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Sequences – Basic Elements for  
Discrete Mathematics  

Hans-Georg Weigand, Würzburg (Germany) 

Abstract: Sequences are fundamental mathematical ob-
jects with a long history in mathematics. Sequences are 
also tools for the development of other concepts (e. g. the 
limit concept), as well as tools for the mathematization of 
real-life situations (e. g. growth processes). But, se-
quences are also interesting objects in themselves, with 
lots of surprising properties (e. g. Fibonacci sequence, 
sequence of prime numbers, sequences of polygonal 
numbers). Nowadays, new technologies provide the pos-
sibility to generate sequences, to create symbolic, nu-
merical and graphical representations, to change between 
these different representations. Examples of some empiri-
cal investigation are given, how students worked with 
sequences in a computer-supported environment. 

Kurzreferat: Folgen sind grundlegende mathematische 
Objekte mit einer langen Entwicklungsgeschichte in der 
Mathematik. Folgen sind zum einen Grundlage und Hilfs-
mittel für Begriffsentwicklungen (etwa des Grenzwert-
begriffs) oder zur Modellierung von Umweltsituationen. 
Zum anderen sind Folgen aber auch als eigenständige 
Objekte interessant, die eine Vielzahl an Eigenschaften  
aufweisen (z. B. Fibonacci-Folgen oder die Folgen der 
Polygonalzahlen).  Heute ergibt sich mit Hilfe neuer 
Technologien die Möglichkeit, Folgen auf Knopfdruck zu 
erzeugen und sie symbolisch, numerisch oder graphisch 
darzustellen. Verschiedene empirische Untersuchungen 
zeigen, wie Studierende mit Folgen in einer computerun-
terstützten Lernumgebung arbeiten. 

1  Understanding the Sequence Concept 

Sequences are prototypes of discrete objects in mathemat-
ics. On the one hand, sequences are easily defined as 
functions having the natural numbers as their domain of 
definition; but, on the other hand, there exist a wide vari-
ety of representations, related concepts and perceptions 
connected with the sequence concept. Sequences can be 
represented by explicit or recursive formulas, graphs, 
arrow diagrams, or tables. Sequences appear in all areas 
of mathematics, e.g. sequences of numbers, mappings or 
geometric figures. Algorithms may be thought of as se-
quences of well-defined single steps. The sequence con-
cept also has an intuitive basis in everyday life situa-
tions—think about sequences of playing cards, stamps, 
days, years, or even proverbs like “The punishment fol-
lows close on the heels of an evil deed”. According to 
ideas of FREUDENTHAL’s “Didactical Phenomenology of 
Mathematical Structure,” (1983) the understanding of a 
concept presupposes the development of a wide variety of 
perceptions. We see the development of understanding as 
a long-term process and refer to the models of SKEMP

(1979) and VOLLRATH (1984). SKEMP distinguishes be-

tween “instrumental” and “relational understanding”; 
VOLLRATH’s model of understanding develops on differ-
ent levels:  

Intuitive understanding: E.g. knowing examples and 
representations of sequences; 
Content-oriented understanding: E.g. knowing prop-
erties of sequences, like monotony, convergence; 
Integrated understanding: E. g. seeing relationships 
between properties of sequences and between se-
quences and concepts like functions or mappings;   
Formal understanding: E. g. knowing definitions of 
sequences and being able to prove properties of se-
quences; 
Structural understanding: E.g. working with compo-
sitions of sequences or seeing sequences as elements 
of a vector space. 

2  The Sequence Concept in German Schools 

The way sequences are taught in school mathematics in 
Germany has changed over the last two decades. Up to 
1980 sequences were taught in a wide range of pre-
calculus lessons in order to build a basis for the limit 
concept in calculus. The definitions used were quite for-
mal, like: 

0 :n n n a A
o o n

.

The consequences of this formal approach included the 
following: it took students a long time become familiar 
with the notation; (many) students worked mainly at a 
formal level (sometimes without understanding of the 
concepts); and real world problems were integrated (if at 
all) only at the end of the course. In the last few years, 
school calculus has started immediately with continuous 
functions, based on an “intuitive limit concept” (which 
goes back to EMIL ARTIN 1957 and SERGE LANG 1964). 
Students work on an intuitive level of understanding, 
while developing ideas related to the limit concept like 
“… getting closer” or “… as close as you want”. 

