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Abstract. We introduce take-it-or-leave-it auctions (TLAs) as an al-
location mechanism that allows buyers to retain much of their private
valuation information, yet generates close-to-optimal expected utility for
the seller. We show that if each buyer receives at most one offer, each
buyer’s dominant strategy is to act truthfully. In more general TLAs, the
buyers’ optimal strategies are more intricate, and we derive the perfect
Bayesian equilibrium for the game. We develop algorithms for finding
the equilibrium and also for optimizing the offers so as to maximize the
seller’s expected utility. In several example settings we show that the
seller’s expected utility already is close to optimal for a small number
of offers. As the number of buyers increases, the seller’s expected util-
ity increases, and becomes increasingly (but not monotonically) more
competitive with Myerson’s expected utility maximizing auction.

1 Introduction

Auctions have emerged as a key mechanism for task and resource allocation in
multiagent systems. We focus on the problem of allocating an indivisible good
to one of a group of interested buyers, while maximizing the seller’s expected
utility.? In this setting, the Myerson auction yields the highest expected utility
to the seller, compared to any other allocation mechanism [1]. Despite being the
optimal allocation mechanism, the Myerson auction has several undesirable fea-
tures. First, buyers must fully reveal their true valuations for the good.* Buyers

* This material is based upon work supported by the National Science Foundation
under CAREER Award IRI-9703122, Grant 11S-9800994, ITR 1IS-0081246, ITR IIS-
0121678, and ITR I1S-0427858, and a Sloan Fellowship.

3 All of our results apply to reverse auctions as well, in which a single buyer, facing
many sellers, wants to minimize her procurement cost.

4 Recently, cryptographic techniques have also been proposed to address this draw-
back [2].

Dagstuhl Seminar Proceedings 05011
Computing and Markets
http://drops.dagstuhl.de/opus/volltexte/2005/207



2 T. Sandholm, A. Gilpin

may be unwilling to reveal private information because such information is pro-
prietary or its revelation would have a negative strategic long-term impact. For
example, after such an auction the buyers will be at a disadvantage in future ne-
gotiations with the seller (who may be able to extract more surplus in the future
using information about the buyers’ valuations). Similar long-term adverse ef-
fects have been observed in other truthful full-revelation auction mechanisms [3].
Second, buyers may not understand the complex, unintuitive rules of the My-
erson auction, and therefore choose to not participate. Third, for a layman, it
is unintuitive to submit true valuations because bid shading is rational in many
commonly used auction mechanisms. Buyers are thus likely to shade bids even
in Myerson auctions, with unpredictable and suboptimal results. For these rea-
sons and potentially others, to our knowledge, the theoretically elegant Myerson
auction is not being used anywhere.

In the most commonly used auction mechanisms—the English auction (a.k.a.
ascending open-cry auction) and the Dutch auction (a.k.a. descending auction)—
bidders do not reveal their valuations completely [4]. Unfortunately, in these
auctions, the seller’s expected utility is not optimal and in fact can be arbitrar-
ily far from optimal. The Vickrey auction [5] suffers from both full valuation
revelation and seller’s expected utility being arbitrarily far from optimal.

In this paper we present a mechanism that achieves close-to-optimal expected
utility for the seller while allowing each buyer to retain much of her private
valuation information. Our take-it-or-leave-it auction (TLA) mechanism consists
of a sequence of take-it-or-leave-it offers made by the seller to the buyers, each
buyer in turn. Before the auction is held, the seller announces the order in which
the buyers receive offers and the amount of each offer. During a fixed time after
receiving an offer, the buyer has to accept (“take”) the offer, at which point the
auction ends, or reject (“leave”) the offer, in which case the seller may proceed
to make other offers. After rejecting an offer, the buyer never has the option of
accepting that offer.” We show how rational buyers should act in such an auction
and how the seller can optimize the sequence of offers given her knowledge about
the buyers. In this sense, our approach is automated mechanism design [6].

Sequences of take-it-or-leave-it offers have been studied in the context of
optimal auctions previously [7]. However, in that paper there is an assumption
that the seller can decide the accuracy to which the buyers learn their own
valuations. One way they can achieve this is by withholding information. In our
model, the seller has no control of the buyers’ information.

In many applications the seller may be aware of some statistical information
about the buyers. By taking this information into account, the seller can design
mechanisms so as to maximize her expected utility. In our setting, this is done by
making the assumption that every buyer’s valuation is drawn from some known
probability distribution. This assumption violates the Wilson doctrine which

5 At first glance, it appears that the Dutch auction and TLAs are equivalent. This is
not true. The Dutch auction is more powerful in the sense that the seller can make
an infinite number of offers, and less powerful in the sense that the seller has to make
the offers symmetrically to the buyers.
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states that mechanisms should be designed without the use of any priors. Some
examples of auctions that follow the Wilson doctrine include Vickrey, English,
Dutch, and first-price sealed bid auctions. These types of auctions are not opti-
mal, and in fact can be arbitrarily far from optimal. Further, it is generally not
possible to design utility maximizing auctions (or even approximately optimal
auctions) without using priors. The Myerson auction, on the other hand, does
not adhere to the Wilson doctrine, and as a result is able to extract more surplus
from the buyers. Just as is done in the Myerson auction, we use priors in our
mechanism.

