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Abstract
Connectionist temporal classification (CTC)
based supervised sequence training of recurrent
neural networks (RNNs) has shown great success
in many machine learning areas including end-
to-end speech and handwritten character recog-
nition. For the CTC training, however, it is
required to unroll (or unfold) the RNN by the
length of an input sequence. This unrolling re-
quires a lot of memory and hinders a small foot-
print implementation of online learning or adap-
tation. Furthermore, the length of training se-
quences is usually not uniform, which makes par-
allel training with multiple sequences inefficient
on shared memory models such as graphics pro-
cessing units (GPUs). In this work, we intro-
duce an expectation-maximization (EM) based
online CTC algorithm that enables unidirectional
RNNs to learn sequences that are longer than
the amount of unrolling. The RNNs can also
be trained to process an infinitely long input se-
quence without pre-segmentation or external re-
set. Moreover, the proposed approach allows ef-
ficient parallel training on GPUs. Our approach
achieves 20.7% phoneme error rate (PER) on the
very long input sequence that is generated by
concatenating all 192 utterances in the TIMIT
core test set. In the end-to-end speech recog-
nition task on the Wall Street Journal corpus, a
network can be trained with only 64 times of un-
rolling with little performance loss.

1. Introduction
Supervised sequence learning is a regression task where the
objective is to learn a mapping function from the input se-
quence x to the corresponding output sequence z for all
(x, z) ∈ S with the given training set S, where x and z
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can have different lengths. When combined with recurrent
neural networks (RNNs), supervised sequence learning has
shown great success in many applications including ma-
chine translation (Bahdanau et al., 2014; Sutskever et al.,
2014; Cho et al., 2014), speech recognition (Fernández
et al., 2007; Graves et al., 2013; Graves & Jaitly, 2014;
Hannun et al., 2014; Bahdanau et al., 2015; Chorowski
et al., 2015; Chan et al., 2015; Maas et al., 2015; Miao
et al., 2015; Hwang & Sung, 2016), and handwritten char-
acter recognition (Graves et al., 2008; Frinken et al., 2012).
Although several attention-based models have been intro-
duced recently, connectionist temporal classification (CTC)
(Graves et al., 2006) is still one of the most successful tech-
niques in practice, especially for end-to-end speech and
character recognition tasks (Graves & Jaitly, 2014; Hannun
et al., 2014; Maas et al., 2015; Miao et al., 2015; Hwang &
Sung, 2016; Graves et al., 2008; Frinken et al., 2012).

The CTC based sequence training is usually applied to
bidirectional RNNs (Graves & Schmidhuber, 2005), where
both the past and the future information is considered for
generating the output at each frame. However, the output
of the bidirectional RNNs is available after all of the frames
in the input sequence are fed into the RNNs because the fu-
ture information is backward propagated from the end of
the sequence. Therefore, the bidirectional RNNs cannot be
employed for low-latency online applications such as incre-
mental speech recognition (ISR) (Fink et al., 1998; Hwang
& Sung, 2016). On the other hand, unidirectional RNNs
only make use of the past information and are suitable for
the low-latency applications at the cost of a little accuracy
loss. Moreover, the CTC-trained unidirectional RNNs do
not need to be unrolled (or unfolded) at the test time. It is
shown by Graves et al. (2012) that CTC can also be em-
ployed for sequence training of unidirectional RNNs on a
phoneme recognition task. In this case, the unidirectional
RNN also learns the suitable amount of the output delay
that is required to accurately process the input sequence.
Hwang et al. (2015) reports that when a CTC-trained uni-
directional RNN is employed for online spoken term detec-
tion, the detection latency becomes around 200 ms, which
is similar to human response time to speech stimuli (Fry,
1975).
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For the CTC training of both unidirectional and bidirec-
tional RNNs, it is required to unroll the RNNs by the length
of the input sequence. By unrolling an RNNN times, every
activations of the neurons inside the network are replicated
N times, which consumes a huge amount of memory espe-
cially when the sequence is very long. This hinders a small
footprint implementation of online learning or adaptation.
Also, this “full unrolling” makes a parallel training with
multiple sequences inefficient on shared memory models
such as graphics processing units (GPUs), since the length
of training sequences is usually not uniform, and thus a
load imbalance problem occurs. This load imbalance prob-
lem can be solved by grouping training sequences with sim-
ilar lengths into buckets (Chan et al., 2015; Sutskever et al.,
2014). However, it is difficult to achieve high parallelism
with this approach, when the training sequences are very
long. For unidirectional RNNs, this problem can be ad-
dressed by concatenating sequences to make a very long
stream of sequences, and training the RNNs with synchro-
nized fixed-length unroll-windows over multiple training
streams (Chen et al., 2014; Hwang & Sung, 2015). How-
ever, it is not straightforward to apply this approach to the
CTC training, since the standard CTC algorithm requires
full unrolling for the backward variable propagation, which
starts from the end of the sequence.

