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1. INTRODUCTION 

Stream ciphers are based on pseudorandom key streams, i.e. on deterministically 

generated sequences of bits with acceptable properties of unpredictability and ran- 

domness ( s e e  [&, ch. g],  [9 ] ) .  From the cryptographic viewpoint, a useful measure 

for unpredictability and randomness is the linear complexity profile of a sequence 

(see [81, [ 9 ] ) .  

random sequences may be viewed as pseudorandom sequences. 

connections between the linear complexity profile of a sequence and the continued 

fraction expansion for the generating function of the sequence and we use these con- 

nections to analyze randomness properties of the sequence. 

Sequences with a linear complexity profile similar to that of truly 

In this paper we establish 

We start with some basic definitions. If F is an arbitrary field, then a se- 

quence s1,s2, ... of elements of F is called a kth-order (linear feedback) shift 
register sequence if there exist constant coefficients ak, ..., aoE F with ak 0 

such that 

ak s ~ + ~  +...+ alsi+l + a. si = 0 for i = 1,2 ,... . (1) 

The zero sequence O,O, ... is viewed as  a shift register sequence of order 0 .  A 

shift register sequence is uniquely determined by the recursion (1) and by the ini- 

tial values s 1 , s 2 ,  ..., s k' 

Definition 1. Let s 1 , s 2 ,  ... be an arbitrary sequence of elements of the field F 
and let n be a positive integer. Tken the linear complexity L(n) is defined as 

the least k such that s1,s2, ..., s form the first n terms of  a kth-order shift 

register sequence. 

Definition 2. With the notation of Definition 1 ,  the sequence L(1), L(2),-.- is 

called the linear complexity profile of the sequence s1,s2, ... . 
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It is clear that OL L(n)L n and L(n)L L(n+l) for all n 2 1. Therefore 

the linear complexity profile is a nondecreasing sequence of nonnegative integers. 

The linear complexity L(n) can be calculated by the Berlekamp-Massey algorithm 

(see [ 3 ,  Ch. 81, [ 4 ,  Ch. 61, [5]). In the applications to stream ciphers the field 

F is usually the binary field, i.e. the finite field with two elements. 

I n  Section 2 we discuss formal power series viewed as generating functions of 

sequences. The core of the paper is Section 3 where it is shown that the linear 

complexity profile of a sequence can be described in terms of the continued fraction 

expansion for its generating function. 

the Berlekamp-Massey algorithm. In Section 4 we show how this approach leads to a 

fairly simple proof for the characterization given by Wang and Massey [ll] of binary 

sequences with a perfect linear complexity profile. In Section 5 we discuss se- 

quences with almost perfect linear complexity profile and the construction of se- 

quences with a prescribed linear complexity profile. 

This yields in particular a new approach to 

2 .  GENERATING FUNCTIONS 

If s1,s2, ... is an arbitrary sequence of elements of the field F, then we as- 

sociate with it the formal power series 

-1 in x as its generating function. We view S a s  an element of the field 

G = F((x-l)) of formal Laurent series over F in x . The field G consists of 

the elements 

-1 

s = 2 Si x-i , i=r 

where all sic F and r is an arbitrary integer (positive, negative, or 0 ) ;  the al- 

gebraic operations in G are defined in the usual way. The field G contains the 

field F(x) o f  rational functions over F as a subfield, and F(x) is the quotient 

field of the polynomial ring F[x]. Elements of G that belong to F(x) are called 

rational, all other elements of G are called irrational. 

Shift register sequences can easily be characterized in this context. If 

S1’S2’. - * is a shift register sequence satisfying (11, then the polynomial 

( 2 )  
k f(x) = a x +...+ al x + aoEF[x] k 

is called a characteristic polynomial of the sequence (or of the recursion (1)). By 

definition, a nonzero constant polynomial is also viewed as a characteristic 
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polynomial of the zero sequence. As usual we define deg(0) = - m .  

Lemma 1. Let fEF[x] be a nonzero polynomial. Then the sequence s1,s2, ... of 

elements of F is a shift register sequence with characteristic polynomial f if 

and only if 

with gEF[x] and deg(g)< deg(f). 