2 The Setting and background

We study the usual auction setting in which a seller has an indivisible good that
she can allocate to any one (or none) of a set of buyers B = {1,...,n}. Each
buyer i has a valuation v; for the good that is drawn from a distribution f; with
cumulative density Fj. The buyers’ valuations are drawn independently.® The
distributions f; are common knowledge, but the valuation v; is only known by
the buyer ¢ herself. The setting is symmetric if each buyer draws her valuation
from the same distribution. Otherwise the setting is asymmetric. Finally, we
make the standard auction theory assumption that there is no aftermarket.

By designing the rules of the auction, the seller tries to maximize her expected
utility. The seller has a valuation vy (potentially zero) for the good. By the
standard quasilinearity assumption about the seller, the seller’s utility is vg if
she keeps the item, and if she allocates the item to a buyer, her utility is the
revenue that she receives from the buyers.

To motivate the buyers to participate in the auction, the rules of the auction
have to guarantee that each buyer receives no less utility by participating than
by not participating. Such ez post participation constraints imply that 1) a buyer
who does not get the good cannot be charged, and 2) the buyer who receives the
good cannot be charged more than her valuation.

The optimal mechanism for our setting is the Myerson auction [1]. It is the
benchmark against which we will compare our TLA mechanism.” Briefly, the My-
erson auction works as follows. Buyers inform the seller of their true valuations
(it is weakly dominant to do so). The seller then computes a virtual valuation
for each buyer based on the reported valuations, and the good is awarded to the
buyer with the highest virtual valuation, provided the virtual valuation exceeds
the seller’s real valuation (if not, the seller keeps the good and no payments are
transferred). The amount paid to the seller is the smallest valuation the winning
buyer could have reported and still have won the auction.

5 If the valuations can have arbitrary correlations, then even designing an approxi-
mately optimal auction is hard computationally [8].

" The proof of optimality of the Myerson auction assumes that the setting is regular,
i.e., the hazard rate f;/(1 — F}) is increasing for each buyer ¢ [1]. This assumption is
satisfied in all cases where we benchmark against the Myerson auction (in Section 7),
so we are benchmarking against the real optimum.
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3 Take-it-or-leave-it auction

In this section we define our idea of using a sequence of take-it-or-leave-it offers
as an auction mechanism.

Definition 1. (Take-it-or-leave-it auction (TLA)) Let A = (b1, a1), (ba,az), ...,
(bi, ar) be a sequence of k offers. Let an offer A; be a tuple (bj,a;), where a;
is the amount of the offer and b; € B is the buyer to whom the offer is made.
The entire sequence of offers A is revealed by the seller to the buyers before the
auction. The auction proceeds as follows:

— For j from 1 tok
o Let (bya) = A;. The seller offers the good to buyer b for amount a.
o If buyer b accepts, she gets the good and pays a to the seller. The auction
ends.
o If buyer b rejects offer a, the auction continues.
— If the auction has reached this point, the seller keeps the good and collects
no payments.

The following auction mechanism turns out to be an interesting special case:

Definition 2. (Single-offer TLA) A TLA is a single-offer TLA if each buyer
gets at most one offer, i.e., by # b, for all ¢,r € {1,2,...,k}, ¢ #r.

When we need to differentiate between a single-offer TLA and a TLA in which
a buyer may receive multiple offers, we will refer to the latter as a multiple-offer
TLA.

Note that in a TLA it is entirely possible for the seller to allocate the good
to a buyer who does not have the highest valuation, thus making the mechanism
inefficient. This is also the case in the Myerson auction. It is well-known that
in the asymmetric setting there is no mechanism that maximizes both seller’s
expected utility and efficiency.

3.1 Strategies and utility

A formal notation for strategies in a TLA is useful. Strategies for TLAs are
slightly different than for other auctions since a single buyer may need to make
many decisions during the course of an auction.

Definition 3. (Strategy for a TLA) A buyer’s strategy for a TLA is a function
from the buyer’s valuation and the number of the offer (made to that buyer), to
one of two possible actions: accept or reject:

sitRx{j|bj=1,7€{1,2,...,k}} — {accept,reject}.