The advantages of this new approach of that important 
concepts like the derivative and applications are inte-
grated into the courses right from the beginning. The 
negative result is that the majority of students leave 
school without having any idea of the sequence concept 
and it seems to be hard to have conceptions of the basic 
ideas of calculus without knowing sequences. 

3  Revitalization of the Sequence Concept 

Over the last few years, as a result of the increasing role 
of computers in mathematics and mathematics education, 
discrete mathematics, and hence sequences, have gained 
in importance. This is also emphasized by the NCTM-
STANDARDS (1989), which has discrete mathematics as a 
separate standard for grade 9 to 12: ”Sequences and series 
... should receive more attention, with a greater emphasis 
on their descriptions in terms of recurrence relations.“1.
In the NCTM-PRINCIPLES AND STANDARDS FOR SCHOOL 

MATHEMATICS of the year 2000 discrete mathematics is no 
longer a separate standard, but is now distributed across 
                                                          
1 http://standards.nctm.org/Previous/CurrEvStds/9-12s12.htm 
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the Standards and spans the years from pre-kindergarten 
through grade 12. Iteration and Recursion are explicitly 
emphasized as one of the three important areas of discrete 
mathematics.  

I see three reasons for a need to revitalize the sequence 
concept in school mathematics (in Germany), and these 
reasons should be viewed as closely related to the ideas 
of discrete mathematics. First, many real life problems 
allow mathematical representations with sequences, e.g. 
growth processes or goods-cost-problems. Second, many 
mathematical problems can be solved with special se-
quences, e.g. triangular numbers, polygonal numbers. 
Third, sequences are tools for the development of con-
tinuous concepts; e.g., the difference quotient can be 
taken as a basis for the understanding of the differential 
quotient. 

New technologies can serve as a catalyst for revitaliz-
ing sequences in school mathematics. Nowadays, com-
puters make it possible to generate sequences, to create 
symbolic, numerical and graphical representations, and to 
change between different representations—just by the 
press of a button. Moreover, we think that spreadsheets 
are the right tools in the context of discrete mathematics, 
especially for working with sequences. 

In the following, we describe two empirical investiga-
tions, in which we evaluated students’ working with se-
quences in a computer-supported environment. 

4  Empirical Investigations 

4.1 Questions of the Investigations 
The aims of the investigations were to document and to 
analyze the working styles of students solving problems 
in a computer-based environment—in contrast to tradi-
tional paper and pencil activities, and to evaluate their 
understanding of the used concepts. We were especially 
interested in the following questions:  

How do students use a computer while they are solv-
ing problems involving the sequence concept? How 
does this differ compared to paper-and-pencil work? 
What do students understand about (recursively 
given) sequences and their properties? 
What do students understand about the concept of 
difference sequences? 

4.2. Working Styles and Representations 
We see a “working style” as sequences of user’s actions
affecting and altering mathematical objects, e.g., chang-
ing variables, multiplying an equation by a number, or 
differentiating a function. We speak of  a local working 
style if particular terms of the sequence are changed (e.g., 
the initial values of a recursively defined sequence). If all 
the terms of a sequence are varied, we speak of a global 
working style, e.g., finding approximations to sequences 
and curves (see WEIGAND a. WELLER 2001). 

The concept of mathematical working styles is closely 
related to the working with representations, like symbols, 
graphs, tables, diagrams or pictures, as well as working 
with working with menus, buttons and rollbars of (com-
puter-)tools. The computer is a tool with special mathe-
matical notations for the objects and special menus, or 

mouse-driven actions and commands. It allows a person 
to work in new ways with objects – or rather, the repre-
sentations of these objects – on the screen. Representation 
is one of the five “Process Standards” in the already men-
tioned NCTM-PRINCIPLES AND STANDARDS FOR SCHOOL 

MATHEMATICS (2000). This stresses again the importance 
of representations in mathematical learning and problem-
solving, which become even more important when you 
work with computers (see also GOLDIN 2002).  

