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Abstract

Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were
separated by an ancient chromosome break (55–80 MYA) and followed by a chromosomal inversion were annotated in
detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues,
possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs.
The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens)
lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/
LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-
K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The
second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class
I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One
previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous
retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp
interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC
homozygous 1.96WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher
rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate
observed in human MHC (0.00337 SNP per bp).
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Introduction

The major histocompatibility complex (MHC) is one of the

most extensively analyzed regions in the genome due to the fact

that this region encodes the most important molecules in immune

function, namely class I and class II antigens, and also other

important molecules such as chemical sensing genes (olfactory

receptor gene complex), its escort gene, and POU5F1 gene

involved in iPS stem cells [1–4]. Recently, the human MHC, HLA

haplotypes were sequenced in the HLA haplotype project [5–10].

Eight different HLA – homozygous haplotypes’ DNA sequences

were determined in order to shed a light on MHC–linked diseases

and evolutionary history. These BAC-based sequencings are

necessary to examine the details in the regions of the genome,

where gene duplications, deletions and selections occurred many

times, because the genome project, especially in the human

genome, was carried out using a mixture of DNA sources [11].

The same will be true in genome projects in other outbred species.

The domestic cat serves excellent animal models to study at least

three RNA viruses in humans. Feline leukemia virus (FeLV) shares

similarly to human leukemia viruses (HTLV I & II) [12]. Feline

immunodeficiency virus is considered to cause similar symptoms to

human AIDS in a natural host, the domestic cat [13–16]. Feline

infectious peritonitis virus belongs to the same virus group (corona

virus) as human SARS virus [17]. To study host-defense

mechanisms, in this animal model, we previously analyzed and

reported (i) approximately 750 kbp class II region in feline MHC

(FLA) [18], (ii) the unique FLA structure with a single

chromosomal split at the TRIM gene family region, and

chromosome inversion [19], and (iii) comparison of three MHCs,

HLA, DLA, and FLA using human sequence, canine MHC

homozygous genomic sequence and feline 3.3 Mbp draft sequence

based on BAC shotgun sequences [20]. In this manuscript, much

detail of FLA gene contents, promoter structures of predicted

functional class I and class II genes, proportional scale compar-

isons of four mammalian MHCs (domestic cat, human, mouse,

dog) and one marsupial MHC (opossum) are presented. SNPs

(single nucleotide polymorphisms) between the MHC homozygous
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sequence of the lightly covered (1.96) domestic cat genome

shotgun sequence and this BAC-based MHC sequence were also

analyzed to compare the degree and mode of the MHC

divergence. In addition, two haplotype BAC-based sequences in

functional class II DR region in the domestic cat were analyzed.

Materials and Methods

BAC sequencing and assembly
BAC clones from RPCI86 domestic cat BAC library [21] were

selected based on FLA BACmap previously described [21]. Shotgun

libraries were made using the sonication method [18]. Sequencing

reactions were made from both ends of the plasmid vector using

BigDye v1.0 chemistry (ABI). Electrogram files (ab1 files) were ftp-

transferred to an ABCC ncisgi high speed computer, analyzed by

Phred base caller, assembled by Phrap assembler and finished

sequence assembly by Consed13 autofinish programs [22–25]. The

final assembly of these BAC sequence contigs were made using

Crossmatch program (http://www.phrap.org/phredphrapconsed.

html). The following BAC clones were analyzed for class III and

proximal, central class I FLA regions in fcaB2qcen; 181p11,

116b21, 539f24, 162h14, 207i7, 20f19, 18a04, 141b1, 97q9,

410h15, 261j7, 469m20, 515g14, 167d5, 117c16, 27j10, 194g24,

253j16, 292m22, 455a7, 454a5, 148o13, 117e16, 329i22. The

following BAC clones were analyzed for class I distal region in

fcaB2pter with the order from a telomere of fcaB2 short arm,

46j10, 596j24, 269n17, 221p5. More than sequence quality

value 20 was used for the final assembly. The first assembly

from class III through central class I regions was connected with

previously published [18] class II region sequence (758 Kbp)

using Crossmatch program.

Gene annotation
Sequences were first masked by Repeatmasker program. Gene

annotation was made using GENSCAN [26] coding prediction

plus BLASTP and BLASTN programs [27], also using megablast

for the entire sequences against the latest human Refseq database.

Class I, MIC, BAT1, olfactory receptor, MOG, TRIM26, 15, 10

gene annotation was made using human transcripts or FLA class I

mRNA sequence (FLAI-A24) [28] by bl2seq [29] and results were

parsed using Perl scripts. Repeat sequences were analyzed using

Repeatmasker and STR finder programs. These data was

graphically presented using Advanced PIPmaker program [30].

Dotplot analysis
Blastz program [31] was used to generate raw blastz output with

parameters: Y= 3400, H=2200, W=8, B=2, K=3000, C= 0,

M=83886080, P= 0 and this output and two sequences were

submitted to Advanced PIPmaker website (http://pipmaker.bx.

psu.edu/cgi-bin/pipmaker?advanced).

SNP analysis
The 1.96feline WGS contigs [32] were aligned with BAC MHC

sequence using CROSSMATCH program and SNP was found

between sequences selected by reciprocal best matches (.90%

sequence identity) and with more than Quality value=15 [33].

DR haplotypes
BAC clones of 152N13–244j14–16i4 from B2qCen side were

sequenced by the shotgun method described above and analyzed

by the methods of GENSCAN, Spidey [34] and Genwise [35] for

annotation. A sequence assembled from this DR haplotype 2

region was compared with a sequence from DR haplotype 1

region previously published [18].

Comparisons of MHC structures
Sequences of MHC from four species: human, mouse, dog, and

opossum which span from KIFC1 gene through UBD plus three

olfactory receptor genes were extracted from UCSC Genome

Browser. Gene coordinates tables from UCSC site were parsed by

Perl script and gene organizations were graphically plotted by R

script (http://cran.R-project.org).

Transcription factor binding sites in promoter regions of
predicted functional feline class I and class II DR genes
Sequences totaling 6 kb (5 kb upstream and 1 kb downstream)

from a potential translation start site (ATG) of predicted functional

feline class I genes (FLAI-E, I-H, I-K) and class II DR genes (FLA-

DRA1, DRA2, DRA3, DRB1, DRB3, DRB4) in addition to

human HLA-A, -B, -C class I genes and HLA-DRA, DRB1,

DRB3 class II genes were analyzed for the presence of potential

transcription factor binding sites using Match TM program with

TRANSFAC 7.0 database (http://www.gene-regulation.com/

pub/databases.html). In addition, S-Y-module sequences of

human HLA class II and I genes were used to screen above

6 kb sequences with b12 seq [29] with parameters, MATCH=1,

MISMATCH=21, GAP OPEN 5, GAP EXTENSION 2,

X_DROP OFF 0, EXPECT 10.00, WORDSIZE 7.

Results

Sequence
2,975,516 bp and 381,545 bp sequences were assembled for two

FLA regions on the pericentromeric and subtelomeric positions of

feline chromosome FcaB2. The first sequence covers from KIFC1

gene in the extended class II region through the entire class II, class

III and a part of class I regions from the point adjacent to BAT1 gene

through HLA-B, -C class I corresponding region, TRIM39 plus

HLA-92 (HLA-L) region to alpha satellite-rich region. The second

sequence covers from telomeric repeats rich region through TRIM

26/15/10 genes to the third olfactory receptor like gene (GenBank

accession Nos. EU153401, EU153402).