In this paper, we propose an expectation-maximization
(EM) based online CTC algorithm for sequence training
of unidirectional RNNs. The algorithm allows training se-
quences to be longer than the amount of the network unroll.
Moreover, it can be applied to infinitely long input streams
with roughly segmented target sequences (e.g. only with
the utterance boundaries and the corresponding transcrip-
tions for training an end-to-end speech recognition RNN).
It was shown that the resulting RNN can run continuously
without pre-segmentation or external reset and useful for
the continuous spoken term detection (Hwang et al., 2015)
and the low-latency ISR system with tree-based online de-
coding (Hwang & Sung, 2016), where the input speech is
infinitely long. Due to the fixed unroll amount, we ex-
pect that the proposed algorithm is suitable for online semi-
supervised learning or adaptation systems with constrained
hardware resource. Furthermore, the approach can directly
be combined with the GPU based parallel RNN training
algorithm described in Hwang & Sung (2015). For evalua-
tion, we present examples of end-to-end speech recognition
on the Wall Street Journal (WSJ) corpus (Paul & Baker,
1992) with continuously running RNNs.1 Experimental
results show that the proposed online CTC algorithm per-
forms comparable to the almost fully unrolled CTC train-
ing even with the small unroll amount that is shorter than
the average length of the sequences in the training set.

1Further experiments are performed on TIMIT (Garofolo
et al., 1993) in the supplementary material.

Also, the reduced amount of unroll allows more parallel
sequences to be trained concurrently with the same mem-
ory use, which results in greatly improved training speed
on a GPU.

The paper is organized as follows. In Section 2, the stan-
dard CTC algorithm is explained. Section 3 contains the
definition of the online sequence training problem and pro-
poses the online CTC algorithm. In Section 4, the al-
gorithm is extended for the continuously running RNNs,
which is followed by its parallelization in Section 5. In
Section 6, the proposed algorithm is evaluated with speech
recognition examples. Concluding remarks follow in Sec-
tion 7.

2. Connectionist Temporal Classification
The CTC algorithm (Graves et al., 2006; 2012) uses a
many-to-one sequence-to-sequence mapping function that
converts the sequence of labeling with timing information
(e.g. frame-wise output labels from RNNs) into the shorter
sequence of labels by removing timing and alignment infor-
mation. The main idea is to introduce the additional CTC
blank label, b, for the sequence that has timing information,
and remove the blank labels and merging repeating labels
to obtain the unique corresponding sequence.

Specifically, for the set of target labels, L, and its extended
set with the additional CTC blank label, L′ = L ∪ {b}, the
path, π, is defined as a sequence over L′, that is, π ∈ L′T ,
where T is the length of the input sequence, x. Then, the
output sequence, z ∈ L≤T , is represented by z = F(π)
with the sequence to sequence mapping function F . F
maps any path π with the length T into the shorter sequence
of the label, z, by first merging the consecutive same labels
into one and then removing the blank labels. Therefore,
any sequence of the raw RNN outputs with the length T
can be decoded into the shorter labeling sequence, z, with
ignoring timings. This enables the RNNs to learn the se-
quence mapping, z = G(x), where x is the input sequence
and z is the corresponding target labeling for all (x, z) in
the training set, S. More specifically, the gradient of the
loss function L(x, z) = − ln p(z|x) is computed and fed
to the RNN through the softmax layer (Bridle, 1990), of
which the size is |L′|.