Proof. This is trivial if deg(f) = 0. If f is as in ( 2 )  with deg(f) = k A  1, 

then consider 
c4 

-i k -1 -2 f(x) si x = (ak x +...+ al x + ao)(s, x + s 2  x +... ) . 
i=l 

The right-hand side is a polynomial of degree < k if and only if the coefficient of 

each XJ with j < 0 vanishes, which means that 

a s  + a  = o  f o r  all j < 0 . k - j+k + * * . +  a 1 '-j+l o '-j 

But this is equivalent to the validity of (1). 

Therefore shift register sequences are exactly those sequences whose generating 

functions are rational elements of G. The rational generating function of a shift 

register sequence has a reduced form g/m with g,mEF[x], deg(g)< deg(m), and 

gcd(g,m) = 1. The polynomial m is called a minimal polynomial of the shift regis- 

ter sequence. It can also be described as a characteristic polynomial of the shift 

register sequence of least degree. If one assumes that the minimal polynomial is 

monic, as is often done (see e.g. [ 3 ,  Ch. 8]), then the minimal polynomial is 

uniquely determined; we will not make this assumption. The following Lema follows 

immediately from Lemma 1 and the definition of a minimal polynomial. 

Lemma 2 .  Let mEF[x] be a nonzero polynomial. Then the sequence s1,s2 ,  ... of el- 

ements of F is a shift register sequence with minimal polynomial m if and only if 

with g €  F[x], deg(g) < deg(m), and gcd(g,m) = 1. 

If s 1 , s 2 ,  ... is an arbitrary sequence of elements of F and n is a positive 

integer, then consider the least k such that s1,s2, ..., s form the first n terms 

of a kth-order shift register sequence. A minimal polynomial mn of such a kth-order 



40 

shift register sequence is called an nth minimal polynomial of the sequence 

s1,s2, ... . 
for all n. 

It follows from the definition of linear complexity that L(n) = deg(mn) 

3 .  LINEAR COMPLEXITY AND CONTINUED FRACTIONS 

Let F be an arbitrary field and let the field G = F((x-')) be as in Section 

2.  Every S E G  has a unique continued fraction expansion 

. S = A 0 + l/(Al + l/(A2 +... 1) = : [AO,A1,A 2,...] , 

where the A j 2 0, are polynomials over F and deg(A.)& 1 for j -1 1. This 

expansion is finite for rational S and infinite for irrational S. For 

S = 

j' 3 

m 
s ,  x - ~ €  G we define its polynomial part by 

i=r 

-i 0 

i=r 
Pol(S) = Si x . 

Then the polynomials A are obtained recursively by the following algorithm: 
j 

A = Pol(S), Bo = S - Pol(S), 0 

which can be continued as long as Bj 0. If the continued fraction expansion is 

broken off after the term A. j 1 0 ,  we get the rational convergent P./Q.. The 

polynomials P and Qj can be calculated recursively by 
J '  J J  

j 

The following formulas are shown by straightforward induction on j: 

for j L 1 , 

P .  + B. P.-l 
s =  J 

Qj + Bj Qj-1 
for j A o . 

From ( 4 )  we get gcd(P., Q.) = 1 for j 0. For rational S we interpret 

deg(A.) = deg(Q.) = cd whenever A. and Q. do not exist. 
J J  

3 3 J J 

( 3 )  

( 4 )  

It is convenient to introduce the (exponential) valuation v on G which 
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extends t h e  degree  f u n c t i o n  on F[x]. For S E  G ,  S 4 0 ,  we put  

m 

I=r 
v ( s )  = - r i f  s = si x-i and s + 0 . 

