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Abstract

High throughput sequencing has facilitated a precipitous drop in the cost of genomic

sequencing, prompting predictions of a revolution in medicine via genetic personalization of

diagnostic and therapeutic strategies. There are significant barriers to realizing this goal

that are related to the difficult task of interpreting personal genetic variation. A comprehen-

sive, widely accessible application for interpretation of whole genome sequence data is

needed. Here, we present a series of methods for identification of genetic variants and

genotypes with clinical associations, phasing genetic data and using Mendelian inheritance

for quality control, and providing predictive genetic information about risk for rare disease

phenotypes and response to pharmacological therapy in single individuals and father-

mother-child trios. We demonstrate application of these methods for disease and drug

response prognostication in whole genome sequence data from twelve unrelated adults,

and for disease gene discovery in one father-mother-child trio with apparently simplex con-

genital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease

risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new

candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a

regulatory role for variants discovered using this framework.
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Author Summary

Technological advances have dramatically reduced the cost of sequencing the human

genome. Tools for analyzing such data across families including annotation of clinically

important variants and aggregation of variants for personalizing drug prescriptions have

been developed but few are publically available. Here we describe such tools then demon-

strate their application in several distinct data sets. In particular, we use the tools to define

the genetic basis of a new congenital arrhythmia syndrome.

Introduction

Since the completion of the human genome project, technological advances have dramatically

increased throughput and decreased the cost of human DNA sequencing[1], facilitating com-

prehensive interrogation of coding regions of the genome, transcripts, and whole genome

sequences. High throughput sequencing has illuminated the underlying genetic basis for rare

inherited disease syndromes[2–4], refined our molecular understanding of cancer pathogenesis

[5]. provided a fine map of rare genetic variation underlying common disease risk[6–9], and

refined clinical diagnosis and medical therapy[10–13].

These initial advances and the continued drop in the cost of high-throughput sequencing

have prompted predictions of a new era of medicine personalized to individual genetics. How-

ever, downstream interpretation of sequence variation data remains a formidable barrier to full

realization of the promise of genomic medicine, whether it be applied for investigating the

genetic basis for well-described disease phenotypes in individuals and families or for prognosti-

cation of disease risk and drug response[1]. Several applications and data resources exist for

predicting the effects of genetic variation on human phenotypes[14–17], but there does not yet

exist a comprehensive, widely accessible application for interpretation of whole genome

sequence data. We previously developed and applied a methodology for interpretation of

genetic and environmental risk in a single participant using a combination of traditional clini-

cal assessment, whole genome sequencing, and integration of genetic and environmental risk

factors[18], and extended this framework to familial context[19]. Here we describe an inte-

grated pipeline, Sequence To Medical Phenotypes (STMP) for interpreting high-throughput

human DNA sequence data. STMP performs targeted genotyping of variants with known clini-

cal associations, rich functional annotation of discovered variants, and prioritizes genetic vari-

ants according to potential impact, mode of inheritance, and phenotypic presentation. For

individual genome sequences, STMP provides predictive genetic information regarding risk for

inherited disease traits and response to pharmacological therapy. We demonstrate the use of

this analytical pipeline for disease and drug response prognostication in pre-symptomatic indi-

viduals, and for elucidation of the genetic basis congenital ventricular arrhythmia.

Methods

Ethics statement

This study was reviewed and approved by the Research Compliance Office at Stanford

University (protocol # 4237, SQL 96726). Informed written consent was obtained from all

participants.
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STMP heuristic

Methods for whole genome sequence (WGS) interpretation in the context of disease gene find-

ing in inherited disease syndromes and predictive genetic variant annotation are outlined in

heuristic fashion in Fig 1.

