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Sequences of measurable functions -
by

Elibieta Wagner (£6dZ)

Abstract. The paper consists of three parts. In the first part we shall define convergence with
respect to the o-ideal J and we shall prove the necessary and sufficient condition under which this
convergence yields a topology in the set of real measurable functions. The second part contains the
generalization of the theorem of Goffman and Waterman ([2]) concerning upper and lower limits
onto the case of convergence with respect to the g-ideal. The third part deals with double sequences
of measurable functions and includes, among other matters a generahmtlon of the theorem of
Sierpiniski ([4])..

I

Let (X, &) be a measurable space. Let <& be a proper g-ideal in
a o-field &, We shall say that #-almost every point of A<X has some property
(or that this property holds #-almost everywhere, in abbreviation #-a.e., on A)
if and only if the set.of points in 4 which do not have this property bclongs
to the o-ideal 4.

DEFINITION 1. We shall say that the sequence { f,}, oy 6f & -measurable functions
defined on X converges with respect to 5 1o the & - medasurable function f defined
on X if and only if every subsequerice {75 yan Of {/i}nen contains a subsequence

{fnp, Jnen comverging to f S-a.e. on X: We shall use the denotation f,, —+ for
= lim f, with respect to S

neron

We shall say that two & -measmable functions f and g are equivalent 1f and
only if f—g is 2 null fonction (that is, if f~g vanishes S-d.e. on X).

It is not difficult to observe that the lirnit with respect to .#.is determined up
to equivalent functions. In the above definition we can suppose also that all func-
tions f, and f are defined only #-a.e.-on X. :

Observe also that if (X, .#, ,u) is o finite measure space and F <& is a g-ideal
of sets of measure zero, then convergence with yespect to £ is simply -convergence
in measure,

It is not dlfﬁoult to verl.fy that the followmg conditions are fulﬁlled
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(L1) If f, = f for every a, then f, ":';m I
L2y I/, i [, then for every subsequence {/,, }nen Of { f;}nen We have f,. "-_;w I

(L3) Ithe sequence { fulnen is not convergent to f with respect to #, then there
exists a subsequence { f;, },ex, 0 subsequence of which converges to f with
respect to £.

So the set of & -measurable functions defined on X equipped with convergence
with respect to £ is an £* space ([L]). One can define in an #* space the closure
operation assuming that f belongs to the closure of the set 4 (fe A) if and only if
there exists a sequence { f,},.y in 4 such that f, n-";‘ f-The operation so defined has

the following properties: B =9, AcA, A0 B = A u B for every A, B, but the
condition 4 = A need not be fulfilled. This last condition is fulfilled if and only if
the convergence has the following property:

4 Iff —'; fand f, -'; f_',for Jj€ N, then there exist two sequences of natural
numbers {Uslpens {np}pEN such-that £, :> f

If the space .#* fulfils the condition (L4), then we can equip the ‘set of all
& -measurable functions with the fopelogy determined by the closure operation
described above. This topology is often called a Fréchet topology.

Observe that in the case of convergence with respect to .# the condition (L4} is
equivalent to the following condition:

wy 1f, ;i;m fand £, H_L;.w fi for je N and, moreover, {x: () f(x)} ¢ 4,
{x: f(x) # f(x)} ¢ & for j,ne N, then there exist an increasing sequence
{Jo}sen of natural numbers and a sequence {n,}p,N of ‘natural numbers
such that f; ., —> 1

DEFINITION 2. We shall say that a pair (&, F) fulfils the condition (E) if m{d
only if for every set. D € ~# and for every double sequence {B) 4} 1nen Of & -measur-
able sets such that

(2) B,,=B;,4, for j,ne XN,
[
® UB‘-,,, =D for jeN

there e)ust an mcreasmg sequence { ]I,}NN of natural numbers and a sequencc

{n),},,e » of natural numbers such that ﬂ B_,p np &5

THEOREM 1. Suppo.re that every famzly of disfoint sets in ~5 is at most denumer-
able. Then the set of all -measurable real functions is equipped with the Fréchet
topology generated by the convergence with respect to S y" and om’y lf the pair (5” )
Sulfils the condition (E).
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Proof. Sufficiency. We can suppose, choosing the subsequences if necessary,
that every sequence {f; ),y i5 convergent #-z.e. to Jf;» and the sequence {1}};en
converges #-a.c. to f. Hence there exist a set 4 €5 and sets 4; e # for je N such
that fj.lX —4; > SX—4; for every jeN and fjlX—4A ffmfIX-A' Put

o0

D=X-(UA4;Ud). Then De ¥ 5. Let
=1
Bx = {xeD: | [1x)—f{x)|<1/] for every kzn} for j,neN.