The CTC algorithm employs the forward-backward al-
gorithm for computing the gradient of the loss function,
L(x, z). Let z′ be the sequence over L′ with the length of
2|z|+1, where z′u = b for odd u and z′u = zu/2 for even u.
Then, the forward variable, α, and the backward variable,
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β, are initialized by

α(1, u) =


y1b if u = 1

y1z′1
if u = 2

0 otherwise

β(T, u) =

{
1 if u = |z′|, |z′| − 1

0 otherwise
, (1)

where ytk is the softmax output of the label k ∈ L′ at time
t. The variables are forward and backward propagated as

α(t, u) = ytz′u

u∑
i=f(u)

α(t− 1, i)

β(t, u) =

g(u)∑
i=u

β(t+ 1, i)yt+iz′i
, (2)

where

f(u) =

{
u− 1 if z′u = b or z′u−2 = z′u
u− 2 otherwise

g(u) =

{
u+ 1 if z′u = b or z′u+2 = z′u
u+ 2 otherwise

(3)

with the boundary conditions:

α(t, 0) = 0, ∀t , β(t, |z′|+ 1) = 0, ∀t. (4)

Then, the error gradient with respect to the input of the
softmax layer at time t, atk, is computed as

∂L(x, z)
∂atk

= ytk −
1

p(z|x)
∑

u∈B(z,k)

α(t, u)β(t, u), (5)

where B(z, k) = {u : z′u = k} and p(z|x) = α(T, |z′|) +
α(T, |z′| − 1).

3. Online Sequence Training
3.1. Problem Definition

Throughout the paper, the online sequence training prob-
lem is defined as follows.

• The training set S consists of pairs of the input se-
quence x and the corresponding target sequence z,
that is, (x, z) ∈ S.

• The estimation modelM learns the general mapping
z = G(x), where the training sequences (x, z) ∈ S
are sequentially given.

• For each (x, z) ∈ S and at time t, only the fraction
of the input sequence up to time t, x1:t, and the entire
target sequence, z, are given, where 1 ≤ t ≤ |x|. The
length of the input sequence, |x|, is unknown except
when t = |x|.
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Figure 1. Online CTC(2h′; h′) algorithm depicted for a single se-
quence that is longer than the RNN unroll amount. The shaded
areas indicate the range of the RNN unrolling at each iteration.

• The parameters of the estimation model M are up-
dated in the manner of online learning, that is, they
can be frequently updated even before seeing the en-
tire input sequence x.

This online learning problem usually occurs in real world
when a human learns a language from texts and the corre-
sponding audio. For example, when watching movies with
subtitles, we are given the entire target sequence (subtitle
for the current utterance) and the input sequence (the cor-
responding audio) up to the current time, t. We cannot ac-
cess the future audio and even do not know exactly when
the utterance will end (at t = |x|).

When RNNs are trained with the standard CTC algorithm,
it is difficult to determine how much amount of unrolling
is needed before the entire sequence x is given, since the
length of x is unknown at time t < |x|. Also, it is not
easy to learn the sequences that are longer than the un-
roll amount, which is often constrained by the hardware
resources.

3.2. Overview of the Proposed Approach

We propose an online CTC algorithm where the RNN
can learn the sequences longer than the unroll amount, h.
The algorithm is based on the truncated backpropagation
through time (BPTT) algorithm (Werbos, 1990) with the
forward step size of h′ and the unroll amount of h, which
is called BPTT(h; h′), as proposed in Williams & Peng
(1990). Algorithm 1 describes the BPTT(h; h′) algorithm
combined with the CTC loss, where T is the length of the
training sequence, x

However, although BPTT(h; h′) is designed for online
training of RNNs, employing the standard CTC loss func-
tion requires full unrolling of the networks. Therefore, we
propose the CTC(h; h′) algorithm for computing the CTC
loss in the online manner as in BPTT(h; h′) as in Algo-
rithm 2. The algorithm is also depicted in Figure 1 with the
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Algorithm 1 Online CTC training with BPTT(h; h′) for a
single sequence

1: τ0 ← 0
2: n← 1
3: while τn−1 < T do
4: τ ′n ← max{1, nh′ − h+ 1}
5: τn ← min{nh′, T}
6: RNN forward activation from t = τn−1 + 1 to τn
7: CTC(h; h′) error computation on the output layer
8: RNN backward error propagation from t = τn to τ ′n
9: RNN gradient computation and weight update

