
 Open access Journal Article DOI:10.1007/S10732-007-9014-6

Sequencing by hybridization: an enhanced crossover operator for a hybrid genetic
algorithm — Source link

Carlos A. Brizuela, Luis Carlos González-Gurrola, Andrei Tchernykh, Denis Trystram

Institutions: Ensenada Center for Scientific Research and Higher Education

Published on: 01 Jun 2007 - Journal of Heuristics (Kluwer Academic Publishers-Plenum Publishers)

Topics: Population-based incremental learning, Meta-optimization, Search algorithm, Crossover and
Sequencing by hybridization

Related papers:

 Evolutionary Approaches to DNA Sequencing with Errors

 A genetic algorithm to sequence DNA using sequencing by hybridisation experimental data

 HyGADE: Hybrid of Genetic Algorithm and Differential Evolution Algorithm

 An Analysis of a Simple Genetic Algorithm.

 Compact genetic algorithm mutated by bit

Share this paper:

View more about this paper here: https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-
2lojp5kasz

https://typeset.io/
https://www.doi.org/10.1007/S10732-007-9014-6
https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz
https://typeset.io/authors/carlos-a-brizuela-38pfrhf745
https://typeset.io/authors/luis-carlos-gonzalez-gurrola-wj9ydnsl6u
https://typeset.io/authors/andrei-tchernykh-1jhz5vsrvd
https://typeset.io/authors/denis-trystram-vlatjodjbb
https://typeset.io/institutions/ensenada-center-for-scientific-research-and-higher-education-mhjj7rch
https://typeset.io/journals/journal-of-heuristics-2ecxro86
https://typeset.io/topics/population-based-incremental-learning-3fqj7kf7
https://typeset.io/topics/meta-optimization-iuo7u7tm
https://typeset.io/topics/search-algorithm-2g4xpul7
https://typeset.io/topics/crossover-2ktjymr8
https://typeset.io/topics/sequencing-by-hybridization-71q5x9y9
https://typeset.io/papers/evolutionary-approaches-to-dna-sequencing-with-errors-1lqll7uii6
https://typeset.io/papers/a-genetic-algorithm-to-sequence-dna-using-sequencing-by-47mkmcfx94
https://typeset.io/papers/hygade-hybrid-of-genetic-algorithm-and-differential-1kdktpzgl3
https://typeset.io/papers/an-analysis-of-a-simple-genetic-algorithm-4tvhrmyfxl
https://typeset.io/papers/compact-genetic-algorithm-mutated-by-bit-4qxh1kp1md
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz
https://twitter.com/intent/tweet?text=Sequencing%20by%20hybridization:%20an%20enhanced%20crossover%20operator%20for%20a%20hybrid%20genetic%20algorithm&url=https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz
https://typeset.io/papers/sequencing-by-hybridization-an-enhanced-crossover-operator-2lojp5kasz

J Heuristics (2007) 13: 209–225

DOI 10.1007/s10732-007-9014-6

Sequencing by hybridization: an enhanced crossover

operator for a hybrid genetic algorithm

Carlos A. Brizuela · Luis C. González-Gurrola ·

Andrei Tchernykh · Denis Trystram

Received: 1 June 2005 / Revised: 26 May 2006 /

Accepted: 26 May 2006 / Published online: 25 April 2007

© Springer Science+Business Media, LLC 2007

Abstract This paper presents a genetic algorithm for an important computational

biology problem. The problem appears in the computational part of a new proposal

for DNA sequencing denominated sequencing by hybridization. The general usage

of this method for real sequencing purposes depends mainly on the development

of good algorithmic procedures for solving its computational phase. The proposed

genetic algorithm is a modified version of a previously proposed hybrid genetic al-

gorithm for the same problem. It is compared with two well suited meta-heuristic

approaches reported in the literature: the hybrid genetic algorithm, which is the ori-

gin of our proposed variant, and a tabu-scatter search algorithm. Experimental results

carried out on real DNA data show the advantages of using the proposed algorithm.

Furthermore, statistical tests confirm the superiority of the proposed variant over the

state-of-the-art heuristics.