For S = 0 we pu t  v ( S )  = -00. We have t h e  fo l lowing  p r o p e r t i e s  f o r  S ,  TEG:  

For f ~ F [ x ]  w e  have v ( f )  = d e g ( f ) ,  hence 

From ( 3 ) ,  ( 4 ) ,  ( 5 ) ,  and t h e  p r o p e r t i e s  of v i t  fo l lows  e a s i l y  t h a t  

v(Qj S - P j )  = - v(Q.  ) f o r  j 2 0 . 
J + l  

Lemma 3 .  I f  f ,  g E F [ x ]  a r e  such  t h a t  v(fS-g) < 0, then 

j j 
f = Ch Qh and  g = Ch Ph 

h=O h=O 

f o r  some j A 0  and ChE F[x] w i t h  deg (Ch)<  deg(%+l) f o r  O L  h L  j .  I f  i n  ad- 

d i t i o n  f + 0, then  

v(fS-g) = deg(Ci) - deg(Qi+l )  , 

where i i s  t h e  least  index  w i t h  Ci  + 0. 

Proof.  Using ( 3 )  w e  s e e  t h a t  e v e r y  

By ( 6 )  we have 

f E F [ x ]  can be represented  i n  t h e  i n d i c a t e d  form. 

v(C (Q S - Ph) )  = v(Ch) - v(Qh+,) 4 0 f o r  OL h & j , h h  

hence 

Using v(fS-g) < 0 w e  g e t  

J J 

v(> Ch Ph - g )  = v ( f S  - g - Ch(Qh S - P,)) < 0 - 
h=O h=O 

j 
But C h  Ph - g i s  a polynomia l ,  hence i t  must be 0. To prove the  second p a r t ,  

we no te  t h a t  i f  E 4 0 ,  then  che re  e x i s t s  a l e a s t  index i wi th  C i  0. From ( 6 )  
h=O 
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we get 

We can now establish the main result of this section which gives an explicit 

description of the linear complexity profile of a sequence in terms of the polyno- 

mials 
Qj 

generating function S. Note that for generating functions S we always have 

A = Pol(S) = 0. 

that are obtained as above from the continued fraction expansion for the 

0 

Theorem 1. 
00 

s = z s ,  
i=l 

Let s1,s2,-.. be an arbitrary sequence of elements of F and let 

x be its generating function. Then for any n 21 the linear complex- -i 

ity L(n) of s1,s2, ... is given by 

L(n) = deg(Q ) , 
j 

where j 2 0 is uniquely determined by the condition 

deg(Qj-l) + deg(Q.1 n <deg(Qj) + deg(Qjcl) - J 

Furthermore, the nth minimal polynomials of 

m of the form 
s1,s2, ... are exactly all polynomials 

mn = aQj + CQj-l , 

where a E F ,  a 0, and CEF[x] with deg(C)L 2 deg(Q.) - n - 1. 
J 

Proof. Write q. = deg(Q.) for j S O  and q-l = 0. For j & 0 we get from ( 6 ) ,  
J J 

P 
v(S - 1) = - v(Q.) - v(Q. ) = - q .  - qj+l . 

J J + l  J Qj 

Hence if 

P W  +=r  t. x-i , 
j i=l 
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then ti = s for 1 & i < qj + q j + l .  Since deg(P.1 < deg(Q.1 and gcd(P., Q.) = 1, 
it follows from Lemma 2 that 

polynomial . Therefore 
i J 1 J J  

is a shift register sequence with minimal tl,t2, ... 
Qj 

L(n) L q for I& n < qj + qj+l . ( 7 )  j 

Now let qj-l + qJ n < q. + qj+l. By the definition of L(n) there exists a shift 

register sequence u1,u2, ... with minimal polynomial m E F [ x ]  of degree L(n) and 

u. = si for 1 L i L n .  By Lemma 2 the generating function of u1,u2, ... has the 

form gn/mn with gnE F[x]. Using ( 7 )  we get 

I 

(8)  gn 
m n 

v(mn s - g ) = L(n) + V(S - -) 4 L(n) - n - 1 < o . 