10: n← n+ 1
11: end while

Algorithm 2 CTC(h; h′) at the iteration n
1: τn−1 ← (n− 1)h′

2: τ ′n ← max{1, nh′ − h+ 1}
3: τ ′n+1 ← max{1, (n+ 1)h′ − h+ 1}
4: τn ← min{nh′, T}
5: if n = 1 then
6: Init. CTC forward variable, α, at t = 1
7: end if
8: CTC forward prop. of α from t = τn−1 + 1 to τn
9: if τn = T then

10: Init. CTC-TR backward variable, β, at t = T
11: CTC-TR backward prop. of β from t = T to τ ′n
12: CTC-TR error computation on t ∈ [τ ′n, T ]
13: else
14: Init. CTC-EM backward variable, βτn , at t = τn
15: CTC-EM backward prop. of βτn from t = τn to τ ′n
16: CTC-EM error computation on t ∈ [τ ′n, τ

′
n+1 − 1]

17: Set error to zero on t ∈ [τ ′n+1, τn]
18: end if

example in which the length of the sequence, T = |x|, is
2.5 times as long as the unroll amount.

CTC(h; h′) consists of two CTC algorithms. The first
one is the truncated CTC (CTC-TR), which is basically
the standard CTC algorithm applied at the last iteration
with truncation. In the other iterations, the generalized
EM based CTC algorithm (CTC-EM) is employed from
t = max{1, nh′ − h + 1} to max{0, (n + 1)h′ − h}
with the modified backward variable, βτ . The CTC-TR
and CTC-EM algorithms are explained in Section 3.3 and
Section 3.4, respectively. Note that simply setting h = 2h′

works well in practice. In this setting, we denote the algo-
rithm as CTC(2h′; h′).

3.3. CTC-TR: Standard CTC with Truncation

With the standard CTC algorithm, it is not possible to com-
pute the backward variables when τn < T , as the future

C

t = 1 t = !

A

T

z1:2 = “CA”

z1:0 = “”

z1:1 = “C”

z1:3 = “CAT”

Figure 2. Forward-backward algorithm of CTC-EM for the target
sequence “CAT”, where the black and white dots represent the
labels and CTC blanks, respectively. The arrows represent the
paths with allowed transitions.

information beyond τn cannot be accessed. Therefore, we
only compute the CTC errors at the last iteration, where
τn = T as in Algorithm 2. In this case, however, the gradi-
ents are only available in the unroll range. Since the back-
ward propagation is truncated at the beginning of the unroll
range, we call the CTC algorithm in this range as truncated
CTC, or CTC-TR. Also, we call the range that is covered
by the CTC-TR algorithm as the CTC-TR coverage.

The RNN can be trained only with CTC-TR if there are
sufficient labels that occur within the CTC-TR coverage.
However, the CTC-TR coverage decreases by making the
unroll amount smaller. Then, the percentage of the effec-
tive training frames, which actually generate the output er-
rors, goes down, and the efficiency of training decreases.
Also, the effective size of the training set gets smaller,
which results in the generalization performance loss of the
RNN. Therefore, for maintaining the training performance
while reducing the unroll amount, it is critical to make use
of the full training frames by employing the CTC-EM al-
gorithm, which is described in Section 3.4.

3.4. CTC-EM: EM-Based Online CTC

Assume that only the fraction of the input sequence, x1:τ ,
is available. Then, as shown in the Figure 2, there are |z|+1
possible partial labelings.2 Let z1:m be the subsequence of
z with the first m labels. Also we define Z as the set that
consists of these labeling sequences:

Z = {z1:m : 0 ≤ m ≤ |z|}. (6)

One of the most simple approach for training the network
under this condition is to choose the most likely partial
alignment from Z and compute the standard CTC error
by regarding the partial alignment as the ground truth la-
beling. For example, we can select z1:m′ where m′ =
argmaxm α(τ,m) since α(τ,m) is a posterior probabil-
ity p(z1:m|x1:τ ,w

(n)) with the current network parameter

2Although z1:m is not possible by the standard CTC formula-
tion when m > τ , we can still say that z1:m is a possible labeling
with a probability of zero without loss of generality.
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w(n). This is a well-known hard-EM approach. This sim-
ple idea can easily be extended to the more sophisticated
soft-EM approach as follows. First, select one of the partial
labelings in Z with the probability p(z1:m|Z,x1:τ ,w

(n))
estimated by the RNN with current parameters (E-step).
Then, maximize the probability of that labeling by adjust-
ing the parameters (M-step).