We have B, =B, ., forj,neN and U B,, = D for every j. From the con-

. n=1

dition (E) it follows that there exist an increasing sequence {j,}, 4y of natural numbers

and a sequence {Mp}, v Of natural numbers such that N\ B, , ¢4, Let xe ) B, .
p=1 =1

Then
| L1ams) =11, < 1/,

Simultaneously f;,(x) o S (x), because x € D. Hence fj,, (x) o f (x). Then there

for every p.

exists a sequence { f;.-np}n-ﬂ such that
-]
ffp»’!'(x) f(x) for x€ ﬂlij-"F
p=

1 .
Put f1 1 ""f_};,nnfl,z =.f}:.m+1’ ~--7f£ ) =f}1, fﬁ) =sz.:-:: f—,flz) =fl:-nz+19 ---,fél)
= flui .,f,; T = fimes fk 2 = St 1a 0 .,fk = fp - Itis easy to see that for every
sequence {m}yey of natural numbers £ (x) = (x) for x e BY, Indeed, one can

=.B“')¢f.

prove convergence as before, observing only that F ame = J homerme—1 80d using the
definition of B;,.

We proceed further by transfinite induction. Suppose that for every ordinal
numbers o<1, where # is 2 countable ordinal, we have defined a double sequence
{5 jnan Of ¥ -measurable functions and a set B*? e & such that the sequence
{B(“’},<,, is nondecreasing and for every sequence {m}rey ©f matural numbers
) = f(x) for xe B® and if o, <@, <1, then every sequence {fizan, .y is almost

a subsequence of some sequence { ff ‘“"},‘,N (that is {£;&2), . has at most-a finite
number of terms not belonging to { f,,',k Yian) If 1 has a predecessor and D,
= D—B"" 3 g7, then every sequence of the form { iV}, is convergent #-a.e.
on X (and so also with respect to .#) to the function f and the condition (L4") is
fulfilled. Suppose now that D,., .. Put C

BYY = (xeDyeyt |, j‘";‘“)(x)—f""“(x)|<l/j for every kzn},
We have _

: B‘"-',“csgﬂ,,‘:,) for j,neN
and ' )

UB""“ D,, . for every j. .
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From the condition (E) it follows that there exist an increasing sequence {j,}pen

oD
of natural numbers and a sequence {r,}, .» of natural numbers such that HIBS’:,‘,:’ ¢,

=
As before, one can prove that f,-p,,,“(x) =t Fx for xe ﬂ B{D pyt

Jwimp -

BW = g1, n B(n—l) .

dphp

Then f};’,,,:’(x) o f(®) for x e B™ and B(")—B("'” ¢S

If n does not have a predecessor but there exists an ordinal number o<y such
that D, = D— B e.#, then every sequence of the form { f,, ,),,.N is convergent
F-a.e. on X (and so also with respect to .#) to the function f and the condition (LA)
is fulfilled. Suppose now that D, ¢ .# for o<y and let {w,},.» be an increasing se-
quence of ordinal numbers comverging to z. Put B™ = () B®. Obviously

wdy

B — |J B®). We shall define a double sequence of functions in the following way:

p=1
{n) ( )] .
1(11) f(") ff”;’ =f{?5), (u) f(uz) f(n) (fi), m . flw) (n =f§¢’ T

2,2 =J2,35 itz
= 3, Then for every sequence {my}p.y of

natural numbers we have j;;(,’l,),,‘(x) = f (x) for xe B, Indeed, if x & B™, then

) (} __ (ﬂ)
k(,nz) =fk(.:,:l-1,---’ f 5 .

there exists a number p such that x ¢ B*?; From the definition of the sequence
{ ™ jmen it follows that there exists a number K(p) such that for every k> K(p)
the funetion f,f?}k is an element of some sequence. { f,ff_';u}h x converging to f on
the set B,

‘We shall show that there exists an ordinal number B<Q (where 2 sta.nds for the
smallest nondenumerable ordinal) such that D—B® ¢ #, and so our procedure
finishes at some step. Suppose that D—B® ¢.# for every #<Q. From the defi-
nition of B it follows that if n<Q has a predecessor, then BW_BR-Dg 5 Pyt
C, = BY, €, = B®—B“™V for an ordinal having a predecessor. Then C, ¢

“and C,n C, =@ if «,9<Q, « ¥ 7 and &, 4 have predecessors. The set of all
countable ordmals having predecessors is nondenumerable, which contradicts the
assumption.

The sufficiency of the condition (E) is proved.

Necessity. Suppose that (B} is not fulfilled. So thére exist a set De & —.&
and a double sequence. {B; ,}; . fulfilling the conditions (a) and (b) and such that
for every increasing sequence {j,}pen OF natural numbers  and for every sequence
{n,}pex of matural numbers we have ﬂ pnp EF. PUL f1(x) = xp_ ,,l'"(x)+1/j
forj,ne N. Then itis easy tosee that llmj} w=J;= 1/] for every jand hmf} =0

and all limits exist for every xe X (hencc all sequeuces are convergent also with
respect to £.