A strategy profile is s = (s1,...,5n). A strategy profile excluding s; is s_; =
{81, -+ -1 8i—1,8i+1,---,8n}, and a strategy profile s with s; replaced with s, is
($—4,8).
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We make the standard assumption of quasilinearity, that is, a buyer’s utility u;
is zero if she does not get the good (and does not pay anything), and v; —a if she
gets the good and pays amount a. Given a strategy profile s and the valuation
v;, the expected utility w;(v;, s) of buyer 7 in a TLA A is

j—1
u;(v;, 8) = Z (H&) uﬁ(vi,si)

{ilby=i} \I=1

where

g N _ Jvi—ajifsi(vi,j) = accept
u (v i) = { 0 ifsi(vg,j) = reject.
Here, R; is the probability that offer [ is rejected by buyer b; if that offer is

made. These probabilities depend on the buyers’ strategy profile s, as discussed
next.®

4 Equilibrium analysis

We use definitions from game theory to help us understand how rational buyers
will behave in a TLA. We use two of the most prevalent solution concepts for
sequential games: dominant strategies and perfect Bayesian equilibrium.

4.1 Single-offer TLAs

A strategy s; for a buyer with valuation v; is called a dominant strategy if
for all other strategies s; and all strategies s_;, we have w;(v;, (sF,s-;)) >
u;(vi, (8}, 8—;)). As the following proposition illustrates, the strategies employed
by rational buyers in a single-offer TLA are straightforward and truthful. They
are dominant strategies, so a buyer is best off playing that way regardless of
what the other buyers’ preferences are and even if others play irrationally. Also,
a buyer does not have to know much about her own valuation (the determina-
tion of which can be a complex optimization problem itself, see e.g. [9,10,11,12]),
merely whether it is greater or less than the offer, making a single-offer TLA
easy to play.

Proposition 1 In a single-offer TLA, a buyer’s dominant strategy is

v o _ Jaccept if v; > a;
Si (Uza]) - {T@ject ifvi S aj'

The strategy profile s* = (s7,s5,...,8%) is thus a dominant strategy equilibrium.

8 When buyer i computes the utility, R; € {0,1} when b; = i, because the buyer knows
her own strategy.
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Proof. Consider buyer i with valuation v; facing offer a;. Suppose v; > a;, but
buyer i rejects. Then she gets payoff 0, whereas she would have gotten payoff
v; —a; > 0 by accepting the offer. Now suppose v; < a;, but buyer 7 accepts.

Then she gets payoff v; — a; < 0, whereas she would have gotten payoff 0 by
rejecting the offer.

Note that in a single-offer TLA, buyers don’t even need to know their own
valuations exactly. They only need to know if it is above or below a certain value.
This is also true, but to a lesser extent, for multiple-offer TLAs.

4.2 Multiple-offer TLAs

If the sequence of take-it-or-leave-it offers includes potentially multiple offers
per buyer, the buyers’ equilibrium strategies become significantly more intricate.
The reason is that a rational buyer will be reluctant to accept an offer at—or
somewhat below—nher valuation, because there is a chance that the auction will
make her a significantly lower offer later on. The analysis is further complicated
by the fact that a buyer’s passing on an offer gives a signal to the other buyers
and the seller about the buyer’s valuation.

Perfect Bayesian equilibrium (PBE) [13] is the most common solution con-
cept for sequential games with observed actions and private valuations (types).
In such a game, with independently drawn valuations, each buyer ¢ has a strat-
egy s; and beliefs (for each step j of the game, the buyer has, for each other
buyer k, a cumulative probability density function F} about the type of k). A
strategy profile s* is a PBE if the following conditions hold: 1) Each buyer up-
dates her beliefs using Bayes rule whenever possible; 2) Whenever it is buyer i’s
turn to move, s; prescribes an action that maximizes i’s expected utility from
then on, given i’s beliefs; and the three technical conditions: 3a) At every step
of the game, buyer i’s beliefs about other buyers are independent of buyer i’s
valuation, 3b) the beliefs about buyer ¢ can only be changed when i acts, and
3c) at every step of the game, for every triple of buyers 4, k, and I (i # 1, k # 1),
1 and k have the same beliefs about [.

We illustrate the PBE analysis through a 5-offer 2-buyer auction and present
the general method after that. For readability, we refer to buyer 1 in the feminine
and buyer 2 in the masculine. Suppose that the seller’s chosen TLA prescribes
that the first offer goes to buyer 1 and the remaining four offers alternate between
the buyers.

Buyer 1, when facing the first offer, must decide whether or not she should
accept it. If her valuation, vy, is less than the first offer, a;, then clearly she must
reject. However, the converse is not as simple. Even though she might stand to
gain positive utility by accepting the first offer, she might expect to gain even
more utility by rejecting the first offer and accepting a later offer. For each offer
made to a buyer, we would like to compute a threshold value above which the
buyer will accept and below which she will reject. (If the buyer’s valuation is
equal to the threshold, she is indifferent between rejecting and accepting.) We
will refer to buyer i’s threshold at offer j as .
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At the last offer made to each buyer, both buyers have dominant strategies.
They simply accept if the offer is below their valuation and reject otherwise.
This is analogous to the strategies employed by buyers in a single-offer TLA.