Genotyping of clinically relevant variants

High-throughput re-sequencing currently requires a reference genome for sequence assembly

and variant identification. The reference genome that is currently used for alignment of human

re-sequencing data and variant identification (the NCBI reference genome)[20] is derived from

a collection of DNA samples from a small number of anonymous volunteers. However, it rep-

resents a very small sampling of human genetic variation. As such, at ~1.6 million genomic

positions, the NCBI reference sequence differs from the major allele in each of the three Haplo-

type Map (HapMap) populations. These minor alleles span ~4,500 variant positions associated

Fig 1. Overall heuristic for variant identification, genotype determination, initial annotation and downstream prioritization. Abbreviations: CPIC,
clinical pharmacogenomics implementation consortium; LOF, loss of function; MAF, minor allele frequency; Pgx, pharmacogenomics; SNVs, single
nucleotide variants; SVs, structural variants.

doi:10.1371/journal.pgen.1005496.g001
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with common complex disease and drug response traits[19], including the Factor V Leiden

allele associated with hereditary thrombophilia. Comparison of genome sequence data that is

homozygous for these alleles to this reference sequence will naturally not produce a variant

call. This issue is partially addressed by the use of major allele reference sequences[19]. A more

comprehensive approach is to perform targeted genotype calling of all loci considered to be of

phenotypic importance. This approach is reference agnostic up to reference base bias associ-

ated with short read alignment and mapping. STMP uses input interval call files representing

previously reported Mendelian disease associated loci and loci associated with drug response to

provide targeted genotype calls, irrespective of reference base, using the GATK Unified Geno-

typer (for SNVs) and Haplotype Caller (for indels) and their capability to report genotypes and

coverage for the “reference calls”. STMP also provides metrics for coverage of loci with known

importance to human health and disease, thereby providing confidence that, for example, a

given disease-associated allele is indeed not present, rather than just under-sequenced or other-

wise not confidently ascertained. As compared with methods that store diploid calls for all ref-

erence genomic positions, the STMP approach to genotype interrogation facilitates

downstream variant annotation while minimizing storage requirements for genotype data. To

facilitate updated genotype identification as new loci of relevance to human health and disease

are discovered, binary alignment (BAM) files from the secondary sequence analysis are

retained for future use.

Functional annotation of genetic variants

Rich functional genomic annotation is a prerequisite to sequence interpretation pipelines that

aim to provide testable biological hypotheses about the basis for described disease syndromes

and for disease risk and drug response prognostication. We extended the annovar framework

[21] to provide rich gene-based, functional genomic, regulatory, allele frequency, and pheno-

typic annotation. This basic annotation pipeline provides 94 annotations for SNVs and indels

in VCF format (http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-

variant-call-format-version-41, S1 Table) and 39 annotations for SVs in GFF format (https://

www.sanger.ac.uk/resources/software/gff/spec.html, S2 Table).

STMP can also leverage gene co-expression network topology information to provide quan-

titative prior expectations about gene-level pathogenicity for contextualizing individual varia-

tion data. For example, STMP output may be used to identify genetic variation occurring in

genes that are co-expressed with known disease genes, thereby implicating by association vari-

ants perturbing certain network topologies. The default STMP module comes pre-loaded with

gene co-expression network topology representing gene expression microarray data from 75

normal unused human donor hearts, tissue from 49 human hearts with right- or left-ventricu-

lar hypertrophy, and 436 explanted human hearts with dilated cardiomyopathy. The general

framework for weighted gene coexpression network analysis is described [22,23]. Brielfy, pair-

wise Pearson’s correlation between gene expression values was calculated for every gene in the

dataset for: a) samples from normal unused donor hearts, b) samples from hearts with right- or

left-ventricular hypertrophy, c) samples from hearts with dilated cardiomyopathy. A soft-

thresholding parameter β was chosen to satisfy scale-free topology criterion based on r2 maxi-

mization for a linear fit with slope –1 to log(k) versus log(n(k)), and the topological overlap

between genes was calculated [24], generating a network adjacency based on shared network

neighbors. We next used average linkage hierarchical clustering and the dynamic tree cut algo-

rithm [25], to partition the topological overlap network into modules. Disease-specific topolo-

gies can be used to assess dynamic gene-gene interactions that are context specific.
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Disease associated variant discovery in father-mother-child trios with
simplex phenotypes