Annotation
The entire gene coordinates, and possible functions are listed in

Table 1. Gene organization and GC level was depicted in Figure 1.

Detailed graphic presentation for exon-intron structure, orienta-

tion, repeat sequence, CpG island and sequence identity level to

human HLA-6 COX 4.72 Mbp sequence was organized in

Figures 2. (Figure 2A-1 was shown in the main text. Please see

Figure S1 supporting file).
Extended and classical class II region. Extended class II

region spans 230 Kbp from KIFC1 gene to the point adjacent to

DPB pseudogene. Fourteen human gene homologues and 2

unknown coding regions were found. Classical class II region

spans 884 Kbp. Twenty-five human gene homologues were found in

the region defined from DPB pseudogene to the point adjacent

region of NOTCH4 gene. Annotation and sequence of a part of this

region, (KIFC1, previously assigned as HSET to BTNL2), were

described elsewhere [18]. Briefly, a pair of DPA, B pseudogenes, 3

pairs of DRA, B genes were identified with one DRB pseudogene. A

set of genes which are involved in antigen processing, including a

pair of DOA, DOB, DMA, and B genes, two antigen transporter

genes, TAP1, 2, and protease genes, LMP2, 7 were found. In

addition, two butylophillin genes, BTNL2, BTL2, and BRD2

(previously assigned as RING3) genes were found.
Class III region. FLA class III region spans 520 Kbp which

encodes fifty-one human gene homologues and two unknown

coding regions.

MHC Structure and SNP Analysis
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Table 1. Predicted Genes, their Functions and Coordinates in FLA.

Gene Functional/physiological properties/other name/structure Orientation Start End Length

KIFC1 kinesin family member C1 2 1243 13226 11983

RPS28 ribomal protein S28 + 25869 27731 1862

X1 unknown: cfa chr12.6 - 029.a N-SCAN gene prediction + 66551 66793 242

DAXX death-associated protein 6 + 74219 77417 3198

ZBTB22 zinc finger and BTB domain containing 22 + 79170 80865 1695

TAPBP TAP binding protein (tapasin) + 82211 92070 9859

RGL2 ral guanine nucleotide dissociation stimulator-like 2 + 96755 101963 5208

BING4 WD domain + 105084 112722 7638

B3GALT4 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 4 2 113431 114583 1152

RPS28[KE3] ribomal protein S28 2 115583 120594 5011

ARE1 Yeast sac2 homolog, suppressor of actin mutant 2, Sacm2l, coiled coil structure + 121032 136177 15145

RING1 ring finger protein 1 2 141255 167593 26338

KE6 Steroid dehydrogenase-like protein (estradiol 17 beta-dehydrogenase 8) 2 170695 172885 2190

KE4 Transmembrane protein with histidine-rich charge clusters 2 173342 175211 1869

RXRB retinoid X receptor, beta + 177083 181628 4545

COL11A2 collagen, type XI, alpha 2 + 184143 212170 28027

X2 unknown: cfa chr12: 5,766,607–5,773,167 2 216881 223065 6184

DPBp Class II antigen beta chain, pseudogene 2 231611 242652 11041

DPAp Class II antigen alpha chain, pseudogene + 245150 268064 22914

DNA DOA, heterodimerize with DOB in pre-B cells, peptide loading for class II antigen at low PH + 278617 289676 11059

BRD2 bromodomain containing 2 2 303996 327744 23748

DMA Nonclassical class II antigen, alpha chain, peptide loading for class II antigen + 329474 332504 3030

DMB Nonclassical class II antigen, beta chain, heterodimer with DMA,peptide loading for class II
antigen

+ 342380 351767 9387

LMP2 Proteosome subunit to cleave peptides for class I antigen 2 416025 419082 3057

TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) + 421610 428032 6422

LMP7 Proteosome subunit to cleave peptides for class I antigen + 431491 433586 2095

TAP2 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP) + 435278 446029 10751

DOB Nonclassical class II antigen, beta chain, heterodimer with DNA, H2-IAB2 in mouse + 456252 465656 9404

DRB4 Class II antigen, beta chain 2 509012 514820 5808

GAPDH Glycerol aldehyde phosphodehydrase, pseudogene 2 563173 575620 12447

DRB1 Class II antigen, beta chain + 596698 607755 11057

DRA1 Class II antigen, alpha chain 2 621375 624059 2684

RPS28p ribomal protein S28 gene fragment + 631565 633427 1862

DRB2p Class II antigen, beta chain pseudogene with intron 1 and exon 2 + 652000 659950 7950

DRB3 Class II antigen, beta chain + 664799 679467 14668

DRA2 Class II antigen, alpha chain 2 688714 691459 2745

DRA3 Class II antigen, alpha chain 2 722112 725240 3128

BTL2 butyrophilin-like 2 (MHC class II associated) + 735556 754731 19175

BTL2 butyrophilin-like 2 (MHC class II associated) 2 765965 777458 11493

RPS28 ribomal protein S28 + 782864 783037 173

HNRPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1 2 829773 830860 1087

RPS28 ribomal protein S28 + 984596 984769 173

NOTCH4 Notch homolog 4 (Drosophila) + 1206316 1229484 23168

GPSM3 G-protein signalling modulator 3 (AGS3-like, C. elegans) 2 1230443 1231562 1119

PBX2 pre-B-cell leukemia transcription factor 2 + 1234538 1236556 2018

AGER advanced glycosylation end product-specific receptor + 1238751 1241285 2534

AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 (lysophosphatidic acid acyltransferase, alpha) + 1250819 1252976 2157

EGFL8 EGF-like-domain, multiple 8 2 1254290 1255788 1498

MHC Structure and SNP Analysis

PLoS ONE | www.plosone.org 3 July 2008 | Volume 3 | Issue 7 | e2674



Gene Functional/physiological properties/other name/structure Orientation Start End Length

PPT2 palmitoyl-protein thioesterase 2 2 1258652 1263918 5266

PRRT1 proline-rich transmembrane protein 1 + 1267796 1269170 1374

FKBPL FK506 binding protein like + 1284306 1285355 1049

CREBL1 cAMP responsive element binding protein-like 1 + 1285915 1300603 14688

TNXB tenascin XB + 1310433 1357909 47476

CYP21A2 cytochrome P450, family 21, subfamily A, polypeptide 2 2 1358128 1360631 2503

C4A complement component 4A (Rodgers blood group) 2 1363648 1378177 14529

STK19 serine/threonine kinase 19 2 1379597 1384827 5230

DOM3Z dom-3 homolog Z (C. elegans) + 1385598 1387305 1707

SKIV2L superkiller viralicidic activity 2-like (S. cerevisiae) 2 1387465 1394012 6547

CFB complement factor B 2 1394591 1402014 7423

C2 complement component 2 2 1402258 1415710 13452

ZBTB12 zinc finger and BTB domain containing 12 + 1448172 1449551 1379

EHMT2 euchromatic histone-lysine N-methyltransferase 2 + 1454322 1466627 12305

SLC44A4 solute carrier family 44, member 4 + 1467409 1479530 12121

NEU4 Neuraminidase 4 + 1480105 1483273 3168

RPS28 ribomal protein S28 + 1488926 1489106 180

HSPA1A heat shock 70 kDa protein 1A 2 1513315 1515240 1925

HSPA1A heat shock 70 kDa protein 1A 2 1524090 1526015 1925

HSPA1A heat shock 70 kDa protein 1A + 1528138 1529946 1808

LSM2 LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae) + 1532633 1537716 5083

