
International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.11, June 2016

Sequence to Sequence Weather Forecasting with Long
Short-Term Memory Recurrent Neural Networks

Mohamed Akram Zaytar
Research Student

Department of Computer Engineering
Faculty of Science and Technology, Tangier

Route Ziaten
Tangier, 90000, Morocco

Chaker El Amrani
Associate Professor

Department of Computer Engineering
Faculty of Science and Technology, Tangier

Route Ziaten
PO. Box 416, Tangier, 90000, Morocco

ABSTRACT
The aim of this paper is to present a deep neural network
architecture and use it in time series weather prediction. It
uses multi stacked LSTMs to map sequences of weather values
of the same length. The final goal is to produce two types
of models per city (for 9 cities in Morocco) to forecast
24 and 72 hours worth of weather data (for Temperature,
Humidity and Wind Speed). Approximately 15 years (2000-2015)
of hourly meteorological data was used to train the model.
The results show that LSTM based neural networks are
competitive with the traditional methods and can be considered
a better alternative to forecast general weather conditions.

General Terms
Machine Learning, Weather Forecasting, Pattern Recognition, Times Series

Keywords
Deep Learning, Sequence to Sequence Learning, Artificial Neural
Networks, Recurrent Neural Networks, Long-Short Term Memory,
Forecasting, Weather

1. INTRODUCTION
Weather Forecasting began with early civilizations and was based
on observing recurring astronomical and meteorological events.
Nowadays, weather forecasts are made by collecting data about
the current state of the atmosphere and using scientific systems
to predict how the atmosphere will evolve. The chaotic nature
of the atmosphere, the massive computational power required to
solve all of the equations that describe the atmosphere mean that
forecasts become less accurate and more expensive as the range of
the forecasts increase, this puts us in a position to think of new ways
to forecast weather that can be more efficient and/or less expensive.
In Machine Learning, Artificial Neural Networks (ANNs) are
classes of models inspired by biological neural networks, which
comprise interconnected adaptive processing nodes or units. What
makes ANNs important is their adaptive nature, this feature makes
ANNs a well suited tool to approximate highly nonlinear and
multivariate functions.

Because the final Neural Network model predicts time series
values, it uses LSTM layers in its architecture to counter time
related problems like the ”Vanishing Gradient Problem”. the
difference between LSTMs and other traditional Recurrent Neural
Networks (RNNs) is its ability to process and predict time series
sequences without forgetting unimportant information, LSTMs
achieve state of the art results in sequence related problems like
handwriting recognition [4, 3], speech recognition [6, 1], music
composition [2] and grammar learning [8] (In natural language
processing).

2. RECURRENT NEURAL NETWORKS AND
LSTMS

The Recurrent Neural Network Architecture is a natural
generalization of feedforward neural networks to sequences, RNNs
are networks with loops in them, which results in information
persistence.

Fig. 1. The relation between simple RNNs and Feed-forward ANNs

Given a sequence of inputs (x1, x2, ..., xN ), a standard RNN
computes a sequence of outputs (y1, y2, ..., y3) by iterating over
the following equation :

ht = sigm(Whxxt +Whhht−1)

yt =W yhht

The RNN can map sequences to sequences whenever the alignment
between the inputs and the outputs is known ahead of time. In the

7



International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.11, June 2016

context of predicting future weather values sequences of lengths 24
and 72 values were set.

2.1 The problem of Long-Term Dependencies
When thinking about weather data, One gets the impression that
recent weather data is more important for forecasting the next 24
hours than data from the previous month. In this context, one might
only need to look at recent information to perform the forecasting.
However, there might be cases when older data can help the model
recognize general trends and movements that recent data fail to
show.
Unfortunately, as the gap grows between the present and the past
data, general RNNs fail to learn to connect the inputs, and this is
called the problem of Long-Term Dependencies.

2.2 Long-Short Term Memory Neural Networks
LSTMs are a type of Recurrent Neural Networks capable
of learning long-term dependencies. They were introduced by
Hochreiter and Schmidhuber [7]. LSTMs remember information
for long periods of time thanks to their inner cells which can carry
information unchanged at will. The network have the complete
control over the cell state, it can add,edit or remove information
in the cell using special structures called gates.

Fig. 2. A simple LSTM gate with only input, output, and forget gates.

To put it in simple terms, What makes the network have control
over flowing information is largely due to its sigmoid layer which
outputs numbers between zero and one (S(t) = 1

1+e−t ) , this
plays a role similar to a ”Faucet” in controlling how much of
each component should be let through. A value of zero means
”let nothing through”, while a value of one means ”let everything
through” and with this type of system a model can make a far
distant value in the past significant in its prediction for the next
hour as an example. And this is what makes LSTMs useful for the
model in use.
Mathematically speaking, The goal of the LSTM is to
estimate the conditional probability p(y1, ..., yN |x1, ..., xN ) where
(x1, ..., xN ) is an input sequence and (y1, ..., yN ) is its
corresponding output sequence with the same length. The
LSTM computes this conditional probability by first obtaining
the fixed-dimensional representation v of the input sequence
(x1, ..., xN ) given by the last hidden state of the LSTM, and
then computing the probability of (y1, ..., yN ) with a standard
LSTM-LM formulation whose initial hidden state is set to the
representation v of (x1, ..., xN ):

p(y1, ..., yN |x1, ..., xN ) =

N∏
t=1

p(yt|v, y1, .., yt−1)

3. THE MODEL
A multi layer model consisting of two LSTM layers and a fully
connected hidden layer with a 100 neuron was implemented to form
the base architecture for the model, The general layers and their I/O
shapes are in the following figure :

Fig. 3. The Model’s Layers with I/O shapes.