Genome-wide genetic interrogation in father-mother-child trios with apparently simplex phe-

notypes can be a powerful tool for genetic association discovery. Classically these investigations

are performed using discrete filtering to identify apparent de novo, compound heterozygous,

and rare homozygous mutations. De novomutations are typically discovered via searching for

Mendelian inheritance abnormalities (MIAs) that are consistent with the segregation of pheno-

types within the family. Discrete filtering is encumbered by several challenges, however. First,

the true per-generation de novomutation rate [26,27] is two to three orders of magnitude

higher than the sequence error rate using current high throughput sequencing technology

[27,28]. In addition to stochastic error modes, there are systematic error modes that relate to

sequences in the human reference genome that are compressed relative to common repetitive

sequences, low complexity and GC and homopolymer rich regions, and other regions of the

human genome that are problematic to accurately sequence, align, or genotype. Roach, et al,

developed an HMM-based classifier to identify these regions in family quartets and also to pro-

vide relative inheritance state information for WGS [27,29]. STMP utilizes a simplified hidden

Markov model (HMM) classifier that bins WGS or WES data into one of three categories:

“good data”, “compression”, or “MIA-rich” regions. The latter two categories represent variant

data that is highly likely to contain systematic artifact and can be excluded from downstream

analysis and-or interpretation. STMP writes this information in the “Filter” field of standard

VCF output, allowing for soft-filtering or manual inspection of these regions. STMP uses chro-

mosomal distance between variant markers as a prior expectation in the HMM, thereby facili-

tating the use of this HMM-based approach in WES, which by virtue of sequence capture is

sparse outside targeted regions and dense within targeted regions.

Second, apparently simplex disease phenotypes can arise from a variety of possible underly-

ing genetic architectures and modes of inheritance, and pre-specifying one mode can lead to a

lack of sensitivity. To address this, once HMM-based regional classification has been per-

formed, STMP will output 1) apparent de novo events, 2) all instances of compound heterozy-

gosity in a gene in which at least one variant in the pair is rare according to user specific

criteria, 3) rare homozygous mutations, and 4) instances of apparent hemizygosity which are

candidates for loss of function, 5) rare variants in known inherited disease genes fitting an

autosomal dominant inheritance model with reduced penetrance. This output can be used for

manual inspection in single trio studies or as a prior expectation for gene regions fed forward

into collapsing statistics if a cohort of trios is studied. In the latter case STMP leverages inheri-

tance information to reduce the number of gene regions queried and thus the number of statis-

tical comparisons performed between case and control cohorts.

Drug response prediction from high throughput sequence data

Predicting drug response fromWGS data requires generation of best-guess haplotypes from

short-read sequence data for which haplotype phase is often not determined molecularly.

STMP produces best-guess haplotype pairs from confidently genotyped SNVs and indels iden-

tified as above. To do this STMP first creates skeleton haplotype pairs using all confidently

identified homozygous SNVs. The full set of complementary haplotypes is then generated

using heterozygous variant calls. A perfect-match search is performed for each haplotype and

its complement among described haplotypes defining the known “star” alleles associated with

clinical drug response. If a perfect match is not found, the set of possible haplotype pairs is

given but no star allele assignment is attempted. If more than one pair of possible star alleles is

found matching possible haplotypes generated fromWGS data, all possible star allele

Sequence to Medical Phenotypes
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combinations are reported. STMP does not provide haplotype resolution beyond that sug-

gested by the confidently called genotypes. That is, if a variant is not confidently called or not

covered, as may be the case in exome or other targeted sequencing, haplotypes that are

uniquely defined by these “tags” variants are not disambiguated from other possible star allele-

defining haplotypes, and a set of possible star alleles corresponding to each reduced haplotype

and its conjugate are reported. The haplotype determination is purposefully designed to only

give high-confidence predictions, leaving the task of disambiguating star alleles in the setting of

uncertain genotype calls or uncommon haplotypes to a human curator.