Let {j,}pen be an arbitrary mcrcasmg sequcnce of natural numbers and let
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{r,},en b€ an arbitrary sequence ‘of matural numbers. For x& X the sequence
{f1pm,(®)}pen does not converge to zero if and only if

x€ ﬁ U (D Bj,,n,) = D U ﬂ Bj,,np .
k=1p>k k=1 p>
“The last set does not belong to the o-ideal #, and so the sequence { Jipmptpen does
not converge to zero S -a.e. on X. From the arbitrariness of this sequence it follows
that the condition (L4') is not fulfilied. This ends the proof,

Tet us mention that the condition concerning denumerability of every disjoint
family in & - is sometimes called (in the language of Boolean algebras) the count-
able chain condition.

Examere 1, If (X, &, |-]) is a finite measure space and J is a o-ideal of all
sets of measure zero, then-it is well known that convergence with respect to &
(convergence in measure) yields the topology. Hence the pair (&, #) fulfils the con-
dition (E). It is well known that the countable chain condition is fulfilled. Also it is
possible to prove the condition (E) directly. Indeed, let D & &~ and let {B;,}; nen
be a double sequence of measurable sets fulfilling (2) and (b). Then we have | D|>0
and it suffices to put j, = p for every natural p and. to choose 7, in such a way that

|D~B,.,,|<|D|/3". Hence |n B, 1> 1DI2>0.

Examrerr 2, If (X, &) is a measurable space and S =% is a maximal ¢-ideal,
then the countable chain’ condition is fulfilled (every disjoint family in & —.# can
have at most one element). We shall prove that the condition (E) also holds. Let
De¥— and let {B,,}; ..y be a double sequence of & -measurable sets fulfil-
ling (a) and (b). Put j, = p for every natural p and choose n, in such a way that

B, ¢S (it is possible for every p). Then n ¢ %, because

Ptp

X- n np = U(X— B, )es .

ExaMpLE 3, Let X = [0, 1], let & be a class of sets having the Baire property
and let . be a class of sets of the first category. It 1s well known that the countable
chain condition is fulfilled, Constructing a double sequence of functions, we shall
show that the condition (E) does not hold. Let

f:],n(x) = ZA, "(x)"!— 1/]: where -Aj,n [0 1] [a] U (i/j agn I/J+an) 2

{a,} e is a decreasing sequence of numbers tending to zZero a.nd /j(x) =1/ j for s neN‘
Then hmf",.,,(x) = 1/j if x ¥, i = 1,..,7—1 for every J,: 50 fi,: —-> jf, Also

f, -i f= 0. Slmultaneously we have {x:/f5,(x) # f(x)} 5 and {x 5 # R} ¢F
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for j, ne N. Let {§,} ey be an increasing sequence of natural numbers and let {n,,}P o
be an arbitrary sequence of natural numbers. We ‘shall show that

{x: ~(limfjp ,,'(x) =0)}¢S.

From the arbitrariness of {Jo}pen and {n,) e we conclude that no sequence { fb.np}pt N
converges to f with respect to #. Observe that

{x: ~(1imffp.n,(~x) = 0)} = {x: ljmsupf}p.n,(x)zl}
p=c

> U B L, (3213
M=1p

A.Ip;ﬂp *
M=1p=M+1

; . . ‘
For every M the set |J Ay,., 13 open and dense in [0, 1], and so
p=M+i

{x: ~(lim f,},(x) = 0}
PP

is a residual set and does not belong to #.

ExAMPLE 4. Let X be an arbitrary nondenumerable set, & = 2¥ and # = {@}.
Then convergence with respect to  is simply convergence at every point. It is well
knowm that in this case this kind of convergence does not yield a topology. However
the condition (E) is fulfilled. Indeed, let De & —& and let {B;,};.ax be a double
sequence of sets fulfiling (a) and (b). D is nonempty; let x, € D. It suffices to put

Jp=p and to choose n, in such a way that x,eB,, . Hence x,€ npr'"”’ so
p=

ﬂ pn,

Observe that the pair (¢, #) does not fulfil the countable chain condition. So
this condition in Theolem 1 is important.

I

If X is an arbitrary non-empty set, &—a fixed o-field of subsets of X and
S o F—a g-ideal, then identifying the sets 4, Be & if and only if AAB e S we ob-
tain a quotient Boolean algebra &/.#. The class including = set 4 will be denoted
by [4) For classes [4), [B] € #/# the notation [4]<[B] means that 4, —B, .5
for every (or, equivalently, for some) 4 € [4] and B, € [B]. In virtue of Theorem 21.1
from [5], p. 74 &/# is a o-complete Boolean algebra.