—Dense : A fully connected layer of neurons, a value of 100
hidden neurons have been chosen to train based on multiple
experiments.

—Activation : As an Activation function the Rectifier function have
been chosen.

—Repeat Vector : this layer repeat the final output vector from
the encoding layer as a constant input to each timestep of the
decoder.

—Time Distributed Dense : Applies a same Dense
(fully-connected) operation to every timestep of a 3D tensor.

As an optimizer for the network, it used ”RMSprop”, which is
an unpublished, adaptive learning rate method proposed by Geoff
Hinton in Lecture 6e of his Coursera Class [5]. It keeps a moving
average of the squared gradient for each weight :

E[g2]t = 0.9E[g2]t−1 + 0.1g2t

8



International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.11, June 2016

θt+1 = θt −
η√

E[g2]t + ε
gt

RMSprop as well divides the learning rate by an exponentially
decaying average of squared gradients. Hinton suggests γ to be set
to 0.9, while a recommended value for the learning rate η is 0.001.
And as a loss estimator, the network used the mean squared error
estimator which is one of the most widely adapted ones :

MSE =
1

n

n∑
i=1

(Y p
i − Y

r
i )

2

Looking from the outside, the model’s architecture is simple. it gets
as input the previous 24 values and it gives us back the next 24
hours of predictions, the same model was constructed for 72 hours
(3 days), the figure below is a graphical explanation (24 hours) :

Fig. 4. Input/Output Data Flow.

ti, hi, wi signifies Temperature, Humidity and wind speed in time
i, the result is a deep neural network based on LSTMs that can
predict a fixed length sequence from the same length previous
sequence.

4. EXPERIMENTS
Fifteen years worth of hourly data was trained, from nine cities in
Morocco. With the following variables :

Table 1. METEOROLOGICAL VARIABLES
No. Meteorological Variables every hour time frame Unit
1 Temperature Deg. C
2 Relative Humidity %Rh
3 Wind Speed km/h

4.1 Dataset Details
Weather data from nine cities were collected using Wunderground’s
API (Wunderground collect most of its data in morocco from
weather stations in airports). The final data set consists of
Temperature, Humidity and wind speed values for every hour, Here
is a figure of Temperature values for fifteen years in the city of
tangier :

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

DateUTC

−10

0

10

20

30

40

50

TemperatureC

Fig. 5. 15 Years of Temperature values in Morocco, Tangier.

4.2 Data Preprocessing
Data was often not consistent, missing values or values out of
range was common, however, there was no long continuous noise
segments (for days as an example). The methods used for cleaning
is to replace the missing or noisy values by forward filling them
using previous points in time (ex. filling the missing temperature
value with the last recorded temperature value).
The following figure demonstrates the procedure used for data
preprocessing :

Fig. 6. The Data preprocessing graphical Model.

After cleaning the data, all of the values were normalized to
points in [−1, 1] to avoid training problems (example: local optima
problem) and also weight decay and Bayesian estimation can be
done more conveniently with standardized inputs [9]. this assertion
was used :

Xi ←
Xi −Mean(X)

MAX(X)−MIN(X)

4.3 Validation
At first, all of the values were reshaped into a serie of sequences
to feed into the neural network, each input consists of 24 (or 72)
triples [T,H,WS] of values.

9



International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.11, June 2016

The chosen weather data was divided into three selected groups
of sequences, the training group, corresponding to 80% of the
sequences, the test group (untrained data) used to evaluate
the models after the training phase (corresponding to 10% of
sequences), and finally the local validation data for the local
mini-batch training. The Mean Squared Error (MSE) was used as a
measure of error made by the neural network model.

4.4 Training Details
It’s known that LSTM models are fairly easy to train after preparing
the data. A model consisting of two LSTM layers and a fully
connected hidden layer in between with a 100 neuron was used.
The resulting neural network had 132,403 parameters of which
122,000 are pure recurrent connections (41600 for the ”encoder”
LSTM and 80400 for the ”decoder” LSTM). The training details
are given below :

—All of the LSTM’s parameters were initialized with the uniform
distribution between -0.05 and 0.05.

—The Mini-batch gradient descent was used with a fixed learning
rate of 0.001.

—For the gradient method, Batches of 512 sequences and 100
epochs were trained.