STMP also annotates and reports single variant drug response associations cataloged in the

PharmGKB knowledgebase [30] at a level of evidence (for definitions, see http://www.

pharmgkb.org/page/clinAnnLevels) defined by the user (Fig 1).

Bioinformatic prioritization of candidate Mendelian disease risk variants

Following genotype annotation, STMP prioritizes variants by using metrics of conservation

and constraint, predictions of pathogenicity, and allele frequency derived from comparisons

with local and external data sources. STMP uses a prioritization scheme that at once provides a

parsimonious set of candidates for manual review and a comprehensive assessment of previ-

ously reported genetic variation. The heuristic for prioritization of previously reported variants

in monogenic disease genes, as well as rare and novel variants in monogenic disease genes with

no previously reported phenotypic association, is described in Fig 1. In default mode STMP

first reduces all variants to a set that occurs within 2,725 genes cataloged in ClinVar (2,716 in

females due to cataloged disease associations within nine genes on the Y chromosome) [31],

manually curated to exclude drug response associations and common disease susceptibility

loci. Alternatively, gene sets can be provided by the user and utilized for genetic variant filtering

based on the phenotypic features of the disease queried.

Previously reported variants in disease mutation catalogs include a significant number of

common polymorphisms, mapping errors, legacy coordinates, and common disease suscepti-

bility loci that are unlikely to be relevant to monogenic disease risk [32,33]. Thus, STMP priori-

tizes variants previously reported in the Human Gene Mutation Database (HGMD) first by

expected pathogenicity and next by allele frequency. Previously reported variants cataloged in

HGMD are separated into four tiers of potential pathogenicity:

• Tier 1: Loss of function variants (splice dinucleotide disrupting, nonsense, nonstop, and

frameshift indels, large coding insertions and deletions).

• Tier 2: All rare variants cataloged in HGMD, regardless of functional annotation. Rarity is

defined as minor allele frequency (MAF) no greater than 1% by default or according to use-

defined criteria in any of the following population genetic surveys: ethnically-matched popu-

lation in HapMap 2 and 3, the 1000 genomes phase 1 data[34] from an ethnically-matched

super population, and global allele frequency, the 1000 genomes pilot 1 project global allele

frequency, 69 publicly available genomes released by Complete Genomics, the NHLBI Grand

Opportunity exome sequencing project global allele frequency, and the Exome Aggregation

Consortium (http://exac.broadinstitute.org).

• Tier 3: All non-rare missense and non-frameshift indels.

• Tier 4: All variants not meeting criteria for tiers 1–3.

Variants meeting criteria for tiers 1–3 are retained for downstream manual review in the

case of individual genome interpretation, and for intersection with inheritance state informa-

tion in the case of disease-targeted analyses. As the expected allele frequency of potentially
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pathogenic variants is likely to vary greatly with disease prevalence, penetrance, and mode of

inheritance, allele frequency filters are not used for tiers one and three, thereby allowing for pri-

oritization of functional alleles with previously described disease associations that would not

otherwise pass strict allele frequency filters, for instance the deltaF508 allele in CFTR or the

Factor V Leiden allele.

Rare and private variation, as a result of recent population expansion and purifying selec-

tion, continues to constitute a significant proportion of human genetic variation, even in large

population surveys. Some of these rare and private alleles will have monogenic disease risk and

carrier status relevance, and therefore STMP also prioritizes select previously unreported, but

potentially pathogenic, rare and novel variants in monogenic disease genes, incorporating con-

sensus evidence for evolutionary constraint/conservation and pathogenicity prediction. These

computational methods for scoring genetic variants have, in isolation, modest classification

accuracy and inter-algorithm concordance [35,36]. Approaches to rating the potential patho-

genicity of variants based on consensus of commonly used prediction algorithms have been

shown to have superior calibration and discriminative accuracy when compared with individ-

ual predictions [36]. STMP imposes a prior expectation that pathogenic alleles are more likely

to occur in genes in which previously reported variants have produced Mendelian disease phe-

notypes, but also archives and categorizes all other variants for review and potential reclassifi-

cation as genetic knowledge expands, or for intersection with inheritance state data. Rare

(defined as above) and novel variants with no previously described phenotype association in

monogenic disease genes are prioritized into four tiers of potential pathogenicity:

• Tier 1: Rare loss of function variants, defined as above.