This optimization problem is readily reduced into the gen-
eralized EM algorithm. Specifically, the expectation step is
represented as

Qτ (w|x, z,w(n)) = Ez1:m|Z,x1:τ ,w(n) [ln p(z1:m|x1:τ ,w)]

=

|z|∑
m=0

p(z1:m|Z,x1:τ ,w
(n)) ln p(z1:m|x1:τ ,w),

(7)

where w(n) is the set of the network parameters at the cur-
rent iteration, n. In the maximization step of the general-
ized EM approach, we try to maximize Qτ by finding new
parameters w(n+1) that satisfies Qτ (w(n+1)|x, z,w(n)) ≥
Qτ (w

(n)|x, z,w(n)). As proved in the supplementary ma-
terial, this is equivalent to the optimization problem where
the objective is to minimize the loss function defined as
Lτ (x, z) = − ln p(Z|x1:τ ). Then, the gradient of the loss
function with respect to the input of the softmax layer is

∂Lτ (x, z)
∂atk

= ytk −
1

p(Z|x1:τ )

∑
u∈B(z,k)

α(t, u)βτ (t, u),

(8)

where p(Z|x1:τ ) can be computed by

p(Z|x1:τ ) =

|z′|∑
u=1

α(τ, u) (9)

and the backward variable, βτ (t, u), is initialized as

βτ (τ, u) = 1, ∀u. (10)

The new backward variable is propagated using the same
recursion in (2), and the error gradients are computed with
(5) as in the standard CTC algorithm. See the supplemen-
tary material for the derivation of the above equations.

4. Training Continuously Running RNNs
In this section, the proposed online CTC algorithm in Sec-
tion 3 is extended for training infinitely long streams. The
training stream can be naturally very long with the target
sequence boundaries, or can be generated by concatenat-
ing training sequences in a certain order. When trained
on this training stream without external reset of the RNN
at the sequence boundaries, the resulting RNN can also

Sequence k - 1
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Figure 3. Online CTC(2h′; h′) training with a continuous stream
of sequences. The shaded areas indicate the range of RNN un-
rolling, of which length is 2h′, at each iteration. The modified
segment boundaries for the sequence k, τk,n, are shown.

continuously process infinitely long input streams without
pre-segmentation or external reset. This property has been
proved useful for low-latency ISR (Hwang & Sung, 2016)
or spoken term detection systems (Hwang et al., 2015)
since we can remove the frontend voice activity detector
(Sohn et al., 1999) for detecting and pre-segmenting utter-
ances.

The CTC(h; h′) algorithm can directly be applied to the in-
finitely long training streams as shown in Figure 3. When
the sequence boundaries are reached during the forward ac-
tivation, we perform CTC-TR, initialize the forward vari-
able, and process the next sequence with some frame offset.
Also, care should be taken on the transition of CTC labels
at the boundary. Assume that the last label of the sequence
k and the first label of the sequence k + 1 are the same.
Then, a CTC blank label should be inserted between two
sequences since the same labels that occur consecutively
in the decoding path are folded into one label. In practice,
this folding can easily be prevented by forcing the blank
label at the first frame of each sequence by modifying the
initialization of the forward variable as follows:

αc(1, u) =

{
y1b if u = 1

0 otherwise
, (11)

where the subscript c indicates the continuous CTC train-
ing.

5. Parallel Training
In a massively parallel shared memory model such as a
GPU, efficient parallel training is achieved by making use
of the memory hierarchy. For example, computing multi-
ple frames together reduces the number of read operations
of the network parameters from the slow off-chip memory
by temporarily storing them on the on-chip cache mem-
ory and reuse them multiple times. For training RNNs
on a GPU, this parallelism can be explored by employing
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multiple training sequences concurrently (Hwang & Sung,
2015).

The continuous CTC(h; h′) algorithm in Section 4 can
be directly extended for parallel training with multiple
streams. Since the forward step size and the unroll amount
is fixed, the RNN forward, backward, gradient computa-
tion, and weight update steps can be synchronized over
multiple training streams. Thus, the GPU based paralleliza-
tion approach in Hwang & Sung (2015) can be employed
for the RNN training. Although the computations in the
CTC(h; h′) algorithm are relatively fewer than those of the
RNN, further speed-up can be achieved by parallelizing the
CTC algorithm similarly.