Denote-by [f] the class of all & -measurable real functions equivalent to an
& -measurable function f. For classes [ f] and [g] the notation [ f1< [g] meats that
Ji(x)<g,(x) F-a.e. on X for every (or, equivalently, for some) f; e [f] and g¢; & [g].
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Lemua 1. The Boolean algebra )4 is a complete lattice if and only if the family M
of all equz‘valence classes of real & -measurable functions is a complete lattice.

The proof of the above lemma is essentialy the same as the proof of Lemma 1
in [3], p. 106, and so we shall omit it.

LemMa 2. If a o-complete Boolean algebra &5 Julfils the countable chain con-
ditien, then F|¥ is a complete luttice.

‘Proof. It fellows immediately from Theorem 20.5 from [5], p. 72.

COoROLLARY. If @ o-complete’ Boolean algebra F(F fulfils the countable chain
condzz‘ron, then M is a complete lattice.

In this part of the paper we shall denote both [f71 and its elements by f, hoping
that no ambiguity will result and that the reader will make suitable distinctions

according to the context. Also we shall suppose that &/ fulfils the countable chain
condition,

We shall now define an equivalence relation for sequences of & -measurable
functions. Let {/i}nen be equivalent to {g,},.x if and only if {fi—Gulnen converges
with respect to # to zero. Let {f,},.y be a sequence of % -measurable functions
and let & be the equivalence class including { Lotnen-

DepmtioN 3. We shall say that Ue M (L & M) is an upper (lower) limit of
@ sequence { f,},on With respect to # if and only if

= infuimsupgn: {gn}ul\'e #] ' :
(L = sup[limintg,: {g,}yene F).

The existence of U/ and L follows from the corollary and from the fact that for
every sequence {g,},cn Of & -measurable functions the function limsupg, and

liminfg,, is also & -measurable.

LemMa 3. Jf U and L are upper and lower limits with respecl to .P' of a sequence
{filpens then LEU.

Procf. Suppose that . U(x)<L(x) on a set B¢ . Then there exists a sequence
{Py}nen € F such that hmsuph (%) <L(x) on the set C'¢ . and there exists a se-

quencc {GInen € F such that lzmsuph (x)<hm1nfg,,(x) on the set D¢s We havc

"D = U {x: liksuph,(x)+w<liminfg,(x)} ,
waW e - n
w20

where W is the set of all rational numbers, and so there exists a number we>0 sucfl
that the set {x: hmsuph,,(x)+wo <]Jmmfg,,(x)} docs not belong to #. Obviously

{*: lim suph (x) +Wo <11mmfg,,(x)}

. ,: . m yx {X’ sup(h,,(x), hn-i«.i(x)s ;.._)+w0sinf(g,,(x),.g,!.,,l(x), ’)} H e
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hence there exists a natural number n, such that the set S
E= {x: S“P(hno(x) B hlch- l(x) > ') +Wwp <inf(g,,n(x) sGno+ l(x) 3 '~')}

does not belong to . Hence for every xe E and for every n>no, we have
gu(X)— R, (xX)>wo>0, and so a sequence {@ntnar is not equivalent to {Putney —
a contradiction. . . _

Levma 4. Let {f,},en be a sequence of & -measurable functions. If { f,}ran does
not converge to zero with respect to .#, then at leust one of the following conditions is
Sulfilled: . :

1. there exist a subsequence { futnan Of {fulnen» a set do€ & — % and a natural
number ko such that for every subsequence { f,,,h},,.n of { f,,,n},,, ~ Wwe have
limsup f,Pn(x)>1/k° S-a.e. on dg;

2. there exist a subsequence { fp tnan Of { fulnan, @ ¢t Ap€ ¥ —F and a natural
number ko, such that for ‘every subsequence { f,,,Pn},,, v of {futeen we have
liminf f,,  (x)< - 1k, F-a.e. on A,

n
Proof. Suppose on the contrary that for every subsequence {fudren Of { Filnans

for every set A€ &~ and for every natural number k there cxists a subsequence
{ f,,,p Veen -OF {finJueny such that limsup f,,,h(x)<1lk on the set 4'<=A such that

A' e % — and that for every subsequence { f,, V.o Of {filnen, foreveryset de -5

and for every natural number k there exists a subsequence {f,, }.an of {Stnen such
that liminf f,,,Pn(x)> —1/k on the set A" <A such that 4" € ¥ ~5.

As a first step we shall prove that under this supposition for every subsequence
(. }oen there exists a subsequence {f{ 7}, oy Of {fin.}nen such that limsup I® <t
. n R

F-a.e. on X.
Let {f }aex be an arbitrary subsequence of { Sihwew - Put 4 =X and k= L.
There exists a subsequence {f<},en Of {fmtnen such that

B, = {x: limsup () <1} ¢ .