VARS valyl-tRNA synthetase + 1539067 1553500 14433

C6orf27 chromosome 6 open reading frame 27 + 1555291 1563506 8215

C6orf26 chromosome 6 open reading frame 26 2 1564291 1565750 1459

MSH6 mutS homolog 6 (E. coli) 2 1566395 1590460 24065

CLIC1 chloride intracellular channel 1 + 1594157 1598924 4767

DDAH2 dimethylarginine dimethylaminohydrolase 2 + 1600599 1602528 1929

C6orf25 chromosome 6 open reading frame 25 2 1604591 1606252 1661

LY6G6C lymphocyte antigen 6 complex, locus G6C + 1607799 1610137 2338

LY6G6D lymphocyte antigen 6 complex, locus G6D 2 1611498 1613549 2051

LY6G6E lymphocyte antigen 6 complex, locus G6E + 1615087 1616230 1143

C6orf21 chromosome 6 open reading frame 21 2 1618100 1620941 2841

BAT5 HLA-B associated transcript 5 + 1623128 1636811 13683

LY6G5C lymphocyte antigen 6 complex, locus G5C + 1642789 1645897 3108

LY6G5B lymphocyte antigen 6 complex, locus G5B 2 1649307 1650335 1028

CSNK2B casein kinase 2, beta polypeptide 2 1651325 1654509 3184

BAT4 HLA-B associated transcript 4 + 1656917 1658511 1594

C6orf47 chromosome 6 open reading frame 47 + 1660571 1661426 855

LTB lymphotoxin beta (TNF superfamily, member 3) + 1663590 1665305 1715

TNF tumor necrosis factor (TNF superfamily, member 2) 2 1668300 1670066 1766

LTA lymphotoxin alpha (TNF superfamily, member 1) 2 1672461 1673412 951

NFKBIL1 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 2 1685899 1694249 8350

ATP6V1G2 ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G2 + 1695942 1697113 1171

BAT1 HLA-B associated transcript 1 + 1699863 1710709 10846

MCCD1 mitochondrial coiled-coil domain 1 2 1711244 1714362 3118

X3 unknown: cfa chr12: 4,026,686–4,028,708 2 1716465 1722099 5634

LOC345645 similar to peptidase (prosome, macropain) 26S subunit, ATPase 1 2 1722382 1723468 1086

FLAI-A non classical class I molecule + 1727339 1733904 6565

RPS28 ribomal protein S28 + 1741091 1741264 173

FLAI-Bp Classical class I antigen gene fragment + 1754279 1755539 1260

Table 1. cont.

MHC Structure and SNP Analysis
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Gene Functional/physiological properties/other name/structure Orientation Start End Length

FLAI-C non classical class I molecule 2 1778815 1781240 2425

RPS28 ribomal protein S28 + 1791524 1791697 173

MIC1 MHC class I releated gene 1 2 1802050 1803673 1623

FLAI-Dp Classical class I antigen gene fragment 2 1812028 1826561 14533

X4 unknown 2 1816059 1819441 3382

X5 unknown: cfa chr12: 3,304,294–3,451,219 + 1822307 1852375 30068

BAT1p BAT1 fragement 2 1854809 1855450 641

FLAI-E Classical class I antigen ( with long cytoplasmic tail) + 1859534 1862925 3391

X6 unknown 2 1865368 1878940 13572

MIC2p MHC class I releated gene 2 fragment + 1880418 1880645 227

RPS28 ribomal protein S28 + 1892390 1892515 125

FLAI-F non classical class I molecule + 1918438 1921808 3370

FLAI-Gp Classical class I antigen gene fragment 2 1938101 1940148 2047

MIC3 MHC class I releated gene 3 2 1962637 1964257 1620

FLAI-H Classical class I antigen 2 1973577 1976991 3414

BAT1p BAT1 fragement + 1979546 1980192 646

FLAI-Ip Classical class I antigen gene fragment + 2003006 2003225 219

FLAI-J non classical class I molecule 2 2011852 2015260 3408

BAT1p BAT1 fragement + 2017763 2018402 639

BAT1p BAT1 fragement 2 2059127 2059750 623

FLAI-K Classical class I antigen 2 2083736 2087122 3386

BAT1p BAT1 fragement + 2089903 2090242 339

FERVmlu2 endogenous retrovirus similar to brown bat (Motis Lucifugus) endogenous retrovirus 2 2 2103256 2105890 2634

MIC4p MHC class I releated gene 4 fragment 2 2117309 2117536 227

X7 unknown: cfa chr10: 6,669,201–6,794,639 2 2117453 2120737 3284

FLAI-L non classical class I molecule 2 2145008 2148428 3420

BAT1p BAT1 fragement + 2150915 2151554 639

FLAI-M non classical class I molecule 2 2183520 2187094 3574

BAT1p BAT1 fragement 2 2205884 2206254 370

RD114(ECE1) baboon retrovius related endogenous retrovirus + 2212532 2215463 2931

FERVmlu1 endogenous retrovirus similar to brown bat (Motis Lucifugus) endogenous retrovirus 1 + 2219742 2244701 24959

FLAI-Np Classical class I antigen gene fragment + 2221196 2221264 68

BAT1p BAT1 fragement 2 2258148 2258782 634

FLAI-O non classical class I molecule + 2260882 2264315 3433

BAT1p BAT1 fragement + 2293369 2294534 1165

FLAI-Pp Classical class I antigen gene fragment 2 2301870 2302131 261

FLAI-Q non classical class I molecule + 2329070 2332537 3467

POU5F1 POU domain, class 5, transcription factor 1, OCT3 + 2354289 2362844 8555

SC1 TCF19, transcription factor 19 2 2364737 2367161 2424

CCHCR1 coiled-coil alpha-helical rod protein 1 + 2370568 2382864 12296

CDSN corneodesmosin + 2401577 2410158 8581

X8 unknown: chr12: 3,698,941–3,701,819 + 2446230 2449015 2785

VARSL valyl-tRNA synthetase like 2 2449807 2461727 11920

GTF2H4 general transcription factor IIH, polypeptide 4, 52 kDa 2 2461975 2465896 3921

DDR1 discoidin domain receptor family, member 1 + 2466245 2488040 21795

TAXREB107 TAX response lement-binding protein + 2527942 2547435 19493

IER3 immediate early response 3 + 2607659 2607996 337

FLOT1 flotillin 1 + 2610071 2622235 12164

TUBB tubulin, beta 2 2625114 2628405 3291

MDC1 mediator of DNA damage checkpoint 1 + 2630309 2644393 14084

Table 1. cont.

MHC Structure and SNP Analysis
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Class I region. FLA class I region were classified as three

subregions based on chromosomal localization and gene contents.

The first class I region, proximal class I region spans 600 Kbp

from the first class I gene (FLAI-A) to the last class I gene (FLAI-Q)

in this HLA-B, -C corresponding region adjacent to the class III

region. This region encodes seventeen class I genes/gene

fragments based on sequence alignments with full length feline

class I cDNA sequence. Eight BAT1 gene fragments are located in

the vicinity of class I genes. Three RPS28 gene fragments, four

class I-related (MIC) genes or gene fragments and four unknown

coding regions were also identified.