Since m $. 0, Lenmia 3 yields the formulas 

j j 
m = Ch Qh and gn = Ch Ph with Ci 0 , 

h=i h= i 

v(mn S - 9,) = deg(Ci) - q i+l ' 

Together with ( 8 )  this implies 

qi+l * qj-l + q. + 1 - L(n) 2 n + 1 + deg(C.) - qiCl 
J 

In view of  ( 7 )  this is only possible if i = j or i = j - 1. If i = j, then 

m = aQj with a E F ,  a 0 ,  and L(n) = 4 . .  If i = j - 1, then mn = C.Q. + Cj-lQj-l 
and 

J J I  

L(n) 2 n + 1 + deg(C. 1 - qj 2 qj-l + deg(Cj-l) + 1 . 
J-1 

This shows that C. 0, hence C. = aEF, a 0 ,  and L(n) = 4.. Furthermore, ( 8 )  
J 1 J 

and (9) imply 

deg(Cj-l) - q .  = v(mn S - gn) L q - n - 1 , 
J j 

hence deg(Cj-l)L 2qj - n - 1. 

We have now shown that an nth minimal polynomial mn is necessarily of the form 

m = aQ. + CQ. given in the theorem. It remains to prove that any such polynomial 

can serve as an nth minimal polynomial. Put g = aP. + CP Then deg(gn) < deg(mn) 
and 

n J J-1 
n J j-1' 

by ( 4 ) ,  so that gcd(gn,mn) = 1. By Lemma 2, m is a minimal polynomial of the 
n 
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shift register sequence u1,u2, ... with generating function gn/m . If C 4 0, then 
by (9 )  

gn 

n 
v(S - -) = v(mn S - gn) - v(mn) = deg(C) - 2 q . L  - n - 1 , m J 

and if C = 0, then 

gn V(S - -1 = v ( m  m n n 
s - g ) - v(m ) = - qjcl - q j L  - n - 1 . 

Thus u .  = S .  for 1 & i L n, and so m is an nth minimal polynomial Of 
1 1  

S1,S2' ... . 

We remark that in the usual situation in which the Berlekamp-Massey algorithm is 

applied we have a finite field F and n = 2 deg(mn) = 2 deg(Q.). In this case, 

Theorem 1 shows that the nth minimal polynomials are exactly given by m 

aGF, a 0.  If one wants m to be monic, then a is uniquely determined. 

J 
with 

n = aQj 

Connections between the Berlekamp-Massey algorithm, the continued fraction algo- 

rithm, and the Euclidean algorithm have already been observed earlier (see e.g. the 

references in [ 3 ,  p. 5301 and the recent work of Dai and Wan [2]), but Theorem 1 

seems to give the most transparent connection between these algorithms. 

4.  PERFECT LINEAR COMPLEXITY PROFILE 

Rueppel [ 8 ] ,  [9, Ch. 41 has shown that for random sequences of bits (viewed a s  

elements of the binary field F ) the expected value of the linear complexity L(n) 

is This has given rise to the notion of a sequence with 

a perfect linear complexity profile: this is a sequence whose linear complexity pro- 

file follows the expected behavior of random sequences as closely as possible. 

tending this notion to arbitrary fields, we get the following definition. 

LtJ for the greatest integer 4 t. 

2 
+ c 2 n  with O &  c 6 &. 

Ex- 

We write 

Definition 3 .  A sequence s1,s2, ... of elements of a field F is said to have a 

perfect linear complexity profile (PLCP) if 

n+ 1 L(n) = L T J  for all n I1 . 

Theorem 2.  The sequence s 1 , s 2 ,  ... of elements of F has a PLCP if and only if its 

generating function S = si x is irrational and has a continued fraction ex- 

pansion 

-i 6) 

i=l 
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. . . I  

for'all j 1 1 .  

irrational and deg(A,) = 1 for all j 1, then by (3) we have 
J 

deg(Q.) = j J 
a PLCP. Conversely, if the sequence has a PLCP, then lim L(n) = m  implies that S 

is irrational. If we had deg(A.)> 1 for some j hl, then with 
J 

n = deg(Q. 

for all j l o ,  and so Theorem 1 shows immediately that the sequence has 

n + a  

+ deg(Q.1 = 2 deg(Q.) - deg(A.) we get from Theorem 1 
J-1 J J 3 

which is a contradiction. 