Observe that B; e &.

Suppose that for every ordinal number «<, where n<£2, we have chosen a sub-
sequence { £} pen OF { fupJnax and a set-B, € & such thatif e, <w, <1, then { rley
is almost a subsequence of { /*"},x ., the sequence of sets {B,},<, is nondecreasing
and lLimsup f{?(x)<1 for x & B,. If # has a predecessor and X—B,_, €4, then we

»

put f@ = 0D for n = 1,2,... f X—B, ¢4, then in virtue of the supposition

we can choose a subsequence { ff},en Of {F™ 1}, .y such that limsup fA"(x)<1
n

for x& B, and B,—B,_; ¢ £. Indeed, it suffices to take 4 = ¥~ B, , and k = L.

If 5 does not have a predecessor and there exists an ordinal number x<n such
that X—B, € %, then we put fi? = f\? for n = 1, 2, .. If X— B, ¢.# for a<y, then
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we choose an increasing sequence {o ).y of ordinal numbers tending to n. Put
@

B,'=J B,. Then of course B, = \J B,,.Let {f{"},y be a diagonal subsequence
=1

a<y

chosen from the family { S w k=1,2,.. Then limsup f{P(x)<1 for x& B,

We shall show that there exists an ordinal number < such that X—By e 7,
Suppose that X'— B, ¢ # for every a< Q. From the definition of sets {B,},<q it follows
that if 7<Q bhas a predecessor, then B,—B,_¢.. Put C, = B,, C, = B,—B, 4,
when l<a<Q is an ordinal number having a predecessor. Then C, ¢ and
C,nCy=@ifu#1, 1<, uand 4 are ordinal numbers having predecessors.
We have thus obtained a contradiction with the countable chain condition. Hence |
there exists an ordinal gumber f< @ such that X—B, e #. If we put i = £1P for
ne N, we obtain a subsequence for which limsup f{’a)<1 F-a.e. on X.

n
Repeating this argument for k =2 and for { iV}, .y, we obtain a subsequence
{70, ow Of {7}, .y such that limsup f{P(x) <} #-a.e. on X. Proceeding similarly
.

for k = 3, 4, ... and then choosing a diagonal subsequence {,},cx, One can prove
without difficulty that limsup f(x)<0 #-a.e. on X.
n

Using the second part of the supposition; Wwe can chcosc‘ a subsequence { f,,,P“},, N
of {f,}ay such that liminff,, (x)>0 S-a.c. on X
n -

~ Hence from an arbitrary subsequence { £, }en Of {/}aen We can choose a sub-
sequence { f,,,n }.ey CONVErging to zero S-a.e, on X—a contradiction.
n

TrEOREM 2. Let f and f,, ne N be & -measurable functions. A sequence { Filaen

converges with respect to F to a function f if and only if U = L, and then f = U = L.

Proof. Suppose that { f,}ncy converges to f with respect to . Then a sequence

{£}ney is equivalent to a sequence {gn}ney, Where g, = ffor n =1,2, .. Hence

U<f, becanse limsupg, = f, Similarly one can prove that L>f So fSLLUSS
- o

and U = L, S .

Suppose mow that U = L. Without Toss of generality we can suppose that
U = 0. Assume that { f,}, 4 does not converge to zero with respect to S and that the
first condition of Lemma 4 is fulfilled (in the remaining case the proof is similar).

Let {g,},.y be 2 sequerice equivalent: to: {filven: Then' g, = f,4h,, ne N,
where {h,}yay iS & sequence of % -measurable functions converging to zero With
respect to . Let { £, }yex b6 & subsequence, 4y — &set.and ky ~a natural pumber
described in Lemma 4. There'exists a subsequerice {Iz,,,"m},,.i ~ Of {Pu Yuen cOnvergent
o zero at evety x € X—C, where Cef, Let x'€ do—C. Then

limsupg,(x) =limsup g,,,h(x) = limsp( f;,,';;(x) +‘hv,,,1;"(x))> ks

n vl el DL A LR

From the arbitrariness of {g,},en and from the definition of U we have U(x) =1k,
S-a.e, on Ag. This coniradiction ends the proef. ~*°

Math CXIr
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I

Let X be an arbitrary non-empty set, & — a fixed o-field of subsets of X and.

