
Sequence Transduction with Recurrent Neural Networks

Alex Graves graves@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4

Abstract

Many machine learning tasks can be ex-
pressed as the transformation—or transduc-
tion—of input sequences into output se-
quences: speech recognition, machine trans-
lation, protein secondary structure prediction
and text-to-speech to name but a few. One of
the key challenges in sequence transduction
is learning to represent both the input and
output sequences in a way that is invariant
to sequential distortions such as shrinking,
stretching and translating. Recurrent neu-
ral networks (RNNs) are a powerful sequence
learning architecture that has proven capa-
ble of learning such representations. How-
ever RNNs traditionally require a pre-defined
alignment between the input and output se-
quences to perform transduction. This is a
severe limitation since finding the alignment
is the most difficult aspect of many sequence
transduction problems. Indeed, even deter-
mining the length of the output sequence is
often challenging. This paper introduces an
end-to-end, probabilistic sequence transduc-
tion system, based entirely on RNNs, that re-
turns a distribution over output sequences of
all possible lengths and alignments for any in-
put sequence. Experimental results are pro-
vided on the TIMIT speech corpus.

1. Introduction

The ability to transform and manipulate sequential
data is a crucial part of human intelligence: every-
thing we know about the world reaches us in the form
of sensory sequences, and everything we do to inter-
act with the world requires sequences of actions and
thoughts. The creation of automatic sequence trans-
ducers therefore seems an important step towards ar-

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

tificial intelligence. A major problem faced by such
systems is how to represent sequential information in
a way that is invariant, or at least robust, to sequential
distortions. Moreover this robustness should apply to
both the input and output sequences.

For example, transforming audio signals into sequences
of words requires the ability to identify speech sounds
(such as phonemes or syllables) despite the apparent
distortions created by different voices, variable speak-
ing rates, background noise etc. If a language model
is used to inject prior knowledge about the output se-
quences, it must also be robust to missing words, mis-
pronunciations, non-lexical utterances etc.

Recurrent neural networks (RNNs) are a promising ar-
chitecture for general-purpose sequence transduction.
The combination of a high-dimensional multivariate
internal state and nonlinear state-to-state dynamics
offers more expressive power than conventional sequen-
tial algorithms such as hidden Markov models. Most
importantly RNNs have far more potential for storing
and accessing information over long periods of time.
While the early years of RNNs were dogged by dif-
ficulties in learning (Hochreiter et al., 2001), recent
results have shown that they are now capable of deliv-
ering state-of-the-art results in real-world tasks such as
handwriting recognition (Graves et al., 2008; Graves &
Schmidhuber, 2008), text generation (Sutskever et al.,
2011) and language modelling (Mikolov et al., 2010).
Of particular interest is the use of long-range mem-
ory to perform such actions as closing parentheses
after many intervening characters (Sutskever et al.,
2011), or using delayed strokes to identify handwritten
characters from pen trajectories (Graves et al., 2008).
These demonstrate the robustness of the internal rep-
resentation of RNNs to long, variable length delays
between relevant pieces of information.

However RNNs are usually restricted to problems
where the alignment between the input and output
sequence is known in advance. For example, RNNs
may be used to classify every frame in a speech signal,
or every amino acid in a protein chain. If the network
outputs are probabilistic this leads to a distribution

Sequence Transduction with Recurrent Neural Networks

over output sequences of the same length as the input
sequence. But for a general-purpose sequence trans-
ducer, where the output length is unknown in advance,
we would prefer a distribution over sequences of all
lengths. Furthermore, since we do not how the inputs
and outputs should be aligned, this distribution would
ideally cover all possible alignments.

Connectionist Temporal Classification (CTC) is an
RNN output layer that defines a distribution over all
alignments with all output sequences not longer than
the input sequence (Graves et al., 2006). However, as
well as precluding tasks, such as text-to-speech, where
the output sequence is longer than the input sequence,
CTC does not model the interdependencies between
the outputs. The sequence transducer described in
this paper, on the other hand, defines a distribution
over output sequences of all lengths, and jointly models
both input-output and output-output dependencies.
Furthermore, while CTC is only defined for discrete
output labels, the transducer can be readily extended
to continuous output sequences.