Keywords Sequencing by hybridization · Hybrid genetic algorithm · Greedy

crossover

C.A. Brizuela (�) · A. Tchernykh

Computer Sciences Department, CICESE Research Center, Km 107 Carr. Tijuana-Ensenada,

Ensenada, B.C., Mexico

e-mail: cbrizuel@cicese.mx

L.C. González-Gurrola

Instituto Tecnológico Superior de Santiago Papasquiaro, Km. 114 Carretera J. Guadalupe

Aguilera-Guanaceví, Santiago Papasquiaro, Dgo. 34600 Mexico

D. Trystram

ID-Institut IMAG, Avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin,

38041 Grenoble Cedex 9, France

210 C.A. Brizuela et al.

1 Introduction

The DNA sequencing is one of the most important problems in molecular biology.

It refers to the identification of an unknown short DNA sequence of 100 ≤ n ≤ 1000

base pairs. There are two classical approaches to sequencing: the chemical one pro-

posed by Maxam and Gilbert (1977), and the one involving gel electrophoresis by

Sanger and Coulson (1978), widely used in sequencing laboratories. A relatively

new approach denominated sequencing by hybridization (SBH) (Bains and Smith

1988), which consists of biochemical and computational parts, offers an interest-

ing alternative. The biochemical part of this method has been already widely used

for Single Nucleotide Polymorphism (SNP) analysis (Hirschhom et al. 2000) and

its applicability to real sequencing problems depends mainly on the development

of good algorithmic techniques for solving the computational part (Blazewicz et al.

2002a). For the biochemical part we are given an unknown DNA fragment, com-

posed by a sequence of nucleotides from a set of four: A (adenine), C (cytosine),

G (guanine), and T (thymine). In this set A and T are complements as well as C

and G. From this sequence all oligonucleotides (short sequence of nucleotides) of

length l, usually 8 to 10 nucleotides (Iduri and Waterman 1995) are detected, and

compose the unknown sequence, when properly ordered and overlapped. The detec-

tion is performed using a full DNA chip (Southern 1988), or full DNA array, which

contains all fragments (oligonucleotides) of length l, i.e. 4l fragments. Copies of

the unknown DNA sequence treated with a fluorescent substance are deposited on

the DNA chip. During the biochemical phase, complementary fragments, of length

l come together, i.e. hybridize. Two DNA fragments are complementary if at each

position the nucleotide of one fragment is a complement of the corresponding nu-

cleotide in the other fragment. After the hybridization and by reading a fluorescent

image of the chip, we can obtain the spectrum, which is the set of oligonucleotides

composing the unknown DNA sequence. Here, the second stage of SBH starts,

i.e. given the spectrum and the length of the unknown DNA sequence, which can

be estimated by using gel electrophoresis (Krebs and Dunaway 1996), find the or-

der of oligonucleotides such that consecutive elements always overlap in l − 1 nu-

cleotides. When the hybridization is performed without errors the spectrum includes

all length l oligonucleotides of the unknown DNA sequence. However, many fac-

tors do not allow the experiment to be run error-free. There are two types of errors

in the spectrum: if the spectrum does not include one or more oligonucleotides of

the original DNA sequence, then we have an experiment with negative errors. On

the other hand, if the spectrum includes oligonucleotides that are not present in the

original sequence then we have an experiment with positive errors. Every repeti-

tion of an oligonucleotide within the original sequence becomes a negative error,

since the hybridization cannot detect the number of occurrences of oligonucleotides

in the sequence. The presence of negative errors forces the overlap between some

neighboring oligonucleotides in the sequence to be of length less than l − 1. The

presence of positive errors in the spectrum forces some oligonucleotides to be re-

jected during the reconstruction process. When the spectrum contains only negative

errors, the problem can be approximately modeled as the shortest common super-

string problem (SCS) (Blazewicz and Kasprzak 2003), which is NP-hard (Garey and

Sequencing by hybridization: an enhanced crossover operator 211

Johnson 1978). On the other hand, when the spectrum contains both types of er-

rors, the problem can be represented as the selective traveling salesman problem

(STSP) (Blazewicz et al. 1999) which is also known to be NP-hard (Garey and John-

son 1978).

There have been many attempts at finding an efficient method to solve the com-

putational part of the SBH. The problem can be solved in polynomial time (Pevzner

1989) when the biochemical phase is run error-free. The optimal solution can be

obtained by reducing the problem to finding an Eulerian path in a directed graph.