Theorem 2 was shown for the binary field in Niederreiter [6] and for arbitrary 

finite fields in Niederreiter [ 7 ] .  In the important special case where F is the 

binary field F2 
characterization of sequences with a PLCP. It was already pointed out in Nieder- 

reiter [6] that this characterization follows also from Theorem 2 and a result of 

Baum and Sweet [l]. We show now that the Wang-Massey characterization can be de- 

duced from Theorem 2 by a fairly simple argument that uses an idea of Taussat [ lo] .  

with two elements, Wang and Massey [ll] have given a more explicit 

Theorem 3 (Wang and Massey [ll]). The sequence s1,s2, ... of elements of F2 has 

a PLCP if and only if it satisfies 

s1 = 1 and s2i+l = s2i + s .  for i = 1,2, ... . 

-1 Proof. For T E G  = F2((x ) )  put 

-1 2 -1 D ( T ) = ~  T + ( i + x  ) T + ~ - ' E G .  

We have the following properties: 

D(T + U + V )  = D ( T )  + D(U) + D ( V )  for T, U, V E G  , 

D(T-~) D ( T )  T- for T E G ,  T 4 0 , 

D ( x )  + D(c) = c + 1 for c E F  2 '  

If s1,s2, ... has a PLCP, then by Theorem 2 its generating function S has an in- 

finite continued fraction expansion S = [0,A1,A2, ...], where A .  = x + a with 

a , €  F2 for all j 2 1. For j 1 0  we have by the continued fraction algorithm 
J j 

J 
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By induction on j and using S = Bo this yields 

j 2 2  2 2 2  2 
D(S)  = (ai + 1) B~ ... gidl + B~ ... B. D ( B . )  for j 11 . 

i=l -1-1 J 

We have v(B;) < 0 and v(D(B;)) < 0 for j & O ,  thus 
J 

2 2  
0 1  lim B B 

j+ca 

in the topology 

D(S) = 
m 

i=l 

J 

.. B* D ( B . )  = o 
J-1 J 

on G induced by the valuation v. Hence 

2 2 Oe 
2 2  

ai + 1) B~ ... B Z - ~  = (x (ai + 1) ... B ~ - ~ )  = : u 
i=l 

with U E G ,  v(U) < 0. By the definition of D ( S )  we obtain 

(10) 2 s2 + (x+l) s + 1 = xu . 
for -2 i 

Comparing constant terms we get s1 = 1 and comparing the coefficients of x 

i 21 we get s .  + s 2i+l + SZi = 0 .  

Conversely, if s1 = 1 and s2i+l = sZi + s .  for i 1, then we have (10) 
with a suitable UEG, v(U) < 0. If S is either rational or deg(A.)> 1 for 

some j 1, then by ( 6 )  there is a j 2 0  with 
J 

It follows that 

2 2  T: = P2 + (x+l) P. Q .  + Q2 + XU Q. = Q2 S2 - Pz + (x+l) Q. (Q. S - P j )  
J J J  j J J  J J J  

satisfies v(T) 4 0 .  In particular, the constant term of T is 0. With a = P . ( O ) ,  

b = Q.(O) this means that a + ab + b = 0. In F2 this is o n l y  possible if 

a = b = 0, and this is a contradiction to gcd(P., Q.) = 1. Therefore S satisfies 

the conditions in Theorem 2 and 

3 

3 

J J  
has a PLCP. CI s1,s2, ... 
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5. ALMOST PERFECT LINEAR COMPLEXITY PROFILE 

Theorem 3 shows that, at least in the field F2, sequences with a PLCP are far 

from being unpredictable. 

PLCP every second term depends in a known manner on previous terms, an untenable 

state of affairs in a purportedly pseudorandom sequence. 

Indeed this result says that in a sequence of bits with a 

The moral of this is that requiring a PLCP is too restrictive a condition. 