S —a o-ideal,

DEEINITION 4. We shall say that a pair (&, ) fulfils the condition (F) if and
only if for every set D € & —# and for every double sequence of & -measurable sets
{Byn};mex such that

(a) Bjp=Bjy4, for j,neN,

(b) U B;, = D for jeN,
=1

(c) ‘Bix n:Bizh if il<i2 and i1+j1 = i2+j2
there exists a sequence {m};ey of natural numbers such that hmsupB, n B

LemMa 5. If a double sequence {S,,},ven of &- measurable sets fu{ﬁls the con-

ditions (2), (b) and (c) from Definition 4, then there exists a double sequence {Hy o} nan
ptr—1 pte—1

of & -measurable sets such that S,, = ) U H,, for every p, reJ_V.

m=p - #%p

Proof. Put H,, =8, for neN, H,, = Sppme1=Smpom Y Smte1,p—m) if

m<n, m,.ne Nand H,,,, =@ if m>n,m, n eN ‘We shall proceed by induction with
ptr—1 ptr—1

respect to 7. For r =1 the equality is obvious. Suppose that §,, = U U
. m=p LLFY
H, .. Then

ptr ptrT

U U H,,

m=p acp
BHr=1 ptr—1 : .
= U U Hyy O Hpps o, Uy pir Ve U Hyppog ptr Y ¥ f—
m=p a=p
= ‘Sp; v [Spr+1_(si,r v Sp+1.r)} v [Sp+l.r"(sp+1.r—l v Sy+2.r—1"] Y.

[ pEr—1,2 (Sp-h---l,i v Sp+r.l)] v S]H‘r.l

prtl s

because from () it follows that Spup, 1S Sps s Spar— 1,18y, for r>1, re N
and for every pe N.

THEOREM 3. Let { fun}maen be a double seq of & -n able real functions
defined on X. The convergence.¥ -a.e. 1o f of all sequences {f,,, .. }xen Where my 2

m = implies the convergence $-a.e. to f of a double sequence { f5, 3o vy if and
only if the pair (¥, %) fulfils the condition (F).
Proof. Sufficiency. Assume that f(x) = 0. Suppose that

E={xi~( _'1331‘ Jual) = 0)} ¢.7.
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For every x € E there exist a number a,>0 and two sequences {#}uex, {Mijxan Of
natural numbers tending to infinity such that |f, ,(*)|>a; for every ke N.
Denote by E, the set of x€ E for which there exist two sequences {n,}; oy and {t}ren
of natural numbers tending to infinity such that | £, . ()| = for every ke N. We

w0

have E = |) E, . There exists a natural number i, such that E; Jio 5. Denote E,y,
=1

o on
by H. Put Hy, = {x: | fas) =i} nH for m,neNand S,= U U H,,
ms=p m=p

for pe N. Then it is easy to vexify that H = S, for every pe N. If we put

prr=1 ptr—1
Spe= U U H,, then it is not difficult to prove that the double sequence

me=p R=p
{Sp}pren fulfils the conditions (a), (b) and (¢) of Definition 4 with D = H. From
the condition (F) it follows that there exists a sequence {r,},,y such that
Q = limsupS,, ¢ . Let (my, ny) be the kth element of the following sequence:
I 4

a,n, ., (1, T+r, = 1), 20 1), vy 2 27y = 1),
_ s (Ut =1, 1), oy (b ry =1, 1r, —1),
@2, s (2, 247,=1), (3,2), oy By 247, —1) .,
i3} (2+r2"'1: 2)1 wres (2“1"."2"‘1) 2+72"-"1),
(P)p)r vy (P,P"l"f‘,‘—l), (P+lsp)a [ELE] (P+1!P+rp_1)’ e

s P+~ 1, By ey (1, =1, p+r,—1),
Then m, L and n, e If xe Q, then x belongs to infinitely many sets S,
ad- ] - o

and so in the sequence { £, ».(%)}ex there are infinitely many elements greater than
1/iy; so the sequence {f,, .Jren does nottend to zero S -a.e. on X. This is a con-
tradiction,

Necessity. Suppose that the condition (F) is not fulﬁlled and so there exist
aset De¥— and a double sequence {S ,},,,, y of & -measurable sets fulfilling
the conditions (a), (b) and (c) of Definition 4 and such that for every sequence {r,},¢x
we have lxmsup iy €7+ Let {H,ulmnen be & double sequence of sets described in

Lemma 5. Put JoalX) =y, (%) for m, ne N.We shall prove that for all sequences
{m,,},‘, v and {n}, .y of natural numbers tendmg to mﬁmty we have llm f,,,,‘ mX) =

J-a.e on X. Indeed, the last assertion does ot hold if and only if xehmsupH,,,,‘ g
Let M* = {m: keN} and N* = {m: keN}. préM"‘uN* then we put
=1, If pe M* U N* then we put
= max(max{m: my = p}, max{m: n, =p-p+t

(we take zero as the max of the empty set) Observe that the sets {n,, my = p} and
{my: my'= p} are both" finite, because R and 7 o o, and so the definition
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of r,is cotrect, Froin this definition it follows. without difficulty that for every natu-
ral k there exists a natural number p such that H,, . =S,.,. Hence limsupH,, .
k

Rk

'c:_liinsup Spr, €F, and the ,com)_ergence F-a.¢. to zero of the sequence { fm;,,k},g; n

is provc:d

Simultaneously it is easy to see that the sequence { f,, Jmaen does not tend to
zero for any x € D.