However, when errors are present, the problem becomes strongly NP-hard (Blazewicz

and Kasprzak 2003), i.e., there is no known polynomial time algorithm for the SBH

problem with errors. Exact and heuristic methods have been proposed assuming er-

rors in the spectrum. A Tabu Search based algorithm for the latter case is proposed by

Blazewicz et al. (2000). Later on, the same authors proposed a sophisticated heuristic

(Blazewicz et al. 2002a) that improves their previous results. At the same time, a hy-

brid genetic algorithm (Blazewicz et al. 2002b) with a greedy crossover is proposed

to effectively and efficiently deal with positive and negative errors. This genetic algo-

rithm obtains better results than the Tabu Search algorithm (Blazewicz et al. 2000).

Blazewicz et al. (1999) present a branch and bound method to deal with positive and

negative errors. This algorithm achieves its best performance on instances with only

positive errors, however, it has problems handling negative errors. In a recent work

by Zhang et al. (2003), a new exact algorithm, based on the information of connected

oligonucleotides, predecessor-successor relation, is employed to effectively handle

both types of errors. Indeed, even in the presence of repetitions, this algorithm has

exceptionally good performance. In Bui and Youseef (2004), a genetic algorithm is

proposed to deal with both type of errors, and compared with the one in Blazewicz et

al. (2002b). In a more recent work (Blazewicz et al. 2004), the Tabu search algorithm

(Blazewicz et al. 2000) is enhanced by scatter search. The Tabu-Scatter-Search algo-

rithm is compared with the results presented in Blazewicz et al. (1999, 2000, 2002b),

and in all cases it obtains better results.

In this paper, a genetic algorithm1 to deal with the computational part of the SBH

problem is introduced. This algorithm is a variant of the hybrid GA (HGA) proposed

by Blazewicz et al. (2002b). The variant achieves better similarity results, with re-

spect to the original sequences for computationally hard instances, and shorter com-

putation time.

The remainder of the paper is organized as follows. Section 2 describes the SBH

problem. Section 3 introduces the proposed algorithm variant. Section 4 presents the

experimental setup and results. Finally, Sect. 5 summarizes the paper and points out

ideas for future research.

2 Problem statement

The input for the computational part of the SBH problem consists of a set S =

{s1, s2, . . . , sk} of equal length (l) strings si over the alphabet � = {A,C,G,T},

1This is a revised and extended version of the conference paper (Brizuela et al. 2004).

212 C.A. Brizuela et al.

and a number n representing the length of the unknown sequence. Each si is al-

ways a fragment of the original sequence N , whenever the experiment is error-

free (|S| = n − l + 1). However, in general, si may represent a fragment that

is not in the original sequence (positive errors). Furthermore, there may be frag-

ments in the original sequence N that do not appear as a string si in S (neg-

ative errors). The problem is to find a sequence L of length no greater than n

such that the number of used strings si is maximized, and therefore the differ-

ences between N and L is minimized. The justification for maximizing the num-

ber of used strings si ’s, is based on the assumption that most of the informa-

tion from the hybridization experiment is correct. The SBH problem with positive

and negative errors was proven to be strongly NP-hard (Blazewicz and Kasprzak

2003).

3 The proposed algorithm

Our Sequencing Genetic Algorithm (SGA) is based on the idea of genetic algo-

rithms (Holland 1975; Goldberg 1989). The SGA is similar to the one proposed by

Blazewicz et al. (2002b) in all genetic operators except for the crossover. The encod-

ing method and the objective function are defined next.

3.1 Encoding

Each individual i is represented by a permutation of indices of oligonucleotides in

the spectrum. Specifically, the adjacency-based coding (Grefenstette et al. 1988) is

used: value i at locus j in the chromosome means that oligonucleotide i follows

oligonucleotide j in the solution.

Therefore, feasible solutions are represented by subcycle free permutations,

except for a single cycle of length |S|. Figure 1 shows a feasible individual

i = [4 2 3 0 1] for a given spectrum S = {CTG,ACT,GGA,GAC,TGA}. In this

chromosome, the number 4 at locus 0 indicates that the oligonucleotide at posi-

tion 0 (CTG) in the spectrum, is followed by the oligonucleotide at position 4 (TGA)

in the spectrum. In this way, following the indices in the spectrum, the sequence

of oligonucleotides that individual i represents is: CTG, TGA, ACT, GGA, GAC

(0,4,1,2,3,0). Notice that this solution defines a set of candidate sequences, not a

single sequence, as it will become clear with the explanation of the fitness function

computation.