The second class I subregion, a central class I region, spans

600 kb region from POU5F1 (previously assigned as OCT3) gene

to the alpha satellite repeat-rich pericentromeric region. There are

32 human gene homologues including two class I gene/gene

fragments in HLA-92 (HLA-L) region, three unknown coding

regions. The third class I subregion, distal class I region, spans

360 Kbp from 47 telomere repeats of (TTAGGG) through the

third olfactory receptor like gene. This region encodes ten human

gene homologues and three unknown coding regions. Three

TRIM genes, TRIM26, TRIM15, TRIM10 were identified,

however, TRIM40, 31 gene homologues were not recognized.

Gene Functional/physiological properties/other name/structure Orientation Start End Length

NRM nurim (nuclear envelope membrane protein) + 2648569 2653735 5166

KIAA1949 KIAA1949 + 2653850 2660634 6784

DHX16 DEAH (Asp-Glu-Ala-His) box polypeptide 16 + 2663783 2678921 15138

C6orf136 chromosome 6 open reading frame 136 2 2679243 2683432 4189

CG3967-PC Drosophila melanogaster protein Cg3967-pc homolog 2 2683765 2697339 13574

MRPS18B mitochondrial ribosomal protein S18B 2 2698088 2703714 5626

PPP1R10 protein phosphatase 1, regulatory subunit 10 + 2711308 2722165 10857

ABCF1 ATP-binding cassette, sub-family F (GCN20), member 1 2 2724683 2735486 10803

PRR3 proline rich 3 2 2743092 2747113 4021

GNL1 guanine nucleotide binding protein-like 1 + 2748233 2755021 6788

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 2 2779084 2786223 7139

RPS28 ribomal protein S28 + 2800184 2807333 7149

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) + 2818343 2818789 446

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) + 2820533 2821355 822

X9 unknown: PLEC1, PLECTIN1 2 2825427 2840447 15020

X10 unknown: SLC12AL Intron, sodium potassium chloride cotransporter2 + 2842351 2843559 1208

RPS28 ribomal protein S28 + 2850617 2852479 1862

RNASE Ribonuclease + 2867225 2867494 269

TRIM39 tripartite motif-containing 39 2 2870168 2879926 9758

FLAI-Rp Classical class I antigen gene fragment + 2905161 2905383 222

FLAI-S non classical class I molecule 2 2910524 2913237 2713

PNPLA6 Patatin-like phospholipase domain containing 6 2 2956238 2961356 5118

PeriCentromic Region and chromosomal break and inversion

Subtelomeric Region

X11 unknown: cfa chr6: 27,705,326–27,717,672 2 7700 29900 22200

TRIM26 tripartite motif-containing 26 protein + 102400 111040 8640

TRIM15 tripartite motif-containing 26 protein 2 125740 132100 6360

TRIM10 tripartite motif-containing 26 protein + 134820 140560 5740

X12 unknown: cfa chr35: 29,351,535–29,362,511 2 142140 158060 15920

PPP1R11 protein phosphatase 1, regulatory (inhibitor) subunit 11 2 189360 193120 3760

MOG myelin oligodendrocyte glycoprotein 2 219300 228580 9280

GABBR1 gamma-aminobutyric acid (GABA) B receptor 1 + 248040 268920 20880

OLFR1 Olfactory receptor 2 282860 289000 6140

UBD ubiquitin + 299600 301440 1840

X13 unknown 2 303120 303740 620

OLFR2 Olfactory receptor 2 316640 317400 760

OLFR3 Olfactory receptor + 330520 352180 21660

doi:10.1371/journal.pone.0002674.t001

Table 1. cont.
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PPPR11 and MOG genes are located in 26 Kbp interval, while in

human HLA, these two genes are located with 340 kb interval due

to the existence of eleven class I genes/gene fragments as HLA-A

region.

GC contents. GC contents nearly reached at 60% level in the

extended class II, class III, and the distal class I regions. The lowest

GC content of nearly 40% was found in the classical class II region

and sharply increased at the border of class II and class III regions.

The proximal/central class I regions kept GC content at 50% level

(Figure 1).

Repeats
Interspersed repeats. Interspersed repeats occupied about

thirty-four percentages of MHC region, which is approximately

the same level as found in the cat genome (32%), but significantly

fewer than human HLA region (48%) or human genome (46%).

Table 2 summarized the repeat components in each FLA (sub)

class. Though SINE repeat contents are relatively equal in each

region ranging from 8 to 14%, the LINE repeat contents are

significantly different. The highest LINE contents were found in

classical class II and proximal class I regions, (more than 60% of

total sequences), where major functional MHC gene

amplifications have occurred. The lowest LINE contents were

observed in the gene-rich extended class II and class III regions, at

approximately 20% level. An intermediate level of LINE contents

was found in central and distal class I regions at approximately

40% level.

Simple Tandem Repeats (STRs). Frequency of STRs was

calculated in each FLA subregion and was compared with results

obtained from human HLA 6COX haplotype sequence. These

results were summarized in Table 3. A total of 541 STRs (di-, tri-,

tetra-, penta-) with more than 12 and 5 perfect repeats for di- and

others, e.g. (CA)12 and (GGA)5, respectively were found in FLA. The

frequency of STRs (1 every 6.17 kb) was 50% higher than that in

human HLA (1 every 9.93 kb) due to at least 3 times higher

frequency of dinucleotide repeats. This trend was more obviously

observed in the classical class II region. Approximately 4 times more

occurrence of dinucleotide STRs was found in this FLA subregion.

Dotplot analyses of HLA, DLA, FLA. MHC sequences

spanning from UBD plus three olfactory receptor genes to KIFC1

in HLA, DLA, FLA were compared in pairwise fashion. These

analyses, DLA vs. HLA (Figure 3A), FLA vs. HLA (Figure 3B) and

FLA vs. DLA (Figure 3C) revealed mosaic structures of highly

conserved regions (solid lines), gene duplication (square with dots),

deletions (spaces between solid lines in one axis but not in other) and

divergent regions (broken lines). Figure 3A and 3B showed similar

patterns between DLA vs. HLA and FLA vs. HLA, indicating

conserved class II, III, and central class I regions plus class I gene

amplifications, though the level of class I gene amplification was

lower in DLA due to the fact that only 3 class I genes exit in HLA-B,

Figure 1. Gene Organization, SNP level, GC contents in FLA. (A) Gene organization of FLA. Genes with forward orientation, which towards to
telomere in human HLA, but towards to centromere in FLA, and away from telomere in distal class I region in FLA were placed above the solid line. A
position of the ancient chromosome break and an inversion was indicated by double slashed lines and genes with opposite orientation were placed
below the solid line. (B) Coding (CDS) SNPs. CDS SNPs were counted based on exon structure of each gene. Pseudogenes CDS SNPs were omitted. No.
of SNPs per 10 kbp were plotted. (C) Single nucleotide polymorphism (SNP). SNP was counted in 10 Kbp window and shift 1 Kb. (D) GC content. GC
content was counted in 10 Kbp window and shift 1 Kb and number was plotted.
doi:10.1371/journal.pone.0002674.g001
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-C corresponding region. The observation that DLA and FLA lack

HLA-A class I region was also evident in this analysis. Figure 3C also

showed that FLA and DLA were highly conserved in gene contents

and organization except that the level of class I gene amplification

was higher in FLA and sequences around pericentromere and

subtelomere had highly divergent sequence due to the numerous and

different types of gene translocations from other genome sites,

resulting in a large broken solid line in these regions.