6. Experiments
6.1. End-to-End Speech Recognition with RNNs

For the evaluation of the proposed approach, we present
examples of end-to-end speech recognition with character-
level RNN language models (LMs) and tree-based online
decoding (Hwang & Sung, 2016). The acoustic RNN is a
deep unidirectional long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) with forget gates
(Gers et al., 2000) and peephole connections (Gers et al.,
2003), which is trained with the online CTC algorithm on
the continuous stream of speech. Also, a character-level
RNN language model (Sutskever et al., 2011) is employed
for tree-based decoding. The system continuously recog-
nizes infinitely-long input speech in realtime without pre-
segmentation.

Specifically, the acoustic RNN has 3 unidirectional LSTM
layers, where each layer has 768 LSTM cells and . The out-
put layer is a 31-dimensional softmax layer. Each unit of
the softmax layer represents one of the posterior probabili-
ties of 26 alphabet characters, two special characters (. and
’), a whitespace character, the end of sentence (EOS) sym-
bol, and the CTC blank label. The input of the network is a
123-dimensional vector that consists of a 40-dimensional
log Mel-frequency filterbank feature vector plus energy,
and their delta and delta-delta values. The feature vectors
are extracted from the speech waveform in every 10 ms
with 25 ms Hamming window using HTK (Young et al.,
1997). Before being fed into the RNN, feature vectors are
element-wisely normalized to the zero mean and the unit
standard deviation, where the statistics are extracted from
the training set.

The character-level RNN LM consists of 2 unidirectional
LSTM layers with 512 cells per layer. The input is a 30-
dimensional one-hot encoded vector that represents a cur-
rent label, and the output is the probabilities of the next
labels. The input and output labels are same as the out-
put labels of the acoustic RNN except the CTC blank la-
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Figure 4. Histogram of the length of the sequences in the WSJ SI-
284 training set, where only the utterances with non-verbalized
punctuations (NVPs) are considered. The feature frames are ex-
tracted with the period of 10 ms.
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Figure 5. Coverage of the trainable frames with respect to the
length of the sequences in the WSJ SI-284 (NVP) training set.
The average and maximum coverages of CTC-TR on continuous
training streams are visualized for the unroll amount of 512 and
1,024 when CTC(2h′; h′) is applied. Note that the proposed on-
line CTC algorithm (CTC-TR + CTC-EM) covers the entire train-
ing frames.

bel. The RNN LM considers the past and current inputs for
computing the probabilities of the next labels.

6.2. Wall Street Journal (WSJ) Corpus

The experiments are performed on the Wall Street Jour-
nal (WSJ) (Paul & Baker, 1992) corpus. The RNN LM
is trained with the text-based language model training data
included in the WSJ corpus with the resulting bit-per-
character (BPC) of 1.167. For the acoustic RNN training,
the subset of the WSJ SI-284 set is used, where only the ut-
terances with non-verbalized punctuations (NVPs) are in-
cluded, resulting in about 71 hours of utterances. The his-
togram of the length of the sequences in the training set
is shown in Figure 4. Note that the average length of the
sequences is 772.5 frames. If we unroll the network over
N frames, the sequences longer than N frames will not be
fully covered by CTC-TR.

In Figure 5, the CTC-TR coverage is further analyzed with
respect to the length of the sequence and the unroll amount.
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When the stream of sequences are trained with the contin-
uos CTC algorithm, the CTC-TR coverage varies depend-
ing on the frame offsets of CTC(h; h′). The average cover-
age is calculated assuming that the offset is uniformly dis-
tributed. If the probability that a certain frame is included
in the coverage is greater than zero, then the frame is in-
cluded in the maximum coverage. For the experiments, we
only consider CTC(2h′; h′), that is, the unroll amount is
twice as much as the forward step size. Then, unrolling
the network 1,024 times results in the CTC-TR coverage of
79.48 % on average and 95.69 % at maximum. On the other
hand, when the unroll amount is 512, CTC-TR only covers
48.16 % on average and 63.27 % at maximum. Note that
the full coverage is achieved when CTC-TR is combined
with CTC-EM.