As a discriminative sequential model the transducer
has similarities with ‘chain-graph’ conditional random
fields (CRFs) (Lafferty et al., 2001). However the
transducer’s construction from RNNs, with their abil-
ity to extract features from raw data and their poten-
tially unbounded range of dependency, is in marked
contrast with the pairwise output potentials and hand-
crafted input features typically used for CRFs. Closer
in spirit is the Graph Transformer Network (Bottou
et al., 1997) paradigm, in which differentiable mod-
ules (often neural networks) can be globally trained
to perform consecutive graph transformations such as
detection, segmentation and recognition.

Section 2 defines the RNN transduction model, show-
ing how it can be trained and applied to test data,
Section 3 presents experimental results on the TIMIT
speech corpus and concluding remarks and directions
for future work are given in Section 4.

2. Model

Let x = (x1, x2, . . . , xT) be a length T input se-
quence of arbitrary length belonging to the set X ∗

of all sequences over some input space X . Let y =
(y1, y2, . . . , yU) be a length U output sequence belong-
ing to the set Y∗ of all sequences over some output
space Y. Both the inputs vectors xt and the output
vectors yu are represented by fixed-length real-valued
vectors; for example if the task is phonetic speech
recognition, each xt would typically be a vector of
MFC coefficients and each yt would be a one-hot vector

encoding a particular phoneme. In this paper we will
assume that the output space is discrete; however the
method can be readily extended to continuous output
spaces.

Define the extended output space Ȳ as Y ∪∅, where ∅
denotes the null output. The intuitive meaning of ∅
is ‘output nothing’; the sequence (y1,∅,∅, y2,∅, y3) ∈
Ȳ∗ is therefore equivalent to (y1, y2, y3) ∈ Y

∗. We
refer to the elements a ∈ Ȳ∗ as alignments, since the
location of the null symbols determines an alignment
between the input and output sequences. Given x,
the RNN transducer defines a conditional distribution
Pr(a ∈ Ȳ∗|x). This distribution is then collapsed onto
the following distribution over Y∗

Pr(y ∈ Y∗|x) =
∑

a∈B−1(y)

Pr(a|x) (1)

where B : Ȳ∗ 7→ Y∗ is a function that removes the null
symbols from the alignments in Ȳ∗.

Two recurrent neural networks are used to determine
Pr(a ∈ Ȳ∗|x). One network, referred to as the
transcription network F , scans the input sequence x

and outputs the sequence f = (f1, . . . , fT) of tran-
scription vectors1. The other network, referred to
as the prediction network G, scans the output se-
quence y and outputs the prediction vector sequence
g = (g0, g1 . . . , gU).

2.1. Prediction Network

The prediction network G is a recurrent neural network
consisting of an input layer, an output layer and a
single hidden layer. The length U + 1 input sequence
ŷ = (∅, y1, . . . , yU) to G output sequence y with ∅

prepended. The inputs are encoded as one-hot vectors;
that is, if Y consists of K labels and yu = k, then
ŷu is a length K vector whose elements are all zero
except the kth, which is one. ∅ is encoded as a length
K vector of zeros. The input layer is therefore size
K. The output layer is size K + 1 (one unit for each
element of Ȳ) and hence the prediction vectors gu are
also size K + 1.

Given ŷ, G computes the hidden vector sequence
(h0, . . . , hU) and the prediction sequence (g0, . . . , gU)
by iterating the following equations from u = 0 to U :

hu = H (Wihŷu +Whhhu−1 + bh) (2)

gu = Whohu + bo (3)

1For simplicity we assume the transcription sequence
to be the same length as the input sequence; however this
may not be true, for example if the transcription network
uses a pooling architecture (LeCun et al., 1998) to reduce
the sequence length.

Sequence Transduction with Recurrent Neural Networks

where Wih is the input-hidden weight matrix, Whh is
the hidden-hidden weight matrix, Who is the hidden-
output weight matrix, bh and bo are bias terms, and
H is the hidden layer function. In traditional RNNs
H is an elementwise application of the tanh or logis-
tic sigmoid σ(x) = 1/(1 + exp(−x)) functions. How-
ever we have found that the Long Short-Term Mem-
ory (LSTM) architecture (Hochreiter & Schmidhuber,
1997; Gers, 2001) is better at finding and exploiting
long range contextual information. For the version of
LSTM used in this paper H is implemented by the
following composite function:

αn = σ (Wiαin +Whαhn−1 +Wsαsn−1) (4)