Therefore one should consider sequences for which somewhat larger deviations of the 

linear complexity L(n) from its expected value (which is about 4) are allowed. 
Such sequences may be called sequences with an almost perfect linear complexitY pro- 

file. The deviation of L(n) from 4 can be controlled by the following simple 

consequence of Theorem 1. 
- 

Theorem 4. Let s1,s2, ... be an arbitrary sequence of elements of the field F. 
Then, with the notation of Theorem 1, for any n 2 1 we have 

n+l 1 n 1  - - 7 deg(A. ) L(n)& 7 + 2 deg(A.) 
2 J + 1  3 

with the interpretation deg(A ) = - 1, where 

condition 
j & O  is uniquely determined by the 0 

Proof. By ( 3 )  the bounds for n can be rewritten in the form 

2 deg(Q ) - deg(A.) & n & 2 deg(Qj) + deg(A. - 1 , 1 J 3 +I 

which checks also for j = 0. This is equivalent to 

Since L(n) = deg(Q.) by Theorem 1, the desired result is shown.n 
J 

It is convenient to use a quantity introduced in Niederreiter [ 6 ] ,  [ 7 ] .  For an 
00 

irrational generating function s = si x-i~~((x-l)) let 
i=l 

S = [0,A1,A2, . . . I  

be its continued fraction expansion. Then we define 

K(S)  = s u p deg(A.) , 
j l I  J 

where we can have K ( S )  ' 0 0 .  Our interest will, however, be in the case where 
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K ( S ) < c o .  

if S is irrational and K(S) = 1. The following is an imnediate consequence of 

Theorem 4. 

We note that by Theorem 2 the sequence s1,s2, ... has a PLCP if and on ly  

Corollary 1. Let s1,s2, ... be a sequence of elements-of F which has an irrational 

generating function S 
Then 

(or, equivalently, which is not a shift register sequence). 

1 T(n + 1 - K ( s ) )  L L(n)& $n + K(s)) for all n 11 . 

The result of Corollary 1 was shown for F = F2 in Niederreiter [ 6 ]  and for ar- 

bitrary finite fields in Niederreiter [ 7 ] .  If K ( S ) < C O ,  then the bounds for L(n) 

in Corollary 1 are in general best possible. Choose j 1 1  with deg(A.1 = K(S) 
and put n = deg(Q. ) + deg(Q.), then L(n) equals the upper bound by Theorem 1. 

Choose j 1 1  such that deg(A.) = K(S) and n = deg(Q. ) + deg(Q.) - 1'51, then 

L(n) equals the lower bound by Theorem 1. 

J 

J-1 J 

J J-1 J 

Sequences with an almost perfect linear complexity profile can be constructed on 

the basis of Corollary 1, by considering irrational generating functions S with a 

relatively small K ( S )  > 1. The precise information on the linear complexity profile 

given in Theorem 1 can be used to produce a desired 

profile by an appropriate choice of the polynomials 

Rueppel [8], [9, Ch. 41, the standard deviation of 

bits is asymptotically equal to 3 t& = 1.03... . 
irrational generating function S E  F2((x-')) with 

1 

pattern in the linear complexity 

A1,AZ, ... . By a formula of 

L(n) for random sequences of 

Hence by Corollary 1, choosing an 
K(S) = 2 or 3 would be roughly 

in accordance with the asymptotic behavior of the standard deviation of L(n). 

Sequences of elements of an arbitrary field F with a prescribed linear com- 

plexity profile can be constructed by an appropriate choice of the polynomials 

A ,A ,... determining the continued fraction expansion for the generating function 

S = si x-~. If we have chosen the j polynomials A1,A2,. ..,A for some j 1, 

then it is important to know to what extent this determines the sequence , s  ,... . 
We note that by (6) we have 

26D 

i=l j 

s1 2 

P .  
V ( s  - ) = - deg(Q.) - deg(Q. . 

Qj 3 J + 1  
(11) 

Therefore all the terms s .  with 

1 L i L deg(Q.) + deg(Qj+l) - 1 , 
J 

and so at least all the terms with 

and they are not affected by later choices of Aj+ l ,A j+2 , . . .  . 
14 iL 2 deg(Q.), are determined by A1,A2,-..,A. 