• Tier 2: Rare missense variants affecting nucleotides with consensus evidence by both algo-

rithms considered for evolutionary conservation/constraint according to the following values

cataloged in the database of nonsynonymous functional predictions [35]: GERP++ score> 2;

PhyloPnew>0.95 and rare non-frameshift indels.

• Tier 3: Rare missense variants with predicted pathogenicity by three or more algorithms

according to the following definitions as cataloged in the database of nonsynoymous func-

tional predictions [35]: SIFT, “Damaging”; LRT, “Deleterious”; PolyPhen2, “Probably dam-

aging” or “Possibly damaging”; Mutation taster, “Disease causing automatic” or “disease

causing”.

• Tier 4: All rare variants not meeting criteria for tiers 1–3.

As a final filter for both previously reported variants in monogenic disease genes and previ-

ously unreported, rare variants in monogenic disease genes, STMP uses catalogs of local allele

frequency and genotype information to exclude variants that are observed more frequently

than would be expected in the local sequencing environment. This filter serves to identify and

exclude variants whose previously unappreciated high allele frequency is a result of false nega-

tives in population genetic surveys or systematic false positives specific to local sequence vari-

ant discovery pipelines. Similar filters have proven effective in excluding such systematic

artifacts in other contexts [37].

Inputs, implementation and parallelization

STMP accepts as required input a vcf file prepared by Illumina Isaac, GATK, the Complete

Genomics variant discovery pipeline, or Real Time Genomics. Optional inputs include 1)

binary alignment map file, required for targeted genotype calling and annotation of known

inherited disease risk alleles and pharmacogenomic annotation, 2) genome feature format file

Sequence to Medical Phenotypes
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describing structural variant events, 3) local site frequency spectrum for filtering of inherited

disease risk candidates. In trio mode STMP requires jointly called genotypes and sample identi-

fiers for father, mother, and child. Initial annotation of genetic variants for gene, functional

genomic, and clinical phenotypes is performed using python/perl and parallelized using the

“multiprocessing”module in python. Processing time for the annotation pipeline scales

roughly as 1/n, where n is the number of processors allocated to the task. STMP is imple-

mented in cython/python/shell and also parallelized using the “multiprocessing”modules in

python. To demonstrate the utility of the STMP tool, we applied STMP in trio mode to a trio

with congenital neonatal arrhythmia, and also to twelve unrelated adult participants (median

age 53, 6 female, 7 of East Asian ancestry) recruited from primary care clinics at Stanford Uni-

versity Medical center. The study was approved by the Stanford University Institutional Review

Board and all patients gave informed written consent, or, in the case of minors, assent (Stan-

ford Institutional Review Board GAP approval number 4237).

Functional regulatory analysis of common variants discovered by STMP

To further explore a novel gene locus implicated in the congenital neonatal arrhythmia trio, we

performed in vitro characterization of a putative promoter variant found in trans with a novel

protein truncating mutation in ATP2B4 using previously described approaches[38]. The non-

coding variant in the 5’ un-translated region of ATP2B4, rs4600103, was first investigated in sil-

ico using 1000 Genomes haplotype data and ENCODE regulatory datasets for chromatin

accessibility and histone modifications. Predicted transcription factor binding sites (TFBS)

altered by rs4600103 and the linked variant (r2~0.87), rs4951276 (also present in the patient),

were determined using TRANSFAC, JASPAR, and MatInspector positional weight matrix

(PWM) databases. Sequences surrounding each allele were scanned for vertebrate TFBS with a

0.9 minimum similarity score cutoff. Identified putative enhancer elements for each SNP were

used to generate concatenated oligonucleotides for rs4600103-G/A and rs4951276-T/A, which

were annealed at 95 C for 5 minutes and allowed to cool to room temperature. Resulting dou-

ble-stranded DNA fragments were subcloned into the multiple cloning site (MCS) of the pLuc-