βn = σ (Wiβin +Whβhn−1 +Wsβsn−1) (5)

sn = βnsn−1 + αn tanh (Wisin +Whs) (6)

γn = σ (Wiγin +Whγhn−1 +Wsγsn) (7)

hn = γn tanh(sn) (8)

where α, β, γ and s are respectively the input gate,
forget gate, output gate and state vectors, all of which
are the same size as the hidden vector h. The weight
matrix subscripts have the obvious meaning, for exam-
ple Whα is the hidden-input gate matrix, Wiγ is the
input-output gate matrix etc. The weight matrices
from the state to gate vectors are diagonal, so element
m in each gate vector only receives input from element
m of the state vector. The bias terms (which are added
to α, β, s and γ) have been omitted for clarity.

The prediction network attempts to model each ele-
ment of y given the previous ones; it is therefore simi-
lar to a standard next-step-prediction RNN, only with
the added option of making ‘null’ predictions.

2.2. Transcription Network

The transcription network F is a bidirectional
RNN (Schuster & Paliwal, 1997) that scans the input
sequence x forwards and backwards with two separate
hidden layers, both of which feed forward to a single
output layer. Bidirectional RNNs are preferred be-
cause each output vector depends on the whole input
sequence (rather than on the previous inputs only, as
is the case with normal RNNs); however we have not
tested to what extent this impacts performance.

Given a length T input sequence (x1 . . . xT), a
bidirectional RNN computes the forward hidden

sequence (
−→
h 1, . . . ,

−→
h T), the backward hidden se-

quence (
←−
h 1, . . . ,

←−
h T), and the transcription sequence

(f1, . . . , fT) by first iterating the backward layer from
t = T to 1:

←−
h t = H

(

W
i
←−
h
it +W←−

h
←−
h

←−
h t+1 + b←−

h

)

(9)

then iterating the forward and output layers from t = 1
to T :

−→
h t = H

(

W
i
−→
h
it +W−→

h
−→
h

−→
h t−1 + b−→

h

)

(10)

ot = W−→
h o

−→
h t +W←−

h o

←−
h t + bo (11)

For a bidirectional LSTM network (Graves & Schmid-
huber, 2005), H is implemented by Eqs. (4) to (8). For
a task with K output labels, the output layer of the
transcription network is size K + 1, just like the pre-
diction network, and hence the transcription vectors
ft are also size K + 1.

The transcription network is similar to a Connection-
ist Temporal Classification RNN, which also uses a
null output to define a distribution over input-output
alignments.

2.3. Output Distribution

Given the transcription vector ft, where 1 ≤ t ≤ T ,
the prediction vector gu, where 0 ≤ u ≤ U , and label
k ∈ Ȳ, define the output density function

h(k, t, u) = exp
(

fk
t + gku

)

(12)

where superscript k denotes the kth element of the
vectors. The density can be normalised to yield the
conditional output distribution:

Pr(k ∈ Ȳ|t, u) =
h(k, t, u)

∑

k′∈Ȳ h(k
′, t, u)

(13)

To simplify notation, define

y(t, u) ≡ Pr(yu+1|t, u) (14)

∅(t, u) ≡ Pr(∅|t, u) (15)

Pr(k|t, u) is used to determine the transition probabil-
ities in the lattice shown in Fig. 1. The set of possible
paths from the bottom left to the terminal node in
the top right corresponds to the complete set of align-
ments between x and y, i.e. to the set Ȳ∗ ∩ B−1(y).
Therefore all possible input-output alignments are as-
signed a probability, the sum of which is the proba-
bility Pr(y|x) of the output sequence given the input
sequence. Since a similar lattice could be drawn for
any finite y ∈ Y∗, Pr(k|t, u) defines a distribution over
all possible output sequences, given a single input se-
quence.

A naive calculation of Pr(y|x) from the lattice would
be intractable; however an efficient forward-backward
algorithm is described below.