1 J 
These terms agree with 
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j the corresponding terms in the power series expansion of P./Q.. The polynomials P 

and Qj 
lation of the coefficients in the expansion of P./Q is facilitated by the fact 

that these coefficients form a shift register sequence with minimal polynomial 

(by Lemma 2). Therefore we only need the deg(Q.) initial values of this shift 
register sequence, the remaining terms can be calculated quickly by the recursion Of 

the form (1) with characteristic polynomial Q.. But since 

) + deg(Q.) - 1 

J J  
are easily obtained by the recursions in Section 3 with A. = 0. The calcu- 

~j 
Qj 

J 

3 

for j 2  2 , deg(Qj)& deg(Q. J-1 J 

the deg(Qj) initial values can be obtained from the expansion of Pj-l/Qj-l- 

si with This leads to the following algorithm for calculating the terms 

l &  i & 2 deg(Q.), given the polynomials 

mials Ql,Q2, ...,Qj 
we put qh = deg(Qh) for 1 & h L j. 

A,,A 2,...,Aj. We assume that the polyno- 

have already been calculated by the recursion in Section 3 and 
J 

Step 1: We have 

where c is the leading coefficient of Q,. Therefore we can calculate the terms 

s .  with 14 i & q1 + q2 - 1 by the recursion (1) with characteristic polynomial 

Q, and initial values 

1 '  for i = q -1 
si = o for 1 L i L- q1 - 1, si = c 

Step h ( 2  & h & j): Suppose the terms si with 1 4  i L q + qh - 1 have already 

been calculated. Then we calculate the terms s ,  with qh-, + qh i& qh 

from the previously calculated terms by the recursion (1) with characteristic polyno- 

mial Qh. If h = j, then we replace q. + qjCl - 1 by 2 qj. 

h-1 
+ qh+l - 

J 

If a sequence A1,A2, ... of polynomials is given, then the algorithm above can 

be continued indefinitely. The third sentence in Step h can then be deleted. A spe- 

cial situation occurs in the case where F is the binary field F2. It is due to 
the trivial €act that i €  a €  F2 is given and we know that bbFp satisfies b 4 a, 
then b is uniquely determined as the binary complement of a ,  i.e. b = a + 1. It 

follows from this fact that for 

s .  with i = deg(Qj) + deg(Q. ). Consequently, in the algorithm above the numbers 

qh + qh+l - 1 can be replaced by qh + qh+l for 1L h 4 j - 1 whenever the under- 

lying field is F2, provided the term s with i = q + qh+l is defined as the i 
binary complement o €  the corresponding term obtained from the recursion (1). 

F = F2 the relation (11) also determines the term 

1+1 
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We show now that if the sequence s1,s2, ... of elements of F is constructed by 

the algorithm above with polynomials A1,A2, ..., then its generating function s 
has the continued fraction expansion 

s = [o,A~,A~ ,... ] . 
For suppose we had a different expansion 

vergents PhIQA for h l o .  Then there exists a least k & 1 with Ai 4 4- By 
the construction we have 

S = [O,A;,A; , . . . I  with corresponding con- 

In particular v(Qk S - P,) <0 ,  hence by Lemma 

j j 
Q, = Ch QA and Pk = Ch PA 

h= i h=i 

h L 0 .  

3 we get 

with Ci 4 0, Cj 0, and deg(Ch)< 

of Lemma 3 and (12), 

(12) 

the second part 

, 

hence we must have i = j. From = C. Q'., Pk = Cj PI, and gcd(Pk, Q,) = 1 it 
J J  

follows that C. = c EF. Since Qh = Qh and PA = Ph for 0 4 h 4 k, we must have 
j kk. On the other hand, (6) and (12) yield 

J 

s - P = v(Q,-, L - deg(Q ) = - deg(Q!) , 
k-1) - k J 

- deg(Qk) = V(Q,'-~ S - 
hence j L k, and so j = k and Q, = cQk, P = cPk. Then by ( h ) ,  k 

k 
( -  1) = Pk-l Q, - Pk Qk-l = CP,'-~ Qi - cP;( Q,'-l = (- c , 

thus c = 1. From Q, = QI; it follows that 
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