The WSJ Nov’93 20K development set and the WSJ
Nov’92 20K evaluation set are used as the development
(validation) set and the test (evaluation) set, respectively.
For the final evaluation of the network after training, a sin-
gle test stream is used that is generated by concatenating
all of the 333 utterances in the test set.

6.3. Training Procedure

The RNN LM is trained with truncated BPTT(512; 256) on
infinite training streams generated by concatenating sen-
tences in the text training data. Note that the EOS symbols
are inserted between sentences. The training is performed
on a GPU with multiple streams (Hwang & Sung, 2015).
We applied ADADELTA (Zeiler, 2012) for annealing and
early stopping for preventing overfitting. However, overfit-
ting was not observed in our experiments.

The acoustic RNN are trained on a GPU as in Section 5
with the memory usage constraint. To maintain the mem-
ory usage same while changing the unroll amount, we fixed
the total amount of unrolling over multiple training streams
to 16,384. For example, the number of parallel streams be-
come 8 with the unroll amount of 2,048 and 32 with 512
times of unrolling. The total amount of GPU memory us-
age is about 9.5 GiB in our implementation.

The performance evaluation of the network is performed
at every 10,485,760 training frames (i.e. N continuous
training streams with the length of 10, 485, 760/N each)
in terms of word error rate (WER) on the 128 parallel de-
velopment streams of which length is 16,384 each. For this
intermediate evaluation, best path decoding (Graves et al.,
2006) is employed without the RNN LM for fast computa-
tion.

For the online update of the RNN parameters, the stochas-
tic gradient descent (SGD) method is employed and accel-
erated by the Nesterov momentum of 0.9 (Nesterov, 1983;
Bengio et al., 2013). Also, the network is annealed by com-
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Figure 6. Convergence curves in terms of WER on the develop-
ment set with the various unroll amounts of 256, 512, 1,024, and
2,048, and the fixed learning rate of 10−5.

bining the early stopping technique as follows. If the net-
work performance based on the intermediate evaluation is
not improved for 11 consecutive times (10 times of retry),
the learning rate is reduced by the factor of 10 and the train-
ing is resumed from the second best network. The training
starts from the learning rate of 10−5 and finishes when the
learning rate becomes less than 10−7.

The pre-trained network is used for CTC-TR and CTC-EM
combined training because the expectation step of CTC-
EM requires the RNN to align the target labels in a certain
level. The pre-trained networks are obtained by early stop-
ping the CTC-TR training of the networks when the perfor-
mance is not improved during 6 consecutive intermediate
evaluations using the learning rate of 10−5. For the CTC-
TR and CTC-EM combined training with the unroll amount
of 512, 1,024, and 2,048, the training starts from the pre-
trained network that is trained with the same amount of un-
rolling. Otherwise, for the combined training with the un-
rolling less than 512 times, we use the pre-trained network
with the unroll amount of 512.

6.4. Evaluation

Figure 6 shows the convergence curves in terms of WER
on the development set without the RNN LM using various
unroll amounts and training algorithms, where the unroll
amount is twice the forward step size. The convergence
speed of the CTC-TR only training decreases when the un-
roll amount becomes smaller. This is because the percent-
age of the effective training frames become smaller due to
the reduced CTC-TR coverage. Also, it can be observed
that the performance of the CTC-TR only trained network
with 512 times of unrolling converges to the worse WER
than those of the other networks due to the reduced size
of the effective training set. On the other hand, the con-
vergence curves of the CTC-TR and CTC-EM combined
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Table 1. Comparison of the CTC-TR coverages, the CER and WERs on the test set, and the training speeds on the GPU with the varying
amounts of unrolling.

# Streams CTC-TR coverage (%) CER / WER (%) Training speed (frames/s)
× # Unroll Average Maximum CTC-TR + CTC-EM + RNN LM CTC-TR + CTC-EM

8 × 2,048 97.84 99.995 - 10.6 / 38.4 4.00 / 9.30 3.81 k 3.80 k
16 × 1,024 79.48 95.69 11.2 / 39.1 10.9 / 38.6 4.13 / 9.52 6.79 k 6.60 k
32 × 512 48.16 63.27 13.9 / 47.2 10.9 / 38.8 3.89 / 8.88 12.58 k 11.70 k
64 × 256 24.82 33.06 - 11.2 / 39.7 4.08 / 9.53 18.03 k 15.99 k

128 × 128 12.43 16.57 - 11.3 / 40.0 3.89 / 9.20 23.64 k 20.54 k
256 × 64 6.21 8.29 - 11.4 / 40.1 4.41 / 9.85 26.98 k 22.24 k

training with the unroll amounts of 256 and 512 are sim-
ilar to that of the CTC-TR only training with 2,048 times
of unrolling. Considering that the average sequence length
of the training set is 772.5 frames, the results are quite en-
couraging.