Table 3. Simple Tandem Repeats (STRs) in FLA.

FLA

Extended class II Classical class II Class III Proximal class I Central class I Distal class I Total

DI 25a 9.26b 118 8.26 30 17.36 47 13.34 52 11.95 26 13.91 298 11.20

TRI 11 21.05 19 51.30 13 40.07 10 62.70 13 47.79 10 36.15 76 43.91

TETRA 9 25.73 37 26.34 13 40.07 39 16.08 23 27.01 17 21.27 138 24.18

PENTA 2 115.79 7 139.24 8 65.11 7 89.58 4 155.31 1 361.55 29 115.07

TOTAL 47 4.93 181 5.39 64 8.14 103 6.09 92 6.75 54 6.70 541 6.17

size (bp) 231580 974699 520919 627039 621255 361545 3337061

HLA (6 COX)

Extended class II Classical class II Class III Class I Total

DI 19 12.30 25 35.69 12 54.70 45 46.19 101 38.23

TRI 9 25.96 18 49.57 17 38.61 71 29.28 115 33.57

TETRA 11 21.24 36 24.78 13 50.49 87 23.89 147 26.26

PENTA 5 46.72 3 297.41 3 218.79 15 138.58 26 148.49

TOTAL 44 5.31 82 10.88 45 14.59 218 9.54 389 9.93

size (bp) 233622 892216 656365 2078648 3860851

a.No. of more than 12 perfect repeats or 5 repeats were counted for dinucleotide (DI) and other STRs (TRI, TETRA, PENTA), respectively.
b.Average interval (kbp) of occurrence of STR was shown.
doi:10.1371/journal.pone.0002674.t003

Figure 2. Percent Identity Plots between FLA and HLA. (A) Percent identity Plot of FLA extend class II, classical class II, class III, proximal and
central class I regions. Genes and exons were highlighted with yellow and green colors, respectively. Gene, exon, UTR, simple repeats, MIR, other SINE,
LINE1, LINE2, LTR, other repeats, CpG/GpC ratios were indicated. FLA sequence was compared with human HLA 6COX sequence. (B) Percent Identity
Plot of FLA distal class I region. Same methods and criterions were used as in Figure 2(A). Only Figure 2A-1 was included in this text. The rest of
Figure 2A and 2B can be found in Supporting Information File, Figure 2AB_All.tar.bzip2.
doi:10.1371/journal.pone.0002674.g002

Table 2. Interspersed Elements in FLA subregions.

extended

class II

classical

class II class III

proximal

class I

central

class I

distal

class I FLA cat genome HLA

SINES: 14.86 10.19 11.16 8.04 10.93 8.82 8.53 11.2 17.59

MIRs 2.29 1.69 2.46 0.44 2.07 1.56 1.05 3.10 16.06

LINES: 12.57 34.82 10.84 32.07 23.41 21.02 21.31 14.26 16.59

LINE 1 8.61 32.88 6.86 29.13 19.76 19.39 18.63 10.79 13.35

LINE 2 3.87 1.79 3.58 2.88 3.18 1.44 2.54 2.82 3.09

L3/CR1 0.07 0.14 0.40 0.05 0.36 0.13 0.14 0.36 0.16

LTR elements: 2.84 4.49 1.39 5.17 4.51 4.93 2.69 4.44 10.55

MaLRs 1.90 0.79 0.82 1.51 1.57 0.91 1.04 2.14 2.61

ERVL 0.34 0.88 0.27 1.79 0.57 1.59 0.81 1.21 2.11

ERV classI 0.60 2.74 0.29 1.87 2.32 2.43 0.81 1.05 4.25

DNA elements: 5.23 1.56 1.63 2.56 1.72 1.43 1.62 2.19 2.64

MER1_type 2.30 1.16 0.97 1.73 1.07 0.81 1.31 1.26 1.52

MER2_type 1.46 0.17 0.26 0.83 0.33 0.23 0.14 0.39 0.88

Total of Interspersed 35.48 51.07 25.07 47.84 40.57 36.19 34.14 32.1 48.14

Percentage of sequence (%) was shown in each subregion.
doi:10.1371/journal.pone.0002674.t002

MHC Structure and SNP Analysis

PLoS ONE | www.plosone.org 9 July 2008 | Volume 3 | Issue 7 | e2674



Endogenous retrovirus sequences. One of the baboon-

derived endogenous retroviruses, ECE1 (RD114) which had 99%

sequence identity (1631/1633) with GenBank RD114 (ECE1)

AF155060 and two new types of endogenous retroviruses

FERVmlu1 and 2, which showed high sequence similarity with

recently submitted sequences by an NISC Comparative Sequencing

Initiative project of brown bat (Myotis lucifugus) BAC clone (95%

sequence identity with 83% coverage, and .85% sequence identity

with 83% coverage, respectively) were also recognized within

1401kb region (Figure 4). Detailed open reading frame (ORF)

analyses showed FERVmlu1 and 2 have 140 and 19 ORFs which

sizes range from 102–900 and 102–516, respectively. The largest

ORF of FERVmlu1 encodes 324 amino acid residues which have

70% similarity to a part of recombinant mouse-MuLV/RaLV Pol

region, half of retroviral aspartyl protease, DNA binding region and

a half of putative active site, however, other ORFs have no

significant homology to gag, pol, env regions.

The FERVmlu2 have two Pol-like ORFs. The ORF1 is similar

to reverse transcriptase like sequence, in which encodes a DNA

binding domain and a putative active site. ORF2 has similarity to

an integrase core domain. The third ORF showed a gag – p30

superfamily motif. Nine LTR like sequences were recognized in

FERVmlu1 by Repeatmasker program, indicating sequence

divergences ranging from 13 to 32% in canine, baboon,

chimpanzee endogenous retroviral LTRs.

Single nucleotide polymorphism (SNP). The SNP count

plot (Figure 5) in the MHC region from 1.96 cat whole genome

shotgun sequence indicated that this region is homozygous.

Therefore, MHC BAC sequences were aligned with MHC

homozygous 1.96 whole genome shotgun sequence contigs to

examine SNP levels in FLA [32]. A total of 2,835,361 bps were

aligned with sequence quality value, more than 15 by reciprocal best

matches (.90% homology) using the algorithm of Smith-

Waterman. This covers more than 85% of the entire FLA region.

Distributions of these SNPs and coding SNPswere plotted in Figure 1

and the summary was presented in Table 4. A total of 11,654 SNPs

were identified by this method. FLA SNP rate was slightly higher

than the rate of two HLA haplotypes (0.00411 vs. 0.00337), and

more than 2 times higher than genome wide regions of SNP rate

(0.0017) found in regions of heterozygous cat WGS result. Ten to 20

times higher SNP rate than average FLA SNP rate was found in class

II DR region, class II/III border region, proximal class I region and

pericentromeric and subtelomeric regions. Clustered high coding

SNP rates were observed in the proximal class I region.