Fig. 1 Adjacency based

representation for the SBH

problem, |S| = 5

Sequencing by hybridization: an enhanced crossover operator 213

Algorithm 1 SGA

Input: S and n

Output: A candidate sequence L of length |L| ≤ n

1 for i = 1 to Pop_Size

2 do Generate_Individual(i)

3 Evaluate Objective_Function(i)

4 do Select individuals by the SRM

5 Keep the best_individual found

6 While Num_Of_Iter without change in the Objective_Function(best_individual)

7 do Crossover with probability Pc

8 Apply generational replacement

9 for j = 1 to Pop_Size

10 do Evaluate Objective_Function(j)

11 do Select individuals to update the population

12 Keep the best_individual found

The algorithm input is given by the spectrum S and the length n of the original

unknown sequence. Pop_size is the SGA population size. The function Generate_

Individual(i) randomly and uniformly generates an individual. Subcycles must be

avoided in the individuals to ensure the use of as many oligonucleotides in the spec-

trum as possible. Evaluate Objective_Function(i) computes the fitness for each indi-

vidual i. The fitness of each individual is the maximum number of oligonucleotides

that, overlapped in the order given by the chromosome, generates a sequence of nu-

cleotides not longer than n, and with the maximum total overlap. Pc is the crossover

probability.

Figure 2 shows the way the objective function is computed. First, we start at posi-

tion zero of the resulting cycle (0,4,1,2,3,0). Then we join oligonucleotides, once

the sequence has 3 oligonucleotides (CTG, TGA and ACT) and an n′ ≤ 6 ≤ n, the

next oligonucleotide (GGA) can be added. In this case, the resulting sequence with

Fig. 2 Fitness function computation for individual i = [4 2 3 0 1] and S = {CTG,ACT,GGA,

GAC,TGA}

214 C.A. Brizuela et al.

4 oligonucleotides is CTGACTGGA (0,4,1,2). However, the last oligonucleotide

(GGA) has to be eliminated since it makes the sequence to be of length (n′) greater

than n. Hence, the number of oligonucleotides used when starting at position 0 is 3.

The process is repeated starting at each locus in the chromosome. This can be done

given that the permutation of indices in the individual generates a cycle of length

|S|, and the last oligonucleotide can be considered to be adjacent to the first one.

After the selection of all positions, the sequence employing the maximum number

of oligonucleotides without violating the length restriction is chosen. For exam-

ple, the sequence generated starting at position 2 (2,3,0,4) is GGACTGA. This

sequence uses four oligonucleotides, being the maximum number this individual

represents, and its length is exactly seven, that is n. Notice that for this particular

case, the resulting sequence is identical to the original one, but this is not always

the case. For each individual its fitness value is normalized, based on the maxi-

mum number of oligonucleotides in any valid sequence, and then linearly scaled,

fnew = (
f

(n−l+1)
)k, where f is the number of used oligonucleotides, and k the scal-

ing factor.

The individuals are selected, lines 4 and 11 of Algorithm 1, according to the

stochastic remainder method (SRM) with replacement (Goldberg 1989). The popula-

tion for the next generation is constructed based on the already selected individuals.

These selected individuals are randomly paired to undergo crossover; elitism is also

applied (lines 5 and 12). The steps are repeated until a given number Num_Of_Iter of

generations without improvement of the objective function value is reached.

3.2 Crossover operator

The proposed variant of the crossover operator works as follows. The best successor

in the parents is always selected as long as a subcycle is not generated. Otherwise,

the best successor not generating a subcycle is selected among the remaining oligo-

nucleotides in the spectrum. Details for this operator are given below.

Algorithm 2 Crossover

Input: Two individuals (parents)

Output: One individual (child)

1 set the first oligonucleotide randomly (for the child)

2 for i = 1 to Spectrum_Size − 2

3 if it does not produce subcycle

4 do pick up the best overlapping oligonucleotide from the parents

5 else

6 do pick up the best overlapping oligonucleotide from the spectrum such that

a subcycle is not introduced

7 set the last oligonucleotide

Spectrum_Size indicates the number of elements in the spectrum. The first oligo-

nucleotide and its locus in the offspring are set randomly. For this randomly selected

Sequencing by hybridization: an enhanced crossover operator 215

oligo there are two possible successors (oligos): one in parent 1 and the other in

parent 2. First we calculate the overlap generated by each of this successors and we

take the one with the longest overlap, as long as it does not produce a subcycle.