Now, consider the third offer (the second offer made to buyer 1). Buyer 1
knows what her utility is if she accepts this offer. She wishes to determine what
her ezpected utility is if she rejects the third offer (in a gamble to face the fifth
offer). To compute this she needs to compute the probability that buyer 2 rejects
the fourth offer. At this point in the game, buyer 1 knows that buyer 2 has re-
jected the second offer. Assuming buyer 2 is playing in equilibrium, his valuation
must be less than ¢2, his threshold when facing the second offer. Buyer 1 must
take this into account when computing the probability that buyer 2 will reject
the fourth offer. That is, buyer 1 updates her belief about the distribution from
which buyer 2’s valuation is drawn. Buyer 1 is able to perform these computa-
tions using her knowledge about buyer 2’s prior distribution, which is common
knowledge. After buyer 2 has rejected the second offer, by Bayes rule, the right
tail of his valuation distribution (probability density function) above t3 can be
cut, and the remaining distribution needs to be rescaled to make its integral one.
Thus the new cumulative distribution is Fy (z) = Fy(z)/F> (t3). (In general, we
will write Ff to denote the world’s belief about buyer i’s distribution when fac-
ing offer j. If a buyer i is facing her first offer j, then Ff = F;.) With this new
notation, we can write equations describing the thresholds for buyers 2 and 1
when facing offers 2 and 3, respectively:

t3 —ay = F} (1) (83 — as)
t} —az = Fy (as) (1} — as) -

We evaluate F} at 3 since we know that buyer 1 will only reject if her valuation
is below t3.

Determining the strategy that buyer 1 should use at the first offer is slightly
more complicated since buyer 1 could reject the first offer in a hope to accept the
third offer or the fifth offer. The following equation describes buyer 1’s threshold
at the first offer:

t1—ay = F () -max {t; — a3, Fy (as) (t{ —a5) }.

A simplifying observation At this point we have completely characterized
the strategies that the buyers will use, but we have said nothing about how
to compute these strategies. Computing the strategies is complicated by the
max operation in the above equation. The determination of the strategies could
be split into cases, with each case corresponding to a particular term within
the max operation being greatest. However, as we move beyond 5 offers, this
becomes complex. As the number of offers increases by one, the number of max
operations in the system increases by one, thus doubling the number of cases to
analyze. Therefore, the number of cases is exponential in the number of offers.”

9 Actually, the number of cases is further increased by the fact that as an offer is
added, the number of terms in the existing max operations of that buyer’s threshold
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This computation would be easier if we could assume that the thresholds
only depend on the next offer. In the above equation, this would mean that
t1 —ag > Fy (a4) (t1 — as). We observe that if this inequality does not hold, the
third offer would in effect be wasted because it certainly would be rejected. Since
this paper is concerned with optimal TLAs, we can assume that such offers will
never be made.!? Therefore, we need to focus on only one of the exponentially
many cases.

Equilibrium for any number of buyers and offers Algorithm 1 below is a
general procedure for generating the system of equations that determines buyers’
thresholds. Before describing the algorithm we need to introduce some additional
notation. First, we need an expression for evaluating updated distributions:

. Fz (.’IJ) if bj ¢ {1,...,bj,1}
(z) ={

F} Fl(i,) if bj S {17 .. ,bj,l}

! F,(ti )

where j' is the most recent offer made to buyer i. Second, we need an expression
for the probability that a buyer will reject a given offer j:

R Fj (aj) ifb; & {01, bi}
/ ng (tij) ifbj S {bj+1a--~7bk}~

The above value R; depends on whether or not the buyer faces another
offer or not. If the buyer does face another offer, then the expression involves a
threshold value. Otherwise, the expression only involves the offer. The algorithm
below makes a pass through the offers. If an offer is not the last one offered to
a buyer, then an equation is output containing an expression for the threshold.

Algorithm 1 Output system of threshold equations

— For j from 1 to k, If buyer b; faces another offer j' after offer j

e Then output the equation tgj —a; =Rj1Rjqa- Ry (tgj — aj/)

The product of R;’s that is output for each equation is the expression describing
the probability that the auction will go from offer j + 1 to offer j/ without a
buyer accepting an offer.

With the above discussion in mind, we can now present our main equilibrium
result.

equations increases by one (a max operations with 2 terms is added in the equation
where there was no max operation before).