Two DR haplotypes in a single BAC library
We previously constructed a composite nucleotide sequence of

the domestic cat MHC class II region spanning 758 kb from

HSET to BTLII that included the DR region [18]. As shown in

Figure 6A the DR region spans approximately 250 Kb and

consists of 3 DRA and 4 DRB genes, both gene families are

encoded by 5 exons with the exception of DRB2 which lacks the

full complement of exons and thus represents a pseudogene. We

determined the sequence of the second haplotype of a domestic cat

DR region using BAC clones (152n13–244j14–16i4) from a single

individual. The DR haplotype 2 contained three complete DRA

genes (DRA1, DRA2 and DRA3), five DRB genes (four complete

and one partial) similar to DRB4, DRB1, DRB3 and DRB2 plus

new DRB gene, namely DRB5 as well as a BTLII gene all with the

same order and orientation as observed in the DR haplotype 1

(except DRB5 adjacent to DRB1 with same orientation)

(Figure 6B). To determine if DRB1 and DRB4 also displayed

allelic variation, we aligned the genomic sequences of DRB1, 3

and 4 in the region of exon 2 and flanking introns 1 and 2. To

assign these exon 2 sequences to specific DRB alleles we compared

them to 71 different domestic cat DRB exon 2 alleles of 238 bp in

length present in the NCBI nucleotide sequence database (nr/nt).

The results summarized in Figure 6B show that DR haplotype 2

contains DRB3 exon 2 identical to DRB*0504 whereas DR

haplotype 1 contained a DRB3 exon 2 that differed by 2 bp from

DRB*0204, and thus represents a new domestic cat DRB allele

(DRB*0204_new1) but differ from nucleotides of 70 nts between

DR hap1 and DR hap2. Similarly, DRB1 exon2 sequences in

haplotypes 1 and 2 contain the alleles which were identical to

DRB*0511 and DRB*0403, respectively, but differ in 31

nucleotides of 233 nts. In addition, haplotype 1 was also positive

for DRB4 which showed 229/233 nucleotide sequence identities

with DRB*0107_new1. In contrast, the haplotype 2 DRB4

sequence was identical (233/233) to DRB*0107. The DR

haplotype 2 contains additional DRB genes designated DRB5

that was not observed in haplotype 1 that displays identical exon 2

sequences with DRB*0212. In summary, this data show that a

single domestic cat (Fca273) contains three or four DRB genes in

the order DRB4-DRB1-(DRB5)-DRB3, that the three loci are

heterozygous, and resolve into 2 distinct haplotypes consisting of

DRB*0107_new1-DRB*0511-DRB*0204_new1 (haplotype 1) and

DRB*0107-DRB*0403-DRB*0212-DRB*0504 (haplotype 2).

Dotplot analysis confirmed this conclusion, indicating duplicated

DRB genes adjacent to DRB1 gene (Figure 7). Deduced amino

acid sequences of above alleles were compared in each DRB loci

(Figure 6C). Of these loci, DRB1 alleles were the most

Figure 3. Dotplot analyses. Two FLA sequences were connected
based on HLA organization and oriented as follows; Telomeric side of
FcaB2qRB2qcenRB2pterRB2p. The centromeric side of two DLA
sequences, one on cfa12qcen and the other on cfa35qter were also
connected based on HLA organization as follows; telomeric side of
cfa12qRcfa12qcenRcfa35qterRcfa35q. (A) Dotplot analysis between
DLA (KIFC1 to the third olfactory receptor genes from MOG) and HLA
6COX sequences (X axis vs. Y axis). (B) Dotplot analysis between FLA
(KIFC1 to the third olfactory receptor genes from MOG) and HLA 6 COX
sequences (X axis vs. Y axis). (C) Dot plot analysis between FLA (X axis)
and DLA (Y axis).
doi:10.1371/journal.pone.0002674.g003
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polymorphic containing 23 different residues. DRB3 was the

second most polymorphic loci, maintaining 17 different residues.

In contrast, DRB4 had only one amino acid substitution.

The additional DRB loci found in haplotype 2, named as DRB5

had 16 different residues compared with DRB1 loci in haplotype

2. On antigen recognition site (ARS) defined by X-ray

crystallography [36], 22 sites forms ARS. Of these sites, 15 sites

were found highly polymorphic in FLA.

Transcription factor (TF) binding sites in predicted
classical genes
We have analyzed transcription factor binding sites a total of

6 kbp (5 kb upstream and 1 kb downstream of ATG putative

translation start site) of predicted feline classical class II genes

(DRA1, 2, 3, DRB1, 3, 4: Figure 8A, Figure 8B) and classical class

I gene candidate genes (I-E, I-H, I-K: Figure 8C), plus human

classical class II and I genes (DRA, DRB1, DRB3, HLA-A, -B, -

C). Figure 8A depicts the result of DRA genes. All three feline

DRA genes have CCAAT-box. The DRA1 and DRA2 genes have

striking similarity with TF binding sites up to about 4 kb upstream

of ATG site and at least NF-Y binding site, indicating recent gene

duplication. In contrast, the DRA3 gene has distinct TF binding

sites from the other two genes and is relatively similar to those of

the human DRA gene, (e.g., NFY-RFX1-RFX1 sites, Oct-1 sites,

sox-9 sites). It may be suggested that the expression pattern is

different in these two groups of DRA genes.

Figure 4. Neighbor-Joining Tree with 1,000 bootstrap for domestic cat endogeneous retrovirus sequences. ECE1 represent RD114
endogeneous retrovirus transmitted from baboon, enFeLV represent a full length FeIV endogeneous retrovirus. enRVMlu represent brown bat
retrovirus sequence and FERVmlu1, FERVmlu2 represent new endogeneous genes found in the proximal class I region of FLA in this study.
doi:10.1371/journal.pone.0002674.g004

Figure 5. Single Nucleotide Polymorphism (SNP) plot on cat chromosome B2 coordinates. Number of SNPs were counted based on
whole genome shotgun sequences and the number of SNPs per 10 Kbp were plotted. A solid line represents average SNP rate (per 10 Kbp) in
heterozygous regions of a female Abyssinian cat genome. Areas of FLA were indicated as brackets.
doi:10.1371/journal.pone.0002674.g005
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Figure 8B depicts the difference between TF binding sites in

feline DRB1, -3, -4 genes, and human DRB1 and -3. All of these

genes lack the CCAAT-box site. The NF-Y site was found in FLA-

DRB1, DRB4, and HLA-DRB3. However, no apparent similar

TF binding site patterns were found. In class I genes, all predicted

feline classical class I genes have a CCAAT-box site plus a unit of

AP1-HNF4-Pax-4 sites adjacent to the CCAAT-box (Figure 8C).

FLA I-H, I-K had relatively similar TF binding sites (e.g., Pax-4-

Pax4, Evi-1, FOXD3-COMP1-Hand1/E47, Nkx2-5). Human

HLA-B, -C had relatively similar TB binding sites (e.g., CCAAT-

box, Oct1, Evi-1-FOXD3, Evi-1) however, the HLA-A gene had

no CCAAT-box and was quite different in TF site pattern from

HLA-B, -C genes. No apparent similar TF binding patterns were

found in the FLA and HLA classical class I genes.

MHC class I and class II gene promoter structures were well

documented and intensely analyzed by many molecular biological

methods [37,38]. MHC class II genes are regulated by a complex

system containing two gene-specific transcription factors, regula-

tory factor X complex (RFX) and CIITA, and maintain an

approximately 67 bp sequence, a strictly conserved regulatory

module (S-X1-X2-Y) immediately upstream of the promoters [37].

In contrast, MHC class I genes are regulated by NFkB2, NFkB1,

interferon-c, RFX, and CIITA, and form an approximately

120 bp conserved regulatory module sequence, enh.A-ISRE-W/

S-X1-X2/site a-Y/enh.B [38].