In these investigations, we were interested in operations 
that are aimed at solving a problem. In order to be able to 
distinguish such purposeful activities from non-reflective 
guess-and-check strategies, it is necessary to analyze the 
working processes, and students’ actions must be seen in 
relation to the understanding that correspond to those 
actions. 

4.3 Computer Protocols
During this study, the working styles of the subjects were 
recorded with the help of "computer protocols". While 
the students work on the computer, a recording program 
runs in the background and saves all user inputs via key-
board or mouse.2   Compared to videotapes and inter-
views, computer protocols make it possible to observe a 
large group of students simultaneously. Computer proto-
cols are produced simultaneously with the students’ prob-
lem-solving processes. The computer protocols can be 
replayed later as a ‘film’, which shows all screen activi-
ties of the pupil in real time. These protocols can then be 
analyzed, to determine whether and how a subject has 
solved a problem, how much time s/he spent with a given 
problem, how many and what kind of representations s/he 
has seen on the screen, and when and how often s/he 
switched over to a different representation. Moreover, it 
is also possible to evaluate the students’ less successful 
strategies.

4.4 Investigation Programs 
With the help of the spreadsheet EXCEL, two teaching and 
learning programs were developed. The programs intro-
duce the contents, the level of difficulty is increased in a 
step by-step manner, and they allow selecting different 
solution strategies.  

The first program is about “Sequences and Growth 
processes” (see WEIGAND 1999 and THIES a. WEIGAND

2003) and uses the following types of sequences (an)
0

:

Linear growth:   
1

a a B
n n

;

Exponential growth.:  
1

a A a
n n

;

Limited growth:  ( )
1

a a P B a
n n n

.

A, B, P , initial value ao.  We used graphs, tables and 
formulas as representations. The students are asked to 
solve geometric and real-life problems related to these 
sequences.  

The second program is about “Difference Sequences” 
(THIES 2002). This concept was introduced in connection 

                                                          
2 There are different types of programs available. We used the 

program Camtasia:
http://www.techsmith.com/products/studio/default.asp 
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with average air-temperature per year. The real-life-
situation was represented in tables and graphs. Fig. 1a 
shows the graph of the average air-temperature per year 
and Fig 1b shows the difference sequence. The students 
were asked to supply the missing values (see arrows). 

Fig. 1a 

Fig. 1b: 

We chose this example, because the given relation is not 
based on an algebraic formula, and we did not want the 
students to work immediately on a formal level. The aim 
of the investigation was to analyze the students’ under-
standing of the concept of difference sequences. We ex-
tended the concept of sequence to functions defined on 

, f: , and spoke of “Z-functions”.  

4.5 Participants of the Investigation 
The first program was given to 28 students in two differ-
ent 12th grade classes. The students worked individually 
with the program for two two-hour sessions. All subjects 
had a good, or very good, knowledge of Excel, and all the 
subjects had already worked with (arithmetic and geomet-
ric) sequences in the 11th grade, when the concept of limit 
was introduced.  

The second program, “Difference Sequences,” was 
given to 53 high school students, who had not been 
taught the concept of derivative, and to 21 elementary 
and secondary pre-service teachers, who had taken a ma-
jor in mathematics at the university. They too worked 
individually with the program in two two-hours.  

4.6 Results 
In the following, we only give a few highlights of these 
two investigations. The complete studies are reported in 
WEIGAND (1999), THIES a. WEIGAND (2003), THIES

(2002).  

4.6.1  The Sequence 
0

( )na  with an+1 = an + B  

The sequence was introduced using three representations: 
formula, table and graph. The students were asked about 

how the terms of the sequence an (with an+1 = an + B) 
would change, if the value of the initial term a0 was in-
creased by five. The students were also asked to give 
some reasons for their answer. They had the choice of 
working with the graph or table (Fig.2-4). 