Otherwise, the best oligonucleotide from the spectrum is chosen. The best oligo-

nucleotide is the one which produces the longest overlap with the previously selected

one and that does not produce a subcycle. In all cases, if there is more than one best

choice, the first found is chosen. Finally, the last oligonucleotide for completing a

cycle of length |S| is set. Notice that the implementation of Step 3 implies that we

search for the best overlapping oligo in the parents, and if it produces a subcycle then

we go to the spectrum without verifying if the other parent produces a subcycle.

Figure 3 shows how this operation is performed. Suppose again that the spec-

trum is given by S = {CTG,ACT,GGA,GAC,TGA}. Let us assume that the first

oligonucleotide randomly selected is GAC, i. e., oligonucleotide number 3, and its

randomly selected locus is 2 (Fig. 3A). Notice that for completing the cycle, oligo-

nucleotide 2 will be the last one to be selected in the chromosome. We search in

Parent 1 and in Parent 2 for the successors of oligonucleotide 3, which are 4 and 0, re-

spectively (Fig. 3B). The best successor, that is the best overlapping oligonucleotide,

is oligonucleotide 0 (Fig. 3C). Next, we look at the parents for the best successor

of oligonucleotide 0, which is oligonucleotide 2, but this oligonucleotide generates

a subcycle (Fig. 3D). In this case, we search in the spectrum for the best successor

which is oligonucleotide 4 (Fig. 3E). For oligonucleotide 4, both successors in the

parents generate a subcycle, so we search in the spectrum, given that oligonucleotide

2 will be the last one, we have only one option, oligonucleotide 1 (Fig. 3F). Finally,

for completing the cycle, we select oligonucleotide 2 (Fig. 3G).

The previously proposed crossover (Blazewicz et al. 2002b) used a 80–20 rule.

This means that from the first to the last generations 80% of the oligos come from

Fig. 3 Almost deterministic greedy crossover for S = {CTG,ACT,GGA,GAC,TGA}

216 C.A. Brizuela et al.

the parents and 20% from the spectrum. The main idea of what we propose here is to

set this oligo’s selection rule according to the quality of parents. At the beginning the

quality of parents is low and the oligos are searched mainly in the spectrum. When the

quality of parents increases the number of oligos coming from them also increases.

In this way the algorithm can tune itself to a broader set of instances than it can do

with the 80-20 rule. Another very important aspect of this idea is that the worst case

computing time for a successful search in the parents takes O(1) while in the case of

searching in the spectrum it takes O(|S|2), where |S| is the spectrum cardinality.

4 Computational experiments: setup and results

In the computational experiments, the proposed algorithm SGA has been compared

with two other meta-heuristic approaches for this problem: the hybrid genetic algo-

rithm (HGA) (Blazewicz et al. 2002b), and the Tabu-Scatter search algorithm (TSS)

(Blazewicz et al. 2004). These algorithms produce the best up to date results for

SBH. They have been applied to real DNA sequences. The data used in these exper-

iments are exactly the same as those used by Blazewicz et al. (2002b, 2004). These

spectra have been derived from the DNA sequences coding human proteins (taken

from GenBank, National Institute of Health, USA). Their accession numbers are

given by D00726, D11428, D13510, X00351, X02160, X02874, X02994, X04772,

X05299, X05451, X05908, X06537, X06985, X07820, X07982, X07994, X12654,

X13440, X13452, X13561, X14322, X14618, X14758, X14894, X15005, X15610,

X51408, X51535, X51841, X52104, X53799, X54867, X55762, X57548, X58794,

Y00093, Y00264, Y00649, Y00651 and Y00711, respectively. Each spectrum was

modified with the introduction of 40% of errors (20% negative and 20% positive).

Given that 100 ≤ |S| ≤ 500, the spectrum instances contain from 40 to 200 errors

(e.g. for |S| = 500, 100 randomly chosen oligonucleotides are erased, and 100 ran-

domly generated oligonucleotides are introduced in the spectrum). The spectra have

been sorted alphabetically, thus no information about the original order of oligo-

nucleotides from their original sequences is known (Blazewicz et al. 2002b). The

length of oligonucleotides (l = 10) and the length of the sequences (109 ≤ n ≤ 509)

have been chosen on the basis of real hybridization experiments (Caviani et al. 1994).

For each spectrum size, 40 different instances are generated. The parameters for the

instances are shown in Table 1.

Table 1 The instances used in

the experiments No. of in-

stances

Length (n) Spectrum

size (|S|)

Number

of errors

40 109 100 40

40 209 200 80

40 309 300 120

40 409 400 160

40 509 500 200

Sequencing by hybridization: an enhanