNNAC CTTAC 3 TACAC 3

11 III
NNNTG GGGTG GGGTG

Table III. Potential splice lariat junctions in the introns of MUP genes BS6 and

BS2,3

Intron BS6 BS2,3

Distance X Y Z Distance X Y Z

from from
junction junction

1 21 CTTAA 3 4 3 21 CTTAA 3 4 3

2 24 CTTAC 4 5 5 24 CTTAC 4 5 5

3 22 CTGAG 4 3 3 22 CTGAG 4 3 2

4 17 CTCAC 4 4 3 17 CTCAC 4 4

5 24 CTGAA 4 3 3 24 CTGAA 4 3 3

6 30 ATGAA 3 2 2 31 ATGAG 3 2 1

X, Y and Z, number of positions agreeing with CTGAC, CTTAC and with

the complement to the splice donor site, respectively.

junction point of the lariat splicing intermediate (Ruskin et al.,
1984). It was suggested that during splicing a transient base-
pairing interaction occurs between this site and the splice donor
site. We searched the MUP gene introns for three pentamer se-

quences, CTGAC itself, CTTAC which is the complement of
the donor splice consensus, and the complement of the donor
splice site of the intron under scrutiny. The most consistent results
were obtained with CTGAC. In every intron, between nucleotides
17 and 35, there is a sequence that matches CTGAC in either
four (eight cases) or three (four cases) positions (Table III).
Overall, the match of these sites to CTGAC (73%) is greater
than to CTTAC (69%) or to the different donor sites of the
separate introns (60%). Given the selection of the A residue, we
would expect this degree of matching, or better, to occur in ran-
dom DNA once per 46 bases. We observe it once per 19 bases,
which is not strikingly more frequent. It seems likely, never-

theless, that this technique identifies the A residue at the lariat
junction in most if not all cases.

Group 2 genes are pseudogenes in the context ofGroup I genes

While the available evidence indicates that the Group 1 genes
are true genes (see Clark et al., 1985), all of the Group 2 genes
so far examined are putative pseudogenes. BS2,3 carries three
lesions in its protein coding sequence and could not be translated
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to yield a protein with the mol. wt. of MUP. Partial sequence

analysis of three other Group 2 genes has shown that they all
contain the same stop codon in exon 1 (Ghazal et al., 1985).
It is likely that all Group 2 genes in the BALB/c genome share

this lesion, and are descended from the same ancestral gene.

Other sequence differences between BS6 and BS2,3, most of
which might affect transcription or translation, are (i) upstream
and intronic deletions that may affect enhancer function, (ii) a

substitution of G for A in the TATA box region that may affect
the strength of the promoter, (iii) a small duplication in the

splice-acceptor site of intron 6 that may favour the formation of
the shorter form of mRNA, (iv) an alteration in one of the po-

ly(A) addition signals of short form mRNA (ATTAAA-
AATAAA) that also may favour the formation of the shorter

mRNA, (v) an alteration in the translation initiation signal
CCAAA-ACCAA that may impair the efficiency of transla-

tion and (vi) an in-frame increase in the length of the signal pep-

tide region.

A possiblefunctionfor the truncatedproduct ofthe Group 2 gene

Some Group 2 genes are probably transcribed to yield a short
mRNA (Clark et al., 1984a) although the steady-state mRNA
level is much less than that observed for Group 1 genes (< 10%).
If the Group 2 transcripts are translated and if the polypeptides
are then processed, the products will be peptides six amino acids

long with a mol. wt. of 630. Such small peptides would be rapidly
excreted into the urine.
Mouse urine contains androgen regulated agents that dramati-

cally accelerate the onset of puberty when administered to young

females (Vandenbergh et al., 1975). One is probably a protein,
with a mol. wt. > 12 000, i.e., consistent with the mol. wt. of
MUP. The activity of this agent largely survives proteolysis, but

becomes dialysable. The second agent has a mol. wt. of 860,

and seems to be one or more of a mixture of oligopeptides
(Vandenberg et al., 1976). These apparently contradictory obser-

vations can be reconciled by a hypothesis based on the structure

of the MUP genes. We suggest that the protein agent is MUP,
the active part of the molecule being the six N-terminal amino

acids, and that the dialysable agent is the hexapeptide coded for

by the Group 2 genes. Proteolysis of the protein agent would

release dialysable fragments containing the N-terminal hexapep-
tide. The sequences of the two hexapeptides are quite similar:

Group 1, N-Glu-Glu-Ala-Ser-Ser-Thr; Group 2, N-Glu-Glu-Ala-

Arg-Ser-Met.