Similar conserved regulatory modules were identified in most of

FLA class I and II genes analyzed here and summarized in

Figure 8D.

Discussion

We report here annotation and SNP analysis of cat MHC

(FLA). This study revealed one hundred forty-seven human gene

homologues with mostly conserved gene order in five subregions,

extended class II, class III, proximal class I, central class I, and

distal class I regions. Extensive rearrangement events were obvious

in classical class II and class I regions by dotplot analyses of three

mammalian MHC, human HLA, canine DLA, and feline FLA

(Figure 3). Especially, deletion of HLA-A and -E regions in both

DLA and FLA, and expansion of the regions in FLA correspond-

ing to HLA-B, -C were clearly observed (Figure 3A, B). A dotplot

between DLA and FLA (Figure 3C) suggests that these two MHC

Table 4. Characterization of 19 Class I Genes in FLA.

Methods Applied

Gene

Dotplota with

full length cDNA Coding Prediction
Sequenced homology

with cDNA

31 conservede Amino acid

residues in a1/a2 domains Assignmentf
BAT1pg

association

Ib IIc

FLA I-A + 2 2 nonclassical 2

FLA I-B 2 gene fragment 2

FLA I-C + 2 2 nonclassical 2

FLA I-D 2 gene fragment 2

FLA I-E + 2 ++ ++ (All) classical +

FLA I-F + 2 ++ 2 (25) nonclassical 2

FLA I-G 2 gene fragment 2

FLA I-H + + + + + (21) classical +

FLA I-I 2 gene fragment 2

FLA I-J + + + 2 (23) nonclassical +

FLA I-K + + ++ + ++ (All) classical +

FLA I-L + 2 + 2 (25) nonclassical +

FLA I-M + 2 + 2 (26) nonclassical +

FLA I-N 2 gene fragment 2

FLA I-O + + 2 2 (25) nonclassical +

FLA I-P 2 gene fragment +

FLA I-Q + 2 2 nonclassical 2

FLA I-R 2 gene fragment 2

FLA I-S + 2 2 nonclassical 2

a.PIPmaker dotplot ( ) was used. + and 2 represent full-length and partial length, respectively compared with full length FLAIA24 cDNA.
b.GENSCAN was used to predict coding region for only full-length class I genes. + and 2 symbols represent right and wrong prediction of exon and intron boundaries in
each gene.

c.Spidey was used to examine sequence alignment of genomic cDNA class I sequences and splicing donor/acceptor sites. ++, +, and 2 symbols represent typical class I
exon/intron structures reported in human class I genes with all correct splicing donor/acceptor sites, with one or two missing splicing donor/acceptor sites, and
atypical exon/intron structures, respectively.

d.Class I cDNA sequences from MHC homozygous feline fibroblast cells were compared with all class I genomic sequences by Megablast Search ( ). + symbol represents
.99% sequence identity.

e.Thirty-one highly conserved amino acid residues found in a1 and a2 domains of human and cat class I antigens were examined. ++, +, 2 numbers represent all 31
conserved residues, one substitution and more than one substitutions, respectively.

f.Assignment of classical/nonclassical/gene fragment class I genes based on this study.
g.Symbols + and 2 represent presence and absence of BAT1gene fragment in vicinity of class I gene.
doi:10.1371/journal.pone.0002674.t004
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systems are more syntenic than those to HLA. However, the

manner of class I rearrangement was unique in each DLA and

FLA. Each DLA and FLA also had unique sequences near the

heterochromatin regions (near telomere and centromere) in canine

chromosome cfa35ter/cfa12cen and feline chromosome B2pter/

qcen regions. Among mammalian and MHC class I regions

reported so far, only mammals which belong to the group

Euarchontoglires (Primates and Rodentia) have class I E and A

subgroups, plus the evidence of the recombinant origin of the class

I E gene between class I A and B/C [39] suggests that the

formation of these two class I subgroups (A, E) occurred after the

split of two major mammalian groups, Euarchontoglires and

Laurasiatheria [Carnivora (dog and cat), Perissodactyla (horse),

Certartiodactyla (pig and cattle)].

Class II genes in FLA
Unlike all other mammalian MHCs which have a single DRA

gene, FLA maintains three possible functional DRA genes due to

two possible duplication events and one inversion [18]. The

deduced amino acid sequences coding a mature DRA peptide are

identical in these three DRA genes. However, significant levels of

difference in amino acid sequences in the signal peptide region,

which may suggest distinct roles in this region. In addition, distinct

TF binding sites in DRA1/2 and DRA3 may suggest distinct

expression patterns. All three DRB genes, common in two

haplotypes examined had significant levels of polymorphism in

exon 2 sequence which encodes peptides forming antigen binding

and T cell receptor recognition sites. The well documented S-X1-

X2-Y promoter module sequences were found in all DRA and

DRB genes immediate upstream of CCAAT-box site , except that

DRB4, which maintains this module sequence 7 kb upstream from

ATG site and 5.5 kb upstream of CCAAT-box. FLA is also

unique among mammalian MHC due to the fact that the entire

DQ region is deleted. Since canine MHC (DLA) maintains a pair

of A and B genes in its DQ region, this deletion event may occur

after the split of canids and felids (55MYA).

Class I genes in FLA
Class I gene amplicon of a combination of class I and BAT1

gene fragments are found here in FLA-specific manner, though the

human HLA-A region has two BAT1 gene fragments, suggesting

that relatively new origins of multiple class I genes than classical

class II families (DP, DQ, DR), which were estimated more than

80 MYA [40]. Gene structure of 19 FLA class I genes was

characterized and summarized in Table 5. Eleven class I genes

maintained full-length exons by dotplot, when compared with

FLA class I cDNA sequence and their coding sequences were

predicted by GENSCAN. Of those, six class I genes had intact

Figure 6. Haplotype analysis of the domestic cat MHC class II DR region. (A) Gene organization of the domestic cat MHC class II DR region
based on the nucleotide sequence of a composite haplotype as previously reported in Yuhki et al. [14]. The location of eight DR genes is shown with
the transcriptional orientation indicated by arrows. (B) Analysis of the haplotype structure of Fca273 (used to make the BAC library) based on
mapping of gene content of individual BAC clones by hybridization and sequence-based typing of exon 2 of BAC clones. DRB alleles were identified
based on comparison to 71 domestic cat DRB exon 2 sequences spanning 233 bp (after removal of primer sequences) present in the NCBI nucleotide
database. (C) Deduced amino acid sequences from two haplotypes were aligned in each loci and different residues in each loci were depicted in red.
Antigen recognition sites were shown as asterisks below the sequence alignment.
doi:10.1371/journal.pone.0002674.g006
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splicing donor/acceptor sites. Three genes (FLA I-E, I-H, I-K) had

31–32 highly conserved amino acid residues in a1 and a2 domains

which were reported in deduced amino acid sequences of FLA class I

transcripts from fibroblast cell lines [41]. Analysis of FLA class I

transcripts of a fibroblast cell line from MHC homozygous

Abyssinian cat used for cat genome project indicated that these

transcripts are derived from FLA I-H and I-K. In addition, all three

of these class I genes maintain the conserved enh.A-ISRE-W/S-X1/

X2-Y/enh.B promoter motif immediately upstream of CCAAT-

box. Together, we tentatively assigned FLA I-E, I-H, I-K as classical

class I genes and nine other genes as nonclassical class I genes.