W, Sierpifiski in [4] has proved that if X [0,1], ¥isa cr~ﬁe1d of sets measur-
able in the sense of Lebesgué and .# is a o-ideal of sets of Lebesgue measure zero,
then the convergence a.e. of every sequence { fumdren fOr {#Milien and {Mduen
tending to infinity implies the convergence a.e. of a double sequence {f,,}maen-
So in this case the pair (&, %) fulfils the condition (F). The proof in [4] 5 valid also
in the case of-an arbitrary g-finite measure space (X, &, u) and the oiideal of sets
of measure u zero.

Observe that if the pair (&, .#) fulfils the condition (E), then it fulfils also the
condition (F). Now wé shall show an example of a pair (&, .#) fulfilling (F) different
from.the pair (o-field of all measurable sets in o-finite measure space, o -ideal
of null sets).

Let X be a complete. dnd separable metric space, F—ao- ﬁeld of sets having
the Baire propcrty and # —a g-ideal of sets of the first category.

THEOREM 4. A pair (F,#) fulfils the condition (F).

Proof. Let D € ¥~ and let {B; .}, .y be a double sequence of sets belonging
to & and fulfilling the conditions {(a), (b) and (c) of Definition 4. We have D = GA P,
where G is an open and non-empty set and P is a set of the first category. Let K(x, r)
be a ball with the centre x and the radius r>0 included in'G. t suffices to show that
there exists a sequence {n_,}jE » of natural numbers such that limsup (Bj ny O K(x, 1)
is residual in K(x . J

Put C;, = B,,nK(x,r) for j,ne N. Then C,-,,,eS" for every j,ne N, and
50 we have CJ.,, = GJ,,AP_,,,, where G, is open and Py, is of the first category for
every j,ne N We have

and ) - -
] - -]
U CJ."JD U GJ'.M"' U PJM’
and so xt sufﬁces to choosc a sequence {n,},EN in such a way that for every ke N

the set U Gy, 18 denss in K(x,r).
- ‘
From the condition (b) it follows that {J C;, = D n K(x, ), and so it is not
. a=1 .
difficult to see that | G, is dense in K{x,r) for every je N. Let {Gy: je N} be
A n=l Tl 7' P i N |

wy
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a basis for a subspace topology in K(x,r) such that {G;: j =k, k+1, ..} is also
a basis for every k € N (the existence of such a basis easily follows from the separ-

-] o
ability). For every je N wehave G4 U G;n # @, because the set U G;,, is dense

in K(x, ). So for every j € N there exmts a natural number ; such that G_, N Gy, # G

Hence the set U G}, is dense in K(x, r) and from the fact that {Gj:j = K, k1, e}

is also a bas1s it follows that U Gy, is dense (and residual) in K(x, r) for every
keN So llmsupCj‘,,j is a res1dua1 set in K{x, r) and hmsupc_, wy &F- This ends

the proof. .

The assumption of' & -measurability of functions { fatmmey is Obviously essen-
tial in Theorem 3. It is possible fo construct a double sequence of functions
{ Fruntmnen defined on [0, 1] such that for every my, T O e ookl.ii} Froemd®) =0

except on a denumerable set (depending on {M)ien, (ifrend but Hm. £ (%) is
nmer o

not equal to zero at any point of the interval [0, 1] (see [4]).

The countable chain condition is also essential in Theorem 3. In [4] there is an
example showing that for X == [0, 1], &¥—a o-field of Lebesgue measurable sets
and #—a ¢-ideal of denumerable sets the convergence of every {fummdrsn fOI
{mirens {mIxen tending to infinity does not imply the convergence of {fntmnen
except on a denumerable set. It is worth observing tlrat the example is good also
if & is a o-field of sets having the Baire property:

In the above considerations (in this part) the behaviour of the pairs (a—ﬁeld,of
measurable sets in a o-finite measure space, o-ideal of null sets) and (s-field of
Baire sets, o-ideal of sets of the first category) was similar. However, if we assnme
that the sequence {m}ien 304 {M}eon are increasing, the sitvation is different.
Sierpinski in [4] has proved that in this case the convergence a.e. of sequences
{ funmtien does not imply the convergence a.e. of the sequence { Fombmnen €veR
if all functions f,, are continuous.

Suppose again that X is a complete and separable metric space, & —a o~field
of sets having the Baire property and £ -z o-ideal of sets of the first category. Then
the following theorem holds.