MCS vector (Agilent), and constructs were confirmed by Sanger sequencing. Luciferase

reporter constructs containing respective major and minor alleles of rs4600103 and rs4951276

were transfected, along with renilla luciferase, into HEK 293 and H9c2 cells using Lipofecta-

mine 2000 (Life Technologies), according to the manufacturer’s instructions. Growth media

was changed after 5 hours and dual-luciferase activities measured after 24 hours using a Spec-

traMax luminometer (Molecular Devices). Firefly luciferase activities were normalized to

renilla luciferase and expressed as the fold change of the empty vector control.

Results

STMP identifies a candidate gene for neonatal ventricular arrhythmia in
a father-mother-child trio

The trio format is a common familial arrangement in sequencing studies undertaken to

uncover the genetic basis for a known disease or to assist in disease diagnosis [39,40]. In many

such trios, the offspring is the only clearly affected subject (“simplex” trios), proposing several

possible modes of phenotypic expression, including recessive or codominant inheritance, auto-

somal dominant inheritance with reduced penetrance, and a de novomutation in the proband.

STMP functionally annotates and prioritizes such alleles, including all possible instances of

compound heterozygosity and important noncoding variants. To demonstrate the utility of

STMP for discovery of disease-associated genetic variants in individuals with manifest disease

Sequence to Medical Phenotypes
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in this format, we used STMP in “trio”mode to investigate whole genome sequence data from

a father-mother-child trio with neonatal ventricular arrhythmia. In this trio the offspring was

affected by neonatal polymorphic ventricular arrhythmia preceded by ST segment elevation

(Fig 2A.). Clinical genetic testing of inherited arrhythmia genes, including deletion-duplication

testing, did not uncover disease-causing mutations. STMP identified 25 candidate variants.

Among the candidate compound heterozygous variants, a novel nonsense mutation and a

common 5’UTR variant were found in trans in ATP2B4; the latter variant, rs4600103, was

found in an accessible and active chromatin region as determined by ENCODE derived

DNAse hypersensitive regions and enrichment for promoter histone modifications

(H3K4me3) in human cardiac fibroblasts (HCF) and cardiac myocytes (HCM) and active his-

tone modifications (H3K27ac) in human lung fibroblasts (Fig 2B). ATP2B4 encodes a plasma

Fig 2. STMP identifies a likely functional regulatory variant in a novel candidate disease gene for neonatal ventricular arrhythmia. A) Pedigree (left)
and representative neonatal ECG from a proband with ventricular fibrillation (right). B) UCSCGenome Browser screenshot showing ENCODE regulatory
tracks surrounding a novel variant in the 5’ UTR, rs4600103 (red box), found in cis with a nonsense variant in ATP2B4, as well as linked variant (r2 = 0.87)
rs4951276 (green box). Tracks for chromatin accessibility, including DNaseI hypersensitivity, and promoter histone modification (H3K4M3) ChIP-seq data
are shown for human cardiac myocytes (HCM), human cardiac fibroblasts (HCF) and heart tissue. DNaseI hypersensitivity clusters, transcription factor ChIP-
seq and active histone modification (H3K27Ac) ChIP-seq data are shown for multiple ENCODE cell lines. C) Functional validation of common variants using
allele-specific reporter assays. Common variants at ATP2B4, rs4600103 and rs4951276 were evaluated in luciferase reporter assays in HEK293 and H9c2.
Values are expressed as relative fold change versus empty vector (pLuc) and represent mean ± SEM of triplicates from three independent experiments.

doi:10.1371/journal.pgen.1005496.g002
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membrane calcium ATPase that mediates neuronal nitric oxide signaling in cardiac myocytes

and directly interacts with a gene, SNTA1, that has been implicated in hereditary ventricular

arrhythmia and sudden, presumed arrhythmic infant death [41–43]. Using TRANSFAC and

JASPAR transcription factor binding databases, we identified altered motifs for ELK1 and