2.4. Forward-Backward Algorithm

Define the forward variable α(t, u) as the probability
of outputting y[1:u] during f[1:t]. The forward variables

Sequence Transduction with Recurrent Neural Networks

Figure 1. Output probability lattice defined by

Pr(k|t, u). The node at t, u represents the probability of
having output the first u elements of the output sequence
by point t in the transcription sequence. The horizontal ar-
row leaving node t, u represents the probability ∅(t, u) of
outputting nothing at (t, u); the vertical arrow represents
the probability y(t, u) of outputting the element u + 1 of
y. The black nodes at the bottom represent the null state
before any outputs have been emitted. The paths start-
ing at the bottom left and reaching the terminal node in
the top right (one of which is shown in red) correspond
to the possible alignments between the input and output
sequences. Each alignment starts with probability 1, and
its final probability is the product of the transition proba-
bilities of the arrows they pass through (shown for the red
path).

for all 1 ≤ t ≤ T and 0 ≤ u ≤ U can be calculated
recursively using

α(t, u) = α(t− 1, u)∅(t− 1, u)

+ α(t, u− 1)y(t, u− 1) (16)

with initial condition α(1, 0) = 1. The total output
sequence probability is equal to the forward variable
at the terminal node:

Pr(y|x) = α(T, U)∅(T, U) (17)

Define the backward variable β(t, u) as the probability
of outputting y[u+1:U] during f[t:T]. Then

β(t, u) = β(t+ 1, u)∅(t, u) + β(t, u+ 1)y(t, u) (18)

with initial condition β(T, U) = ∅(T, U). From the
definition of the forward and backward variables it
follows that their product α(t, u)β(t, u) at any point
(t, u) in the output lattice is equal to the probabil-
ity of emitting the complete output sequence if yu is
emitted during transcription step t. Fig. 2 shows a plot
of the forward variables, the backward variables and
their product for a speech recognition task.

2.5. Training

Given an input sequence x and a target sequence y∗,
the natural way to train the model is to minimise the
log-loss L = − ln Pr(y∗|x) of the target sequence. We
do this by calculating the gradient of L with respect
to the network weights parameters and performing
gradient descent. Analysing the diffusion of proba-
bility through the output lattice shows that Pr(y∗|x)
is equal to the sum of α(t, u)β(t, u) over any top-left
to bottom-right diagonal through the nodes. That is,
∀ n : 1 ≤ n ≤ U + T

Pr(y∗|x) =
∑

(t,u):t+u=n

α(t, u)β(t, u) (19)

From Eqs. (16), (18) and (19) and the definition of L
it follows that

∂L

∂ Pr(k|t, u)
= −

α(t, u)

Pr(y∗|x)











β(t, u+ 1) if k = yu+1

β(t+ 1, u) if k = ∅

0 otherwise

(20)
And therefore

∂L

∂fk
t

=

U
∑

u=0

∑

k′∈Ȳ

∂L

∂ Pr(k′|t, u)

∂ Pr(k′|t, u)

∂fk
t

(21)

∂L

∂gku
=

T
∑

t=1

∑

k′∈Ȳ

∂L

∂ Pr(k′|t, u)

∂ Pr(k′|t, u)

∂gku
(22)

where, from Eq. (13)

∂ Pr(k′|t, u)

∂fk
t

=
∂ Pr(k′|t, u)

∂gku
=Pr(k′|t, u) [δkk′−Pr(k|t, u)]

The gradient with respect to the network weights
can then be calculated by applying Backpropagation
Through Time (Williams & Zipser, 1995) to each net-
work independently.

A separate softmax could be calculated for every
Pr(k|t, u) required by the forward-backward algo-
rithm. However this is computationally expensive due
to the high cost of the exponential function. Recalling
that exp(a + b) = exp(a) exp(b), we can instead pre-
compute all the exp (f(t,x)) and exp(g(y[1:u])) terms
and use their products to determine Pr(k|t, u). This
reduces the number of exponential evaluations from
O(TU) to O(T + U) for each length T transcription
sequence and length U target sequence used for train-
ing.

2.6. Testing

When the transducer is evaluated on test data, we
seek the mode of the output sequence distribution in-
duced by the input sequence. Unfortunately, finding

Sequence Transduction with Recurrent Neural Networks

Figure 2. Plot of the forward-backward variables during a speech recognition task. The image at the bottom is
the input sequence: a spectrogram of an utterance. The three heat maps above that show the logarithms of the forward
variables (top) backward variables (middle) and their product (bottom) across the output lattice. The text to the left is
the target sequence. Note the low probability of emitting outputs during pauses, and the high probability during speech.

the mode is much harder than determining the prob-
ability of a single sequence. The complication is that
the prediction function g(y[1:u]) (and hence the out-
put distribution Pr(k|t, u)) may depend on all previous
outputs emitted by the model. The method employed
in this paper is a fixed-width beam search through
the tree of output sequences. The advantage of beam
search is that it scales to arbitrarily long sequences,
and allows computational cost to be traded off against
search accuracy.