10 This assumes that the order in which buyers receive offers is not fixed. If this order is
fixed (for example, due to external constraints), then making a surely rejected offer
can be beneficial in order to in effect change the order without actually changing it.
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Theorem 2. Suppose we have a multiple-offer TLA A = (b1, a1), (b2, a2), ...,
(br, ar) that is optimal in the sense of mazximizing the seller’s utility, subject to
the constraint that only k offers are made. Consider the following strategy for
buyer i with valuation v; facing offer a;:

accept if v; > a;j,1 ¢ {bj41,...,bk}
reject if v; < aj,1 ¢ {bj41,...,bk}
accept if v; > tg,i € {bjs1,...,bi}
reject if v; < tg,i € {bjs1,...,bg}

s; (vi,a;) =

where the tg values solve the system of equations generated by Algorithm 1. The
strategy profile s* = (s3,85,...,5%) is a perfect Bayesian equilibrium.

ren

5 Optimizing the offers

So far we have described how we would expect buyers to behave in a TLA.
Now we turn to the problem faced by the seller: how to maximize expected
utility? The seller can choose the order in which the offers are made as well as
the offer values. Before describing the optimization problem, we formalize the
seller’s objective.

Definition 4. (Seller’s expected utility) Given an instance A of a TLA, the
seller’s expected utility from step j onward is defined recursively as

o= (I—Rj)aj—FRon ifj=k
7 (lij)ajJrRﬂer if j < k.

The seller’s expected utility is given by w1, and we denote it by w(.A).
We can now formally define the design problem faced by the seller.

Definition 5. (TLA design problem) Given a limit ky,q. on the number of of-
fers made, the seller’s TLA design problem is to compute

A* = argmax; 4 | | a|<kn..1T(A)-

Note that in Definition 5 the k,,,, parameter is exogenous. It is a constraint
imposed on the optimization problem that comes from some external source, for
example a limit on the amount of time or resources the seller is able to commit
to the auction.

We now discuss some characteristic properties of optimal TLAs.

Proposition 3 For any given TLA design problem, an optimal TLA exists in
which no buyer receives consecutive offers.

Proof. If a buyer receives consecutive offers, she will never accept any of them
except possibly the lowest. Thus, the other ones of those offers can be removed
from A.



10 T. Sandholm, A. Gilpin

Offers might not decrease over time in optimal TLAs:

Ezxample 1. Consider the 2-buyer, 3-offer setting where buyer 1’s valuation is
uniformly distributed on the interval [0, 1] and buyer 2’s valuation is uniformly
distributed on the interval [1,4]. The only optimal sequence of offers is A =
(2,2.125), (1,0.5275), (2, 2.0).

However, decreasing offers can be made to each buyer:

Proposition 4 For any given TLA design problem, an optimal TLA exists in
which each buyer individually receives strictly decreasing offers.

6 Computational results

In this section we develop the computational methodology for solving for an
optimal TLA (which involves as a subproblem solving for how the buyers will
behave). Designing a TLA involves finding an order (the b; values) in which the
buyers receive the offers, and determining the value of each offer (the a; values).

6.1 Multiple-offer TLAs

In computing the optimal multiple-offer TLA, we assume that the order of the
offers is fixed (e.g., one can include an outer loop to try all orders) and then
optimize the TLA for that order as follows. ‘

We run Algorithm 1 to generate the equations for the thresholds t!. Because
the shorthand values R; are expanded in each of those equations, each equation
has on the right hand side the offer levels aq, as, ..., ax, the specific functional
forms of the prior distributions on the types Fy, Fs, ..., F,, and the thresholds
t]. To compute the optimal offers, we run a non-linear optimizer with these
equations as constraints and the expanded recursion for 7(A) from Definition 5
as the objective, which is now just a function of the offer levels ay,as,...,ax.
The output of the optimizer is the values of the optimal offer levels aj, a3, ..., aj.

The computational complexity of the above procedure is difficult to ana-
lyze. Indeed, non-linear optimization problems as a class have resisted rigorous
analysis. However, algorithms for finding local optima behave well in practice.

A tractable case Although the question of complexity remains open for the
general case, we have developed a linear-time algorithm for the special case
of two buyers with uniform distributions on the interval [0,1]. This algorithm
relies heavily on results obtained recently by Blumrosen and Nisan [14]. They
examine auctions in which the amount of information a buyer can transmit
to the seller is severely limited. One of the main results is that when a buyer
is limited to choosing from among k possible messages, the buyer’s valuation
range is partitioned into k continuous intervals (the intervals are, in general,
asymmetric among the bidders). The buyer signals which interval her valuation
happens to fall in. It turns out that the thresholds that separate the intervals are
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the same as the equilibrium thresholds in an optimal TLA. (Note that these are
the equilibrium thresholds, not the offer levels.) This is easily seen by considering
a TLA where each buyer receives k offers, and thus has k threshold values. The
TLA could be converted to a direct mechanism where the buyer simply states
the first offer that she is willing to accept. Then the problem of computing
the thresholds in a TLA becomes the same as computing the thresholds in a
communication-bounded auction. The following theorem from [14] (stated using
our threshold notation) motivates Algorithm 2.