THEOREM. 5. If {fontmnen 15 @ dauble sequence of ¥- measurable functions
Sulfilling the following condition: for all increasing sequences {mdpen -and {idean
of natural numbers 11m T =0 Fdue, on X, then Hm 1, () =0 SF-a.e.

mp-* 0
on X,
Proof. Suppose that the set E= {x ~( Iim f,,, 5(x) = 0)} doesnot belong
to #. We have -

=0A U0

. ,,-1 M=l m=M+1 a=M+

{x (a0 17} ,
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and so there exists a natural number p, such that the set

o o

. -
D=N U U {x: [f.00>Vpo}

M=1 m=M+1 naM+1
is of the second category. D is obviously a set having the Baire property, and so
D = GAP, where G is open and non-empty and P is of the first category. Let K{x, r)
be an open ball with the centre x and the radius r>0 included in G.

Put H,,, = {x: | funX)|>1/po} for m, ne N. These sets have the Baire prop-

erty, and so there exist open sets {G,,}mney 20d the sets of the first category
{Puntmnen such that H, . = G, AP, . for every m,neN.

@ «@°
It is not difficult to prove that for every natural M the set |) U G,,is
m=M+1n=M+1
dense in K(x, r).

Let {G,: ke N} be a basis for'a subspace topology in K{x,r) such that

{Gy: k—=j,j+1, .} Is also a basis for every jeN.
The set U U G,y is dense in K(x, r), and so there exist natural numbers "y
m=1 p=1
- &0

and », such that G; N G, ,, # @. Theset . |}
. ] m=max(my,n)+1 a=max(m,ng)+1
dense in K{x, r), and so there exist natural numbers m,>m; and n,>n, such that

G, N G,y # 9. Procecding in this way, we obtain two increasing sequences

{m}vey and {m}cy of natural numbers such that Gy N G, ,, 73 for every ke N.

G 1s also

Hence the set J Gy, i dense in Kix, r) and, moreover, for every j € N, the set
k=1

e 18 Tesidual

<« . 0
\J G 18 also dense in K(x, r). So, for every je N, the set |J G,
x=} k=j

@ o0 o0
in X(x,r) and from the fact that U H, n> U o™ UP,,,,“,,“ it follows that

11m supH,,,,‘ . 15 residual in K(x, r). chcc IxmsupH,,,k,,.,‘ ¢S But ifxe l:msup H,

heatlle >

then llm Frnme(X) is 10t equal to zero — a contradxctlon This ends the proof.
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Circularity of graphs and continua: topology
by

Harold Bell, Ezra Brown, R, F. Dickman, Jr.,
and E. L. Green ¥, (Blacksburg, Va.)

Abstract. A chain in a space X is a finite collection {Kj, ..., Ky} of distinct closed and connected
sets such that Ky K @ if and only if li—ji<1. A circular chain in X is a collection K such
that for any K¢ 30, 3o—{K} is a chain. For any locally connected, connected space X, m(X),
the clreulariry of X is defined by

m(X) = sup{n: X can be represented as a union of a .
circular chain with exactly n elements} .

The circularity, ¢(G), of & finite connected graph G is defined by
o(G) = sup{n: G can be represented as the union of a circular chain Jo in G
such that every member of X contains at jeast one vertex of G}.

The principal results in this paper are; (1) if G is a (planar) graph, then G can be-embedded
in a (planar) Peano continum X with ¢(G) = m(X). (2) If X is a planar Peano continuum,
then m{X) is infinite or even. (3) If G contains a cycle, then ¢(G)=>6 and if G is planar, then o(G)
is even. (4) The G is one of the Kuratowski non-planar graphs, then o(G) = 6,

In another papet, Circularity of Graphs and continua: Combinatorics, the authors develope
combinatorial techniques for the evaluation of the circularity of graphs and show that for any
integer k6, there exists a non-planar graph Gy with o(Gy) = k.

1. Introduction: Throughout this paper X will denote a locally connected, con-
nected normal space. For A< X, bo(4) denotes the number of components of A
less one (or o if this number is infinite). The degree of multicoherence, r(X), of X is
defined by

™ rX) =sup{bo(HnK): X = HUK and H and K are closed and
connected subsets of X} .

If r(X) = 0, X is said to be unicoherent and wé say that X is multicoherent
otherwise. X is sald to be finitely multicoherent if 0<r(X) < oo. If this value is never
attained, i.¢. bo(H ~ K)< oo for representations X = H U K as in (#), X i is said
to be weakly-finitely multicoherent. A: HL. Stone hag studied multicoherent spaces
extensively [6, 7, 8, 9] and many authors have studied vnicoherent spaces. Stone
has raised several interesting questions concerning multicoherent spaces.
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