This promoter analysis also revealed potentially distinct gene

regulation of other FLA class I genes. For example, FLA I-S and I-

O genes had an intact conserved promoter motif. However, I-S

class I gene did not have intact coding region nor expression in

fibroblast (Table 5). Also I-O class I gene did not maintain 5 highly

conserved deduced amino acid residues in its peptide binding

groove. Other class I genes, FLA I-A, I-Q lacked NFkB1, 2 and

IFN-c binding sites, and FLA I-J, I-L lacked Y/enh.B site.

Single Nucleotide Polymorphism (SNP)s
Overall, the SNP rate found in FLA (BAC sequence versus

MHC homozygous 1.96WGS contigs) was at least twice as much

higher than the SNP rate in average heterozygous region in the

WGS cat genome, (0.00411 versus 0.0017) and slightly higher but

nearly equivalent to the SNP rate found in two human HLA

haplotypes (6COX and 6QBL) (Table 4). A total number of

coding SNP (CDS SNP) is higher than human HLA (732 versus

341). A total of 193 CDS SNPs were found in class II and class I

genes. Of these, both class II DRB4 and DRB1 genes had a higher

number of nonsynonymous CDS SNPs than synonymous ones,

and two class I genes (FLA-I, -F, -H) had similar tendencies

(Table 6). These data suggest that those genes are under positive

selection.

New Endogenous Retrovirus Sequences
Phylogenetic analysis of three FLA endogenous retrovirus

sequences using the neighbor-joining method (Figure 4) suggested

that in addition to previously described baboon-derived RD114

retrovirus (or ECE1) [42–44] the other two sequences showed

equidistance to FeLV derived [45,46] and RD114 endogenous

sequences, but more similar to the sequence recently submitted to

GenBank as comparative genome initiative research derived from

brown bat (Myotis Lucifugus) BAC sequence. Because all

sequences described above maintained retrovirus POL region,

newly identified feline retrovirus sequences was assigned as

FERVmlu1 (previously FERV1) and FERVmlu2.

MHC Class I Related Genes
Of four MHC class I-related genes (MIC) which encodes c-

lectin type NK receptor ligands in HLA, none of them had full

length exon sequences when compared with human MICA

transcripts (data not shown). Interestingly, neither cat nor dog

genomes maintain multigene families of KIR and Ly49 found in

primates and rodents genomes, respectively. These evidences may

suggest distinct control systems for NK cells in cats and dogs.

Comparison of genomic structures in cat, dog, human,
mouse, and opossum MHC genes
A proportionally scaled MHC genomic structure was presented

for four mammalian genomes (cat, human, mouse, and dog) and

one marsupial genome (opossum) (Figure 9). The MHC region

spanning from KIFC (except mouse H2 which has a translocation

Figure 7. Dotplot analysis of two DR haplotype sequences from a single BAC library.
doi:10.1371/journal.pone.0002674.g007
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in this region, so that H2 here compared from Rps 28) to UBD

plus 3 olfactory receptor genes was compared in these MHCs. The

result depicts striking similarity in gene contents and order of

framework genes from marsupial through mammalian evolution.

Three MHC (opossum, human, and mouse) have one contiguous

gene content, suggesting depiction of an ancestral form of MHC,

while two MHC (cat and dog) have a same split form of MHC at

TRIM31 and TRIM26 in the class I region as compared with

human HLA. In dog MHC, these two pieces were located on two

chromosomes (cfa12qcen, cfa35qter), while in cat MHC, these

were located on a single chromosome by an inversion (FcaB2

qcen, FcaB2pter) as previously described [19]. Further, two class I

genes in dog MHC were located with two additional chromosomes

(cfa7, cfa18). The size variation of MHC from about 3.3 Mbp (cat

Figure 8. Transcriptional factor binding site prediction. A total of 6 kb sequence spanning 1 kb downstream and 5 kb upstream from
translation start site (ATG) were analyzed for (A) DRA genes, (B) DRB genes, and (C) Classical class I genes. The S-X/X2-Y module and enh.A-ISRE-W/S-
X1-X2-Y.enh.B were depicted as a red box. HLA-DRB1, FLA- DRB4 modules were located at 52 Kb, 7 Kb upstream from ATG site, respectively. Forward
and reverse orientation of TF binding sites were depicted above and below lines respectively: (D) enh.A-ISRE-W/S-X1-X2-Y/enh.B module sequences
found in FLA-E, -H, -K and HLA-A, -B, -C genes and S-X1-X2-T module sequences found in FLA-DRA1, -DRA2, -DRA3, -DRB1, -DRB3 and HLA-DRA, -
DRB1, were aligned and each promoter/enhancer cis-motifs were boxed. Coordinates of FLA were based on 6 Kb sequence described above.
doi:10.1371/journal.pone.0002674.g008
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and dog excluding percentromeric, subtelomeric regions) to about

5 Mbp in opossum was also seen in this analysis. The difference in

size observed here is mainly due to the magnitude of class I gene

amplification and size of class II/III border regions. Cat MHC

consists of 650 Kbp class I gene region, spanning from BAT1 to

POU5F1maintaining 17 class I genes/gene fragments, while human

and dog MHC have only 2–3 class I genes in this region. Mouse H2

has 7 class I genes and there are no class I genes in opossumMHC in

this region. Accordingly, class I gene amplification seemed to have

occurred in a species-specific fashion. Additional evidences that e.g.

opossum MHC, class I genes were amplified in the class II region,

human HLA have at least 11 class I genes in the HLA-A region

between the ZNRD1 and MOG genes and in mouse H2, at least 15

class I genes were found between Abcf1 and Trim26 genes, all

support adaptive evolution of this importance immune system.

Interestingly, the sizes of class II/III border regions vary in each

MHC. Cat and dog MHC have approximately 400 Kbp in these

regions. In cat MHC, this region was occupied with LINE repeats

however, in dog and opossum there are multiple BTNL genes. These

evidences reaffirmed the dynamic nature of evolution and

maintenance of genome organizations in MHC.

Table 5. Single Nucleotide Polymorphism (SNP)s.

FLA HLA

Size (Mbp) compared 2.84 Mbp 4.75 Mbp

No. of SNPs 11,654 16,013

SNP rate (per bp) 0.00411 0.00337

No. of CDS SNPs 732 341

Class I & II genes S/N 48/145 48/68

doi:10.1371/journal.pone.0002674.t005

Table 6. Nonsynonymous and Synonymous Coding SNPs in
FLA class I and II genes.

Class FLA class I/II genes

No.of Synonymous and

Nonsynonymous SNPs (S/N)

II DRB4 8/25

II DRB1 1/2

II DRB3 5/13

II DRA1 2/0

II DRA2 0/0

II DRA3 0/0

I I-A 1/0

I I-C 2/1

I I-E 0/0

I I-F 4/40

I I-H 15/50

I I-J 6/7

I I-K 0/1

I I-L 1/1

I I-M 0/1

I I-O 3/4

doi:10.1371/journal.pone.0002674.t006

Figure 9. Comparisons of MHC genomic structures in cat, human, mouse, dog, and opossum. Framework genes in class II, III, I regions
were shown as green, blue, red boxes, respectively. Forward and reverse orientations of each gene were shown above and below line, respectively.
Classical class II antigen coding genes/gene fragments were shown in orange and classical and non-classical class I genes were shown in black.
doi:10.1371/journal.pone.0002674.g009
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