Theorem 5. ([14]) When there are two buyers with valuations drawn uniformly
from the interval [0, 1] the thresholds in an optimal 2k-offer TLA, k > 2, are:

g [t B0 e (1,2, 2k - 1)
’ 3 if j = 2k.

The first offer in the TLA goes to buyer 1, and the offers alternate after that.

Algorithm 2 computes the offer levels for a multiple-offer TLA with two buyers
having uniform distributions on the interval [0, 1].

Algorithm 2 Let k4, > 4 be an even number denoting the total number of
offers made.

ey . T _ k"na"l‘/
1. (Initialize.) k « ¥maz 41, o (zki3)2; t— 23‘6: la‘)"?’a, tymer — 1
2. (Compute thresholds.) For j from 1 to kyae — 1
(a) If j is odd, then i < 1, else i « 2
(b) tz — t+ (kmaz;g:é)(lft)
3. (Compute last offers.) ay,,,, «— thme= Ry« tff;’(;‘;fz, h,,,, 1 — thmes=L
2

k’"L(LZL'7
4. (Compute offers.) For j from kpar — 2 down to 1
(a) If j is odd, then i« 1, else i « 2

(b) aj —t] = Rja (ti - aj+2)
(c) If j > 2, then R; «— tf—;, else Rj «— tg
Theorem 6. Algorithm 2 computes an optimal TLA for the setting with two

buyers having uniform distributions on the interval [0, 1].

Proof. Immediate from Theorems 2 and 5.

6.2 Single-offer TLAs

Now we are considering single-offer TLAs, so we have k.., < n by definition.
Since making at least some offer to every buyer cannot hurt the seller’s expected
utility, we always have an optimal single-offer TLA with k = k4. So, we set
k= kmaz-
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For convenience, we will think of the optimization problem as two separate
problems. The first problem is to determine the order in which the buyers receive
the offers. The second problem is to compute the actual offer values.

First, consider symmetric settings, i.e., F; = Fj for all buyers 4, j. In this
case the order does not matter, so we set them arbitrarily. The offer values can
be determined by first making an offer to the last bidder equal to the inverse
virtual valuation of the reserve price and computing the expected profit from
this offer as the new reserve price. Formally:

Algorithm 3 Compute offers for single-offer TLA

1. (Initialize.) ™ «— vg

2. (Compute offers.) For i from kpa, down to 1
(a) a; — argmaz, (1 — Fi(a)) a + F;(a)7
(b) T — (1 - Fz(az))az + Fi(ai)w

Proposition 7 Algorithm 3 computes an optimal single-offer TLA in the sym-
metric settings.

If we assume that F; can be evaluated in constant time and that the “argmax”
computation can also be done in constant time, then Algorithm 3 runs in time
linear in the number of offers k.4, For a wide range of common distributions,
including uniform and exponential distributions, these assumptions hold.

Now, consider asymmetric settings. Clearly the order of offers now can make
a difference to the seller’s expected utility. For general asymmetric preferences,
we do not know of an efficient algorithm for ordering the offers. (For example,
always greedily making an offer to the remaining buyer from whom the seller can
myopically expect the greatest utility is not generally optimal.) One could try all
possible orderings, running Algorithm 3 to evaluate each ordering. However, for
a large number of buyers this would be infeasible since the number of orderings
is kinao!. Fortunately, we have been able to show that in some commonly used
special cases one can order the buyers in polynomial time. Theorem 8 illustrates
just one of many results. We denote a uniform distribution over the interval [a, b]
as Ula, b].

Theorem 8. With v; ~ U[0,w;], an optimal single-offer TLA can be determined
in O(n log n) time by sorting the buyers in decreasing order of w; and passing
the sequence to Algorithm 3.

7 Economic performance of TLAs

In this section we present experiments and theoretical results to give an indica-
tion of how one can expect our TLAs, optimized as explained above, to perform
in practice. (Throughout these experiments, we set the seller’s valuation vy to
7€ero.)
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First we studied the performance of our optimal single-offer TLA as the
number of buyers increases. Naturally, as the number of buyers increases, the
expected utility of the single-offer TLA increases. Table 1 shows how well an
optimal single-offer TLA fares relative to Myerson’s utility-maximizing auction
as the number of buyers increases (and each buyer is made exactly one offer).*
The single-offer TLA is close to optimal. Interestingly, the relative performance
does not improve monotonically, but does improve when the number of buyers
is large.'? The advantage of our single-offer TLA over the English auction is
greatest when the number of buyers is not very large. Also, it tends to be greatest
in the asymmetric settings. (Naturally, our multiple-offer TLAs would yield even
greater expected utility for the seller.) In the case of 1 buyer, a TLA performs
exactly as the Myerson auction, and the English auction does not generate any
expected utility for the seller.