Fig. 2 

Fig. 3 

Fig. 4 

82% of the subjects answered correctly. However, the 
verbal reasons given by the subjects very often only de-
scribed what would happen to the later terms of the se-
quence, but did not give arguments or proofs for this be-
havior. The students worked significantly more often with 
the table than with the graph. The chosen representation 
influenced the students’ arguments justifying the ob-
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served behavior of the sequence. The graphic representa-
tion goes along with a global view of the sequence. 

4.6.2 The Sequence (an)IN with an+1 = B an

The starting point is a figure with circles with increasing 
radius. Each successive radius is increased  by the con-
stant factor B. The students were asked, how the value of 
a5 changed, when the initial value ao is multiplied by 
three (Fig. 5-6). 

^
Fig. 5 

Fig. 6 

78% of the subjects correctly recognized the proportional 
relationship between the terms an of the sequence and the 
initial value ao.. In contrast, students—as expected—did 
not do nearly as well in answering the question about 
what would happen to a5 if the value of B was doubled 
(correct percentage 35%). The students worked mainly 
with the table; some students did not consider the graph 
at all, while some other subjects frequently switched back 
and forth between graph and table. Some subjects’ argu-
ments show step-by-step iterative thinking (i.e., the stu-
dents successively proceeded from ao to a5). Other sub-
jects argued about the exponential behavior of the se-
quence which is especially evident in the graphic and the 
symbolic representations (an+1 = ao Bn).

4.6.3   The Sequence 
0

( )na  with   

               an+1 = an + P (G – an)    

The first two problems were related to linear and expo-
nential functions, a topic the students were familiar with. 
In contrast, the sequences describing limited growth were 
completely new to the students. The dependence of the 
terms an of the sequence on the variables ao, P, G cannot 
be described by simple relations. Therefore, we posed the 
questions in a way intended to provoke intuitive descrip-
tions. This is shown in the following two examples. 

Geometric example: Limited Growth 
The dynamic view of the students’ descriptions are ex-
pressed by phrases like, “getting closer”, "quickly ap-
proaching" or "successively approaching". Students trans-
ferred knowledge they had developed in the context of 
continuous functions to the discrete case. Compared to 
the previous problems the students worked more inten-
sively with the graph. Some subjects hardly considered 
the table or simply did not use it at all (Fig. 7-9). 

Fig. 7 

Fig. 8 
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Fig. 9 

The Traffic Jam Problem: An application to an+1 = an + 
P (G – an)
Interpreting the representations of the traffic jam problem 
caused bigger difficulties than the previous problem. For 
the initial term ao, student answers contained expressions 
like "number of cars per meter and per second" or "num-
ber of the cars during usual traffic conditions." In some 
cases, students made connections to the geometric exam-
ple (for ao: "initial field - number of  cars before the jam 
started"; for G: "Limited area that can be filled with 
cars"). Some students described only the effect of the 
change of the parameters ("the less ao, the lower the 
curve"). The explanation of the parameter P and the con-
tinuation of the sentence "The larger P the ..." was made 
in a qualitative style by all subjects. Almost no one saw a 
relationship to the difference an+1 – an . However, the re-
sponses reflect the dynamics that were suggested by the 
learning program: "More cars are entering the jam" or 
"The number of cars is increasing" (Fig. 10-13). 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

4.6.4 Difference sequences 
This topic was a part of the second investigation. The 
concept of a difference sequence of a Z-function was de-
veloped using a time–air-temperature relation represented 
in tables and graphs. Then, this concept was explained in 
connection with linear and quadratic Z-functions (Fig. 
14). There were some interactive exercises. The follow-
ing is one example (Fig. 15). 
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Changing c in f(n) = 2n2 – 8n + c 

Fig. 14 

Fig. 15 

The function with f(n) = 2n2 – 8n + c was given and the 
students were asked to explain verbally the “strange” 
behavior of D when changing c.3

About one third of the high school students gave ac-
ceptable reasons for this behavior, like: 

“There is only a translation of the parabola, which 
doesn’t change the difference of the values.” 
“It is a translation of the parabola, which doesn’t 
affect the ratio of the values to each other.” 
“The difference function gives you the slope of f. If c 
changes, this doesn’t change the slope.” 