4.5 Parallelization
A Python implementation of deep neural networks with the
configuration from the previous section was used to train the model.
The Theano library was used to build and compile the model on a
NVIDIA GRID K520 single GPU device, with 1536 CUDA cores,
800MHz Core Clocks and 4GB of memory size. Training took
about 10 hours per model :

Table 2. AVERAGE
TRAINING TIME PER

MODEL
Model Training Time
LSTM24 3.2h
LSTM72 6.7h

4.6 Experimental Results
The Mean Squared Error was used as a score function to evaluate
the quality of the predictions. The scores were calculated using the
untrained test data with the following results as an example :

Table 3. MEAN SQUARED ERROR ON
TEST DATA FROM NINE CITIES IN

MOROCCO
City 24 hours MSE 72 hours MSE
Tangier 0.00636 0.00825
Agadir 0.00775 0.01046
Al Hoceima 0.00827 0.00985
Fes-Sais 0.00744 0.00997
Marrakech 0.00839 0.01053
Nouasseur 0.00516 0.00698
Oujda 0.00536 0.00987
Rabat-Sale 0.00550 0.00675
Tetouan 0.00695 0.00863

Examples of graphical predictions on test data next.

0 5 10 15 20

Hours

18

20

22

24

26

28

T
e
m
p
ra
tu
re

Real vs Predicted Temprature values

Predicted

Real

Fig. 7. Comparison of Temperature values for 24 hours.

0 5 10 15 20

Hours

55

60

65

70

75

80

85

90

95

H
u
m
id
it
y

Real vs Predicted Humidity values

Predicted

Real

Fig. 8. Comparison of Humidity values for 24 hours.

0 5 10 15 20

Hours

4

6

8

10

12

14

16

18

20

22

W
in
d
 S
p
e
e
d

Real vs Predicted Wind Speed values

Predicted

Real

Fig. 9. Comparison of Wind Speed values for 24 hours.

10



International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.11, June 2016

0 10 20 30 40 50 60 70

Hours

14

16

18

20

22

24

26

28

T
e
m
p
e
ra
tu
re

Real vs Predicted Temperature values

Predicted

Real

Fig. 10. Comparison of Temperature values for 72 hours.

0 10 20 30 40 50 60 70

Hours

45

50

55

60

65

70

75

80

85

90

H
u
m
id
it
y

Real vs Predicted Humidity values

Predicted

Real

Fig. 11. Comparison of Humidity values for 72 hours.

0 10 20 30 40 50 60 70

Hours

0

5

10

15

20

25

W
in
d
 S
p
e
e
d

Real vs Predicted Wind Speed values

Predicted

Real

Fig. 12. Comparison of Wind Speed values for 72 hours.

5. CONCLUSION
The results of this paper shows that a deep LSTM network can
forecast general weather variables with a good accuracy. The
success of the model suggests that it could be used on other
weather related problems, and while Theano provides excellent
environment to compile and train models, it also gives the ability
to carry any model into a production server and integrate them
in pre-existing applications (as an example, one could perform
real time predictions on top of an existing web application).
Our vision is for this model to represent the cornerstone of an
Artificial intelligence based system that can replace humans and
traditional methods in weather forecasting in the future. combining
numerical models and image recognition ones (in satellite images
for example) might form the basis of a new weather forecasting
system that can outperform and overcome the traditional expensive
ones and become the new standard in weather prediction.

6. ACKNOWLEDGMENTS
We would like to express our gratitude to Weather Underground for
providing us the required data to do this research, and also we want
to thank the teams behind the python libraries, Theano and Keras
for making it easy for us to implement our model and run it.

7. REFERENCES
[1] George E Dahl, Dong Yu, Li Deng, and Alex Acero.

Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. Audio, Speech, and
Language Processing, IEEE Transactions on, 20(1):30–42,
2012.

[2] Douglas Eck and Jürgen Schmidhuber. Learning the long-term
structure of the blues. In Artificial Neural NetworksICANN
2002, pages 284–289. Springer, 2002.

[3] Alex Graves, Marcus Liwicki, Horst Bunke, Jürgen
Schmidhuber, and Santiago Fernández. Unconstrained on-line
handwriting recognition with recurrent neural networks. In
Advances in Neural Information Processing Systems, pages
577–584, 2008.

[4] Alex Graves and Jürgen Schmidhuber. Offline handwriting
recognition with multidimensional recurrent neural networks.
In Advances in neural information processing systems, pages
545–552, 2009.

[5] Geoffrey Hinton. Overview of mini-batch gradient
descent. http://goo.gl/A9lKPi, 2014. [Online; accessed
09-June-2016].

[6] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al.
Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE, 29(6):82–97, 2012.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[8] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In Advances in neural
information processing systems, pages 3104–3112, 2014.

[9] NC Warren S. Sarle, Cary et al. FAQ, Part 2 of 7:
Learning. http://goo.gl/gzJGse, 2002. [Online; accessed
09-June-2016].

11

http://goo.gl/A9lKPi
http://goo.gl/gzJGse

	Introduction
	RECURRENT NEURAL NETWORKS AND LSTMs
	The problem of Long-Term Dependencies
	Long-Short Term Memory Neural Networks

	THE MODEL
	EXPERIMENTS
	Dataset Details
	Data Preprocessing
	Validation
	Training Details
	Parallelization
	Experimental Results

	CONCLUSION
	ACKNOWLEDGMENTS
	References