‘ Num buyers:” 1 I 2 | 4 | 6 | 8 I 10 I 20 | 100 |
v; ~ U0, 1] 1 /0].938 / .800[.981 / .978].894 / .997[.900 / 1 907 / 1 937 /1 992 /1
v; ~ UJ0, 1] 1/ 0[.980 / .646].959 / .844[.953 / .898].952 / .922[.952 / .936[.958 / .963[.979 / .987
v; ~ Ui, 5+ 1][[1 / 0].979 / .735[.990 / .866[.993 / .910[.995 / .933[.996 / .946].998 / .973[1 / .995
v; ~ Exp[2] 1/ 0[.932 /.749].994 / .961[.847 / .991.837 / .997[.833 / .999[.836 / 1 872 /1
v; ~ BExp[i] 1/ 0[.509 / .657].917 / .813|.900 / .824|.918 / .822[.927 / .819[.942 / .813|.948 / .810

Table 1. The left (right) number in each cell is the expected utility of an optimal
single-offer TLA (English auction) divided by the expected utility of the Myerson
auction. Values of 1 indicate that the auction was within 0.0005 of optimal

We also studied how well the seller’s expected utility in an optimal multiple-
offer TLA increases as the number of offers increases. The following result,
which follows immediately from a result in [14] and the correspondence between
communication-bounded auctions and TLAs, shows that we can expect a TLA
to perform well for a wide variety of distributions.

Theorem 9. ([14]) The revenue loss in an optimal k-offer TLA with 2 sym-
metric buyers having regqular distributions'?® is O (k%)

For some distributions, including the uniform distribution, the above bound is
tight. This result is asymptotic, but in practice TLAs yield close to optimal ex-
pected utility for the seller, as exemplified in Table 2 where we considered several
2-buyer settings, showing how close a TLA gets to the expected utility generated
by Myerson’s utility-maximizing auction as the number of offers increases. Even
with a small number of offers, the expected utility of a TLA is close to optimal,
and increases monotonically with the number of offers.

1 We denote the exponential distribution having mean 1/ as Exp[u] (its cumulative
density is F(z) =1 — e 7).

12 In the third row, the optimal single-offer TLA deterministically allocates the good
to the highest buyer, thus making the allocation efficient in this case, where the
Myerson auction is inefficient.

13 Recall that a distribution F; is said to be regular if f;/(1 — F;) is increasing.
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[ Total number of offers:[[ 1 [ 2 | 3 [[English]
v1 ~ U[0, 1], v ~ U[0,1] ]].600].938].979]] .800
v1 ~ U]0.5, 2], va ~ U[0, 1]|].857].977].992|| .625
w1 ~ U[L, 4], vz ~ U[0,1] |].932|.094].997|] .350
v1 ~ Exp[2], va ~ Exp[2] |[[.551].932].977]] .749
v1 ~ Exp[2], vo ~ Exp[4] [].726].968[.986]] .658

Table 2. Seller’s expected utility of an optimal 2-buyer TLA and the English auction
divided by the expected utility of the Myerson auction. The number of offers for the
TLA is varied from 1 to 3. In each case, it is optimal to give the first offer to buyer 1

8 Conclusions and future work

We introduced TLAs as a selling (or buying) mechanism that has low valuation
revelation as do the most commonly used auction mechanisms (English and
Dutch auctions), yet, unlike them, generates close-to-optimal expected utility for
the seller. We showed that in single-offer TLAs, each buyer’s dominant strategy
is to act truthfully. In multiple-offer TLAs, the buyers’ optimal strategies are
more intricate, and we derived the perfect Bayesian equilibrium for the game.
We developed algorithms for finding the equilibrium and for optimizing the offers
in single-offer and multiple-offer TLAs so as to maximize the seller’s expected
utility (subject to an exogenous constraint on the number of offers), and proved
that optimal TLAs have many desirable features. We applied a result due to
Blumrosen and Nisan to TLAs to show that the seller’s expected utility is close to
optimal already for a small number of offers. We also showed in several examples
that as the number of buyers increases, the seller’s expected utility increases and
becomes increasingly (but not monotonically) more competitive with Myerson’s
expected utility maximizing auction. Myerson’s uses full valuation revelation
and is arguably impractical because the rules are unintuitive, unlike ours in
which the mechanism is simply a sequence of take-it-or-leave-it offers. Even our
single-offer TLA tends to yield significantly greater utility to the seller than the
English auction when the setting is asymmetric or the number of buyers is not
very large.