NFκB transcription factor binding sites (TFBS) proximal to the SNP. Using 1000 Genomes

data we identified another common variant, rs4951276 (MAF 0.35 ASN, 0.09 EUR) in high

linkage disequilibrium (r2 = 0.87) with rs4600103, which may explain some of the regulatory

effects. This intronic variant resides in a putative enhancer element, containing the active chro-

matin mark, H3K27ac, and is predicted to disrupt TFBS motifs for FOXP1. To interrogate the

potential impact of these variants in regulating ATP2B4 expression, we cloned the predicted

regulatory elements surrounding each allele into a luciferase reporter construct driven by a

minimal promoter, and measured relative transcriptional activity in both HEK 293 and the

neonatal rat cardiomyocyte cell line, H9c2. Interestingly, the minor A allele at rs4600103 was

shown to have reduced transcriptional activity compared to the major G allele, whereas both

alleles at rs4951276 had similar reporter activities (Fig 2C). These results indicate that

rs4600103 may be a functional variant identified at ATP2B4 through altering a putative cis-reg-

ulatory element. It remains unclear whether this variant, in combination with the truncating

variant in trans, is disease associated. It may be that an as yet unidentified factor such as a

trans-acting regulatory element, structural variant on the other allele, or environmental- or

gender-specific modifier of the phenotype is at play. This uncertainty highlights one of the

challenges inherent to identifying a single likely pathogenic allele in a recessive disease gene.

Drug response predictions fromWGS data

When run onWGS data from a single proband, STMP provides, for the first time, pharmaco-

genomic haplotype assignment and annotation of clinically associated pharmacogenomics

alleles, including those that are defined on a single variant or haplotype bases. To demonstrate

the utility of STMP in this context, we assessed the concordance between star allele assign-

ments generated by STMP for five genes with associated Clinical Pharmacogenomics Imple-

mentation Consortium (CPIC) guidelines for drug dosing and administration (CYP2C9,

CYP2C19, CYP2D6, VKORC1, and SLCO1B1). Haplotype call concordance between STMP and

blind manual haplotype determination demonstrated that in all twelve individuals, the star

allele pair assigned by human rates was found in the set of possible star alleles reported by

STMP for all five genes. As described [44], STMP provided 1–3 recommendations per subject

for change in drug dose or administration, and 3–10 additional high-confidence genetic drug

response predictions fromWGS data.

Identification of putative Mendelian disease risk alleles fromWGS data

When applied to WGS data from single probands, STMP provides rich functional annotation

and prioritization of potential Mendelian disease risk alleles, including novel variants, structural

variants, and important regulatory variants. STMP allows for genome-wide search for such

genetic variants, or can be restricted to specific gene sets if a targeted diagnostic question is pur-

sued. To demonstrate the utility of STMP to discover such variants genome-wide, we applied

STMP to IlluminaWGS sequence data (median haploid read depth 51x, 101bp x 2 paired end

reads, generated on the HiSeq 2000) from twelve unrelated adult participants (median age 53, 6

female, 7 of East Asian ancestry) recruited from primary care clinics at Stanford University Medi-

cal center. Methods for identification of single nucleotide variants, indels, and structural variants

are described in Dewey, et al (2014) [44]. On a six-core Intel Xeon X5670 processor running

64-bit linux with 128 GB of RAM and utilizing five concurrent threads, stanovar performed
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comprehensive annotation of standard.vcf and.gff format variant files in a median of 96 (range

90–102) minutes per genome. STMP performed prioritization of Mendelian disease risk candi-

dates and identification of genotypes and haplotypes affecting drug response in< 5 minutes per

participant. The median total processing time, including targeted genotype calling of SNVs and

indels with clinical associations and filtering based on local site frequency spectra, was 122 min-

utes (range 116–127 minutes). We used allele frequency filters of<1% in general population sur-

veys and<25% in our local cohort; higher allele-frequency cutoffs for local sequence data may be

appropriate in populations enriched for Mendelian phenotypes and associated variant alleles.