The evidence of the similar convergence curves with the
different unroll amounts implies that the training can be ac-
celerated under the memory usage constraint by employing
more parallel training streams with less unrolling. To ex-
amine how much speed-up can be achieved on a GPU, fur-
ther experiments are performed as in Table 1. The training
speed is measured on the system equipped with NVIDIA
GeForce Titan X GPU and Intel Xeon E5-2620 CPU. For
the final character error rate (CER) and WER report on the
test set, the output of the RNN is decoded by the tree-based
online CTC beam search (Hwang & Sung, 2016) with and
without language models. Note that the experiment with
the unroll amount of 2048 is the baseline, where CTC-TR
covers most of the training frames and there is little dif-
ference from the standard CTC training. As shown in the
table, we can achieve a great amount of speedup without
sacrificing much WERs. Also, it is possible to train a net-
work with only 64 times of unrolling, which corresponds
to 640 ms window, at the cost of 4.5% relative WER when
decoded without the RNN LM.

The RNN LM is integrated with a beam width of 512, a
beam depth of 50, an LM weight of 2.0, and an insertion
bonus of 1.5. When the RNN LM is applied, the base-
line network shows 9.30% WER. On the other hand, 8.88%
WER is obtained with the acoustic RNN trained with only
512 times of unrolling. However, we consider this im-
provement is due to the noise in the experimental results. It
is observed that the early stopping of training based on the
intermediate WER evaluation without the RNN LM does
not guarantee the best performance when the decoding is
performed with the RNN LM. Nevertheless, it seems there
is a slight performance loss when the network is trained
with only 64 times of unrolling. Note that 8.9% WER was
achieved in Hwang & Sung (2016) with the same network

structure. Also, 8.7% and 7.34% WERs were reported in
Graves & Jaitly (2014) and Miao et al. (2015), respec-
tively, with bidirectional RNNs for sentence-wise recogni-
tion. Our results in Table 1 is reported without any regular-
ization techniques, such as weight noise in Graves & Jaitly
(2014) or dropout (Hinton et al., 2012). For fair compari-
son, we also trained a unidirectional LSTM network with
4 layers, where each layer contains 512 cells, with online
CTC(1024; 512) and dropout for RNNs (Zaremba et al.,
2014). This model achieves 32.5% WER without LMs,
which is comparable to 30.1% WER obtained with the deep
bidirectional LSTM network (Graves & Jaitly, 2014).

Further experiments are performed on TIMIT (Garofolo
et al., 1993) in the supplementary material, where 20.7%
phoneme error rate (PER) is achieved on the very long in-
put speech that is formed by concatenating all the utter-
ances in the core test set.

7. Concluding Remarks
Throughout the paper, the online CTC(h; h′) algorithm is
proposed for sequence to sequence learning with unidirec-
tional RNNs using partial windows. The algorithm consists
of CTC-TR and CTC-EM. CTC-TR is the standard CTC
algorithm with truncation and CTC-EM is the generalized
EM based algorithm that covers the training frames that
CTC-TR cannot be applied. The proposed algorithm allows
the unroll amount to be less than the length of the training
sequence and is suitable for small footprint online learning
systems or massively parallel implementation on a shared
memory model such as a GPU. Also, the online CTC algo-
rithm is extended for training continuously running RNNs
without external reset, and evaluated in the WSJ and TIMIT
experiments. On the WSJ corpus, when the memory ca-
pacity is constrained, the proposed approach achieves sig-
nificant speed-up on a GPU without sacrificing the perfor-
mance of the resulting RNN much. We expect that further
acceleration of training will be possible with lower perfor-
mance loss when different unroll amounts are used in the
pre-training, main training, and annealing stages.
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