Future research includes developing fast offer-ordering algorithms for asym-
metric single-offer TLAs for arbitrary valuation distributions, as well as fast
special-purpose algorithms for PBE finding, offer ordering, and offer value opti-
mization in multiple-offer TLAs. We also plan to extend this work to auctions
of multiple identical units and to auctions of multiple distinguishable items.
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A Proofs

Proof of Theorem 2

It is easy to see that the technical Conditions 3a-3c of PBE are satisfied. As
described above, the buyers update their beliefs using Bayes rule whenever pos-
sible, so Condition 1 is satisfied. What remains to be shown is that Condition
2 is satisfied, i.e., that it is never profitable to deviate from the above strategy
(in any of the four scenarios). For the first two scenarios, the proof is analogous
to the proof of Proposition 1. For the other two scenarios, in which the buyers
face another offer later in the auction, we need to make use of the thresholds.
Consider buyer ¢ with valuation v;, facing offer a;. Let a;s be the next offer that
buyer i faces. Suppose v; > tg , but buyer i rejects. The highest expected utility
she can expect to get later in the auction is Rj4q - - - Rj/—1 (v; — a;7). But, by the
construction of the thresholds, this is less than v; — a;. So buyer 7 is better off
accepting the offer. The scenario where v; < tg is proven similarly.
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Proof of Proposition 4

If, in equilibrium, all the rejection probabilities R; of the other buyers that
get offers in between two offers of buyer i are zero, that is equivalent to buyer
1 receiving consecutive offers, which is unnecessary by Proposition 3. We can
therefore restrict attention, without loss in the seller’s expected utility, to TLAs
where this never occurs.

We now show that a buyer will never accept an offer that is equal to or
higher than her previous offer. The main idea is that since the buyer knows
the sequence of offers at the start of the auction, she knows she can get more
utility by accepting an earlier, lower offer, rather than accepting the later, higher
offer. Suppose that in an optimal TLA, buyer ¢ is offered a; at some point in
the auction, and the next offer to buyer i is a;/, where a; < aj. Without loss of
generality, say buyer ¢’s valuation v; is at least a;/. (If it is less than, then buyer ¢
will clearly never accept the offer.) Then the expected utility from accepting offer
a; is v; —aj, while the expected utility from rejecting offer a; and later accepting
offer a;/ is strictly less than v; — a; since the utility must be multiplied by the
probability that the auction will continue to offer a; without another buyer
accepting an offer and thus ending the auction. Let r denote the probability
that no other buyer accepts in between. Since a; < aj and r < 1 (by the
argument in the paragraph above), we have v; —a; > r(v; — a;), so buyer i
will never accept offer a;. Thus, the wasted offer a; can be removed from the
auction and the auction remains optimal.

Proof of Proposition 7

Consider the last offer made in a TLA. The result of the last offer does not affect
the result of any of the other offers. Thus, the seller should make an optimal offer,
which is computed in step 2(a) during the first iteration. Now consider the next
to last offer. Again, the result of this offer does not affect any of the previous
offers. Also, the expected utility the seller earns if this offer is rejected has already
been computed and is stored in 7. Thus, the offer computed in step 2(a) is the
optimal offer. Continuing with this backward induction, it is easy to see that
Algorithm 3 correctly computes the optimal offer levels.

Proof of Theorem 8

The main idea of the proof is to take a sequence of offers that is not made
in descending order of w; and modify the sequence so that it yields a higher
expected utility for the seller. Assume, by way of contradiction, that the optimal
TLA A has a sequence of offers in which the offers are not made to the buyers
in decreasing order of w;. Then for some offer (b;,a;) we have wy, < wy,,,.
Consider another TLA A’ which makes the offers in the same order as A but
switches the order of b; and bj;1. We will show that the new auction, with
appropriately chosen offers (b, a}) and (b, ,a},), achieves a strictly better
expected utility for the seller.
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By assumption, we have w(A) > m(A’). The goal is to show that 7(A") >
m(A). We simply need to show that ; > m; where 7} and 7; are the seller’s
expected utility from step j onward in TLAs A’ and A, respectively. Note that
in both TLAs the offers j + 2 to k are the same.

So we just need to show the following inequality holds:

(1= Fy,,, (a)))a) + Fy,,, (af) [(1 = Fy,(a)41))a)00 + Fy,(a)0)m402] >
(1= Fy,(aj))a; + Fy,(a;) [ — By (aj41))aj41 + Foyyy (aj+1)7rj+2] (1)

We have Iy, (a) = wlzl,j and Fy,,, (a) = U)bj+1 so we can rewrite (1) as:

!/ !/ ! !

a’; a’; a’ii g a’ii g

(o5 Y (1) g, )
Wb 41 Wb, 41 W, W,
, . s s
J a; J+1 J+1
(1 — —) a; + —— [(1 - ) ajy1+ —7Tj+2:| (2)
Wo; Wo; Whj 14 Whj 14

Using a similar argument as in the proof of Proposition 7, we can compute the
following offers:

!/
Wo; + Tjit1 _ Wy Y2 Wh Ty, Why F Mo

a; =

iyl = a: [ =
2 A 2 » 2 T 2

Plugging these values into (2) and simplifying the expression completes the re-
sult.