Group I and Group 2 genes have randomly diverged

BS6 and BS2,3 are members of the two major groups of MUP

genes in the BALB/c genome. The numbers of Group 1 and

Group 2 genes are approximately equal (Bishop et al., 1982).
This is because the predominant organisation of the MUP locus

is an array of 45 kb domains each containing a Group 1 and a

Group 2 gene linked in a divergent orientation (Clark et al.,
1984b; Bishop et al., 1985). We have presented the sequence

of BS6 and BS2,3 over a homologous region - 4.5 kb in length
that includes the entire transcription unit as well as 5' and 3'

flanking sequences. The most obvious differences between the

two sequences are the three long insertions/deletions. In each

case these occur in regions of 'simple sequence' DNA suggesting
that they may have been created by 'slippage' during DNA syn-

thesis or repair (Ghosal and Saedler, 1978). In general, the di-

vergence between the two sequences is uniformly spread across

the region sequenced (Table IV). Thus no recent gene correc-

tion has occurred between the two genes such as has been observ-

ed between human Gy and Ay globin genes (Slightom et al.,
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Table IV. Divergence between BS6 and BS2,3

Region Divergence (%)

Full length 13.4

5' flanking region 11.1
Transcription unit 12.6

mRNA 13.1

Translated mRNA 11.5

Non-translated mRNA 15.5

Intronic sequences 13.1

3' flanking region 15.6

The divergence between the two genes was estimated over the regions

indicated. In this analysis each base change was scored as 1, as was each
insertion/deletion, irrespective of size.

1980). The exons and introns of BS6 and BS2,3 have diverged
to about the same extent. Comparisons between other active genes
indicate that, in general, intronic sequences diverge more rapidly
than exonic sequences (Perler et al., 1980; Efstratiadis et al.,
1980) presumably because introns have lesser selective constraints
acting on them. That this is not the case in the comparison of

the two MUP genes possibly indicates that the ancestral BS2,3
pseudogene was free to diverge at the same rate in both introns

and exons. Group 2 genes, however, are reasonably well con-

served amongst themselves and we have drawn from this obser-
vation the conclusion that the 45-kb domain, rather than the
individual MUP gene, is the unit of evolutionary change of the
majority ofMUP genes (Clark et al., 1984b; Bishop et al., 1985).

Materials and methods

Cloned DNA

The isolation of MUP genomic clones and subclones is described in Clark et

al. (1982, 1984b) and Bishop et al. (1982). The propagation of bacteriophage
and plasmid clones and the isolation ofDNA were carried out as described (Clissold
and Bishop, 1982; Clark et al., 1982; Bishop et al., 1982).

DNA sequencing

To obtain the complete 4 kb sequences of BS6 and BS2,3, fragments of plasmid
pBS6-2, pBS6-5, pBS6-1-1, pBS2-2 and pBS3B-3 were cloned into M13mp7,
8 or 9 and sequenced by the dideoxy nucleotide method, essentially as described
by Sanger et al. (1977) and Anderson et al. (1980). Two main strategies were

employed to ensure that continuous stretches of sequence would be generated.
(i) The cloned fragments were digested with restriction enzymes that cleave 4 bp

recognition sites and 'shotgunned' into M13 vectors. (ii) Larger subfragments
were cloned into M13mp8, replicative forms were prepared and a second gener-

ation of Ml3 clones containing progressively shorter fragments was isolated by
the method of Hong (1982).

SI nuclease protection

The probe was a 696 bp AluI fragment, extending from nucleotide + 127 to

nucleotide -568 in the BS6 sequence (Figure 3), and cloned at the HincII site

of Ml3mp7. The single-stranded M13 clone was annealed to the sequencing primer
and the strand complementary to MUP mRNA was uniformly labelled using the

Klenow fragment of DNA polymerase I (Boehringer). The double-stranded region
thus created was digested with EcoRI and the fragment lying between the two

EcoRI cloning sites of the vector (sp. act. 107- 108 c.p.m./14g) was purified on

a 5% polyacrylamide gel. An aliquot of the probe (20 000 c.p.m.) was co-precipi-
tated with 1 /Ag of total poly(A)+ RNA and redissolved in 10 /1 of 40 mM Pipes
(pH 6.4), 1 mM EDTA, 0.4 M NaCl, 80% formamide. Samples were denatured
at 85°C for 15 min and incubated at 50°C for 4 h. Samples were digested with

250 U/ml SI nuclease (Sigma) at 37°C for 1 h in 100 1l of 0.28 M NaCl, 0.05 M

NaAc (pH 4.6), 4.5 mM ZnCl2 and 10 Ag/ml single-stranded salmon sperm DNA,

phenol extracted, precipitated twice with ethanol and resuspended in 3 11 of for-

mamide dye mix.

Primer extension (from Ghosh et al., 1981)

The primer extension probe was the 93 bp AluI-Sau961 fragment between nuc-

leotides +34 and + 127 in the BS6 sequence (Figure 3). This was prepared
and annealed to poly(A)+ RNA in essentially the same way as the S1 protec-
tion probe (above). Annealing was terminated by the addition of 250 t1l ice-cold
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0.3 M NaAc (pH 7.0) followed by two ethanol precipitations. The pellet was
resuspended in 50 Al 50 mM Tris-HCI (pH 8.3), 6 mM MgCl2, 40 mM HCI,
10 mM DTT with 1 mM of each deoxynucleotide triphosphate and 1 unit ofAMV
reverse transcriptase was added. After equilibration on ice for 5- 10 min, the
reaction mixture was incubated for 3 h at 37°C. NaOH was then added to 0.2 N
and the incubation continued for a further 1 h. The reaction mixture was neutralised
with 10 N HCI, phenol extracted, and ethanol precipitated twice. Pellets were
resuspended in 3 jd of formamide dye mix and loaded on 6% sequencing gels.
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