Most of the other students only described the change in  
the graph, without giving any reasons for it.  Two thirds 
of the university students gave acceptable answers for the 
behavior of the sequence.  

Changing b in f(n) = 3n2 + bn + 40 
The function with f(n) = 3n2 + bn + 40 was given and the 
students were asked to explain the “strange” behavior of 
D when changing the parameter b (Fig. 16-17).4

                                                          
3 The difference sequence and hence the graph do not change.. 
4 There is a translation of the graph of D parallel to the y-axis. 

Fig. 16 and 17: The graphs of  f  and D  
for b = -10 and b = 20 

In the context of the learning program, the calculation of 
the terms of the difference sequence of a quadratic Z-
function was explained on the symbolic level. Starting 
with f(n) = a n2 + b n + c the students were asked to cal-
culate the term of D(n) using paper and pencil. This cal-
culation gives D(n) = f(n+1) – f(n) = 2an + a + b.  

However, to interpret the behavior of the difference 
function resulting from changes of the parameters was a 
challenging problem for the students. We emphasize 
again that these students had not yet studied derivatives. 
Thus, the majority of the students were out of their depth 
in this problem. Only one tenth of the students gave ac-
ceptable reasons, e.g.,  

“f doesn’t change the slope, only the locus. The dif-
ferences lie only at a different height.” 
“D(n) = 2an + a  + b. If you change b, the intersec-
tion of the line with the y-axis changes.” 

Many students were not able to see the difference func-
tion as a whole—they only had a local view of this func-
tion as a collection of discrete points, without grasping 
the global aspect of the sequence.  

As one might expect, the university students did better 
with this problem, but some of them also got in trouble 
with the concept of difference sequence and Z-functions. 
Surprisingly, one third of them were unable to transfer 
their knowledge of derivatives, developed in connection 
with continuous functions, to the discrete situation.  

5  Summary of the Results 
Spreadsheets support the process of learning of the rela-
tionship between local and global aspects of sequences.
They make it possible to evaluate the global changes in 
the values of the terms of a sequence as a consequence of 
local variations of parameters, like the initial value or the 
parameters in a recursively given sequence. This knowl-
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edge can be used to solve interpolation problems and 
finding regression functions (or sequences). Thus, 
spreadsheets can be seen as step-by-step, expandable, 
powerful, didactic tools for mathematics instruction (see 
also HEALY a. SUTHERLAND 1990, NEUWIRTH 1991). 

A well-structured learning process is necessary for 
learning to see and understand the relationship between a 
sequence and its difference sequence. To develop this 
relationship exclusively in the context of a computer-
based learning program requires concentrated and careful 
work on the topic from the students. (see also Borneleit 
2001). For most of the students, this seemed to be asking 
too much.  

Working experimentally is also an important method in 
mathematics for getting ideas about, and a “feeling” for, 
the – possible – solutions of a problem. However, to 
overcome thoughtless button-pressing, and, to get into 
thoughtful problem solving strategies, theoretical consid-
erations about the problem are necessary. The students 
had to be forced – e.g. by asking related questions – to 
get into theoretical considerations, while working ex-
perimentally. 

The results from the university students show – again – 
the danger of tying concepts too closely, or basing them 
entirely on a formal level. Many of these students were 
unable to transfer their knowledge – derived in the con-
text of (continuous) calculus – to discrete problems. Our 
results support the importance of students also having an 
intuitive access to concepts while working with com-
puters. The formation of concepts (like the concept of 
difference sequence or function) should start on a non-
formal level, e.g. with non-rule-based sequences, like the 
empirically observed relation between air-temperature 
and calendar year. Otherwise, there is the danger that 
students only work on a symbolic level—manipulating 
symbols without any understanding.  

The high density of information presented by the com-
puter program requires a concentrated working style. Es-
pecially some students are out of their depth when work-
ing with dynamic representations. These students quit 
trying to solve the problem, or went ahead with mindless 
button pressing activities. For this reason, convenient 
work tools (like scroll bars in the spreadsheet) should be 
used extensively. In constructing learning programs, it is 
important to try to slow down the students’ work pace. 
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