Higher allele-frequency cutoffs for local sequence data may be appropriate in populations

enriched for Mendelian phenotypes and associated variant alleles. Manual curation uncovered

several well-established disease causing mutations in this cohort without apparent Mendelian

disease, including a 19-bp insertion-deletion variant in BRCA1 that has been previously impli-

cated in hereditary breast and ovarian cancer, prompting prophylactic surgery [44].

Variants discovered in each participant, prior to and after allele frequency filtering, are pre-

sented in Table 1. Further filtering of variants occurring at high allele frequencies in the cohort

was particularly effective at reducing the number of previously reported Mendelian disease risk

candidates and the number of apparently rare (according to external allele frequency informa-

tion) loss-of-function variants in Mendelian disease genes. This suggests that even a small

number of local “control” genomes can substantially reduce the number of potential false posi-

tives resulting from systematic sequencing artifact related to the local peculiarities of sequenc-

ing and analysis or previously unappreciated common variation.

Discussion

Here we describe a series of methods for annotation of high-throughput sequence data for indi-

vidual genetic risk prediction and prediction of drug response. This collection of tools is

Table 1. Summary of STMP tiers 1–3 in whole genome sequence data from twelve unrelated adults recruited from primary care clinics.

Variant classification Definition Median
(range)–all
variants

Median (range)–
filtered by cohort
allele frequency

%
private

Variant alleles
present in all
participants, n

Variant alleles
present in all
East Asians, n

Genetic variants with
previously reported disease
associations

Tier 1 Loss of function 8.5 (6–14) 3.5 (2–9) 15 (0–
36)

0 0

Tier 2 Rare non-LOF variants 147 (124–
164)

14 (5–76) 3 (2–36) 1 8

Tier 3 Common missense
and nonframeshift indel
variants

148.5 (133–
154)

29 (26–68) 6 (4–22) 2 13

Rare* variants in Mendelian
disease genes with no
reported disease association

— 62,453
(59,813–
66,207)

Tier 1 Loss of function 13 (11–19) 6 (3–13) 23 (7–
47)

2 2

Tier 2 Missense/
nonframeshift
+ conserved

53.5 (48–59) 50.5 (42–55) 66 (54–
73)

1 1

Tier 3 Missense/
nonframeshift
+ predicted pathogenic

5 (4–8) 5 (4–8) 100 (60 -
100)

0 0

*As defined by allele frequency < 0.01.

Abbreviations: LOF, loss of function.

doi:10.1371/journal.pgen.1005496.t001
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flexible, customizable, and allows for dynamic interaction between variant annotation and

association efforts. It is applicable to variant data from whole genome, exome, and targeted re-

sequencing. We further demonstrate that application of these methods to whole genome

sequence data in apparently unrelated individuals yields a parsimonious set of variants for

manual review (~100) that may have implications for Mendelian disease risk and drug

response, and in one case uncover a clearly clinically actionable disease-causing mutation in a

pre-symptomatic individual. Application to a father-mother-child trios uncovered a novel can-

didate disease gene in neonatal ventricular arrhythmia. While several methods exist for pre-

dicting pathogenicity of sequence variants, and other methods exist for annotating variants

with respect to described disease associations, there is not yet a unified framework that inte-

grates the bulk of human disease-genotype associations and computational predictions. The set

of methods we described here is developed to do just that. Furthermore, in contrast to existing

tools that perform limited annotation of SNVs and indels, our integrated pipeline provides a

framework for interpreting structural variants and variants disrupting important noncoding

regions of genes associated with disease phenotypes. This set of methods leads naturally into

manual curation of discovered variants for research efforts utilizing disease phenotype and

drug response information.

Sequence to medical phenotypes (STMP) is an open source, parallelized pipeline for clinical

interpretation of WGS and WES data generated in a research setting. It is highly amenable to

parallel processing architecture, produces parsimonious variant sets for manual review, and

interrogates both Mendelian disease risk and genetic drug response. We hope that the methods

presented here will help catalyze future clinical research using WGS.

STMP is open source and will be available at http://ashleylab.stanford.edu/tools/stmp.html.
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