Let Pr(y) be the approximate probability of emitting
some output sequence y found by the search so far.
Let Pr(k|y, t) be the probability of extending y by
k ∈ Ȳ during transcription step t. Let pref(y) be
the set of proper prefixes of y (including the null se-
quence ∅∅∅), and for some ŷ ∈ pref(y), let Pr(y|ŷ, t) =
∏|y|

u=|ŷ|+1 Pr(yu|y[0:u−1], t). Pseudocode for a width

W beam search for the output sequence with high-
est length-normalised probability given some length T
transcription sequence is given in Algorithm 1.

The algorithm can be trivially extended to an N best
search (N ≤ W) by returning a sorted list of the N
best elements in B instead of the single best element.
The length normalisation in the final line appears
to be important for good performance, as otherwise
shorter output sequences are excessively favoured over
longer ones; similar techniques are employed for hid-
den Markov models in speech and handwriting recog-
nition (Bertolami et al., 2006).

Observing from Eq. (2) that the prediction network
outputs are independent of previous hidden vectors
given the current one, we can iteratively compute the
prediction vectors for each output sequence y+k con-
sidered during the beam search by storing the hidden

Algorithm 1 Output Sequence Beam Search

Initalise: B = {∅∅∅}; Pr(∅∅∅) = 1
for t = 1 to T do

A = B
B = {}
for y in A do

Pr(y) +=
∑

ŷ∈pref(y)∩A Pr(ŷ) Pr(y|ŷ, t)
end for

while B contains less than W elements more
probable than the most probable in A do

y∗ = most probable in A
Remove y∗ from A
Pr(y∗) = Pr(y∗) Pr(∅|y, t)
Add y∗ to B
for k ∈ Y do

Pr(y∗ + k) = Pr(y∗) Pr(k|y∗, t)
Add y∗ + k to A

end for

end while

Remove all but the W most probable from B
end for

Return: y with highest log Pr(y)/|y| in B

vectors for all y, and running Eq. (2) for one step
with k as input. The prediction vectors can then be
combined with the transcription vectors to compute
the probabilities. This procedure greatly accelerates
the beam search, at the cost of increased memory use.
Note that for LSTM networks both the hidden vectors
h and the state vectors s should be stored.

3. Experimental Results

To evaluate the potential of the RNN transducer we
applied it to the task of phoneme recognition on the

Sequence Transduction with Recurrent Neural Networks

TIMIT speech corpus (DAR, 1990). We also compared
its performance to that of a standalone next-step pre-
diction RNN and a standalone Connectionist Tempo-
ral Classification (CTC) RNN, to gain insight into the
interaction between the two sources of information.

3.1. Task and Data

The core training and test sets of TIMIT (which we
used for our experiments) contain respectively 3696
and 192 phonetically transcribed utterances. We de-
fined a validation set by randomly selecting 184 se-
quences from the training set; this put us at a slight
disadvantage compared to many TIMIT evaluations,
where the validation set is drawn from the non-core
test set, and all 3696 sequences are used for training.
The reduced set of 39 phoneme targets (Lee & Hon,
1989) was used during both training and testing.

Standard speech preprocessing was applied to trans-
form the audio files into feature sequences. 26 channel
mel-frequency filter bank and a pre-emphasis coeffi-
cient of 0.97 were used to compute 12 mel-frequency
cepstral coefficients plus an energy coefficient on 25ms
Hamming windows at 10ms intervals. Delta coeffi-
cients were added to create input sequences of length
26 vectors, and all coefficient were normalised to have
mean zero and standard deviation one over the train-
ing set.

The standard performance measure for TIMIT is the
phoneme error rate on the test set: that is, the
summed edit distance between the output sequences
and the target sequences, divided by the total length
of the target sequences. Phoneme error rate, which
is customarily presented as a percentage, is recorded
for both the transcription network and the transducer.
The error recorded for the prediction network is the
misclassification rate of the next phoneme given the
previous ones.

We also record the log-loss on the test set. To put this
quantity in more accessible terms we convert it into
the average number of bits per phoneme target.

3.2. Network Parameters

The prediction network consisted of a size 128 LSTM
hidden layer, 39 input units and 40 output units. The
transcription network consisted of two size 128 LSTM
hidden layers, 26 inputs and 40 outputs. This gave
a total of 261,328 weights in the RNN transducer.
The standalone prediction and CTC networks (which
were structurally identical to their counterparts in the
transducer, except that the prediction network had one
fewer output unit) had 91,431 and 169,768 weights

respectively. All networks were trained with online
steepest descent (weight updates after every sequence)
using a learning rate of 10−4 and a momentum of
0.9. Gaussian weight noise (Jim et al., 1996) with a
standard deviation of 0.075 was injected during train-
ing to reduce overfitting. The prediction and trans-
duction networks were stopped at the point of lowest
log-loss on the validation set; the CTC network was
stopped at the point of lowest phoneme error rate on
the validation set. All network were initialised with
uniformly distributed random weights in the range [-
0.1,0.1]. For the CTC network, prefix search decod-
ing (Graves et al., 2006) was used to transcribe the
test set, with a probability threshold of 0.995. For the
transduction network, the beam search algorithm de-
scribed in Algorithm 1 was used with a beam width of
4000.

3.3. Results

The results are presented in Table 1. The phoneme er-
ror rate of the transducer is among the lowest recorded
on TIMIT (the current benchmark is 20.5% (Dahl
et al., 2010)). As far as we are aware, it is the best
result with a recurrent neural network.

Nonetheless the advantage of the transducer over the
CTC network on its own is relatively slight. This may
be because the TIMIT transcriptions are too small a
training set for the prediction network: around 150K
labels, as opposed to the millions of words typically
used to train language models. This is supported by
the poor performance of the standalone prediction net-
work: it misclassifies almost three quarters of the tar-
gets, and its per-phoneme loss is not much better than
the entropy of the phoneme distribution (4.6 bits). We
would therefore hope for a greater improvement on a
larger dataset. Alternatively the prediction network
could be pretrained on a large ‘target-only’ dataset,
then jointly retrained on the smaller dataset as part
of the transducer. The analogous procedure in HMM
speech recognisers is to combine language models ex-
tracted from large text corpora with acoustic models
trained on smaller speech corpora.

3.4. Analysis

One advantage of a differentiable system is that the
sensitivity of each component to every other compo-
nent can be easily calculated. This allows us to analyse
the dependency of the output probability lattice on its
two sources of information: the input sequence and
the previous outputs. Fig. 3 visualises these relation-
ships for an RNN transducer applied to ‘end-to-end’
speech recognition, where raw spectrogram images are

Sequence Transduction with Recurrent Neural Networks

Table 1. Phoneme Recognition Results on the

TIMIT Speech Corpus. ‘Log-loss’ is in units of bits per
target phoneme. ‘Epochs’ is the number of passes through
the training set before convergence.

Network Epochs Log-loss Error Rate

Prediction 58 4.0 72.9%

CTC 96 1.3 25.5%

Transducer 76 1.0 23.2%

directly transcribed with character sequences with no
intermediate conversion into phonemes.

4. Conclusions and Future Work

We have introduced a generic sequence transducer
composed of two recurrent neural networks and
demonstrated its ability to integrate acoustic and lin-
guistic information during a speech recognition task.

We are currently training the transducer on large-scale
speech and handwriting recognition databases. Some
of the illustrations in this paper are drawn from an
ongoing experiment in end-to-end speech recognition.

In the future we would like to look at a wider range
of sequence transduction problems, particularly those
that are difficult to tackle with conventional algo-
rithms such as HMMs. One example would be text-to-
speech, where a small number of discrete input labels
are transformed into long, continuous output trajecto-
ries. Another is machine translation, which is partic-
ularly challenging due to the complex alignment be-
tween the input and output sequences.

References

Bertolami, R, Zimmermann, M, and Bunke, H. Re-
jection strategies for offline handwritten text line
recognition. Pattern Recognition Letters, 27(16):
2005–2012, 2006.

Bottou, Leon, Bengio, Yoshua, and Cun, Yann Le.
Global training of document processing systems us-
ing graph transformer networks. In CVPR, pp. 489–,
1997.

Dahl, G., Ranzato, M., Mohamed, A., and Hinton,
G. Phone recognition with the mean-covariance re-
stricted boltzmann machine. In NIPS. 2010.

The DARPA TIMIT Acoustic-Phonetic Continuous
Speech Corpus (TIMIT). DARPA-ISTO, speech disc
cd1-1.1 edition, 1990.

Gers, F. Long Short-Term Memory in Recurrent
Neural Networks. PhD thesis, Ecole Polytechnique

Fédérale de Lausanne, 2001.
Graves, A. and Schmidhuber, J. Framewise phoneme

classification with bidirectional LSTM and other
neural network architectures. Neural Networks, 18:
602–610, 2005.

Graves, A. and Schmidhuber, J. Offline handwriting
recognition with multidimensional recurrent neural
networks. In NIPS, 2008.

Graves, A., Fernández, S., Gomez, F., and Schmidhu-
ber, J. Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent
neural networks. In ICML, 2006.

Graves, A., Fernández, S., Liwicki, M., Bunke, H., and
Schmidhuber, J. Unconstrained Online Handwriting
Recognition with Recurrent Neural Networks. In
NIPS. 2008.

Hochreiter, S. and Schmidhuber, J. Long Short-
Term Memory. Neural Computation, 9(8):1735–
1780, 1997.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmid-
huber, J. Gradient Flow in Recurrent Nets: the
Difficulty of Learning Long-term Dependencies. In
Kremer, S. C. and Kolen, J. F. (eds.), A Field Guide
to Dynamical Recurrent Neural Networks. 2001.

Jim, Kam-Chuen, Giles, C., and Horne, B. An analysis
of noise in recurrent neural networks: convergence
and generalization. Neural Networks, IEEE Trans-
actions on, 7(6):1424 –1438, 1996.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N.
Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In
ICML, 2001.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Lee, K. and Hon, H. Speaker-independent phone
recognition using hidden markov models. IEEE
Transactions on Acoustics, Speech, and Signal Pro-
cessing, 1989.

Mikolov, T., Karafit, M., Burget, L., Cernocky, J.,
and Khudanpur, S. Recurrent neural network based
language model. In Eleventh Annual Conference of
the International Speech Communication Associa-
tion, 2010.

Schuster, M. and Paliwal, K. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Pro-
cessing, 45:2673–2681, 1997.

Sutskever, I., Martens, J., and Hinton, G. Generating
text with recurrent neural networks. In ICML, 2011.

Williams, R. and Zipser, D. Gradient-based learning
algorithms for recurrent networks and their compu-
tational complexity. In Back-propagation: Theory,
Architectures and Applications, pp. 433–486. 1995.

Sequence Transduction with Recurrent Neural Networks

Figure 3. Visualisation of the transducer applied to end-to-end speech recognition. As in Fig. 2, the heat map
in the top right shows the log-probability of the target sequence passing through each point in the output lattice. The
image immediately below that shows the input sequence (a speech spectrogram), and the image immediately to the left
shows the inputs to the prediction network (a series of one-hot binary vectors encoding the target characters). Note
the learned ‘time warping’ between the two sequences. Also note the blue ‘tendrils’, corresponding to low probability
alignments, and the short vertical segments, corresponding to common character sequences (such as ‘TH’ and ‘HER’)
emitted during a single input step.
The bar graphs in the bottom left indicate the labels most strongly predicted by the output distribution (blue), the
transcription function (red) and the prediction function (green) at the point in the output lattice indicated by the crosshair.
In this case the transcription network simultaneously predicts the letters ‘O’, ‘U’ and ‘L’, presumably because these
correspond to the vowel sound in ‘SHOULD’; the prediction network strongly predicts ‘O’; and the output distribution
sums the two to give highest probability to ‘O’.
The heat map below the input sequence shows the sensitivity of the probability at the crosshair to the pixels in the input
sequence; the heat map to the left of the prediction inputs shows the sensitivity of the same point to the previous outputs.
The maps suggest that both networks are sensitive to long range dependencies, with visible effects extending across the
length of input and output sequences. Note the dark horizontal bands in the prediction heat map; these correspond
to a lowered sensitivity to spaces between words. Similarly the transcription network is more sensitive to parts of the
spectrogram with higher energy. The sensitivity of the transcription network extends in both directions because it is
bidirectional, unlike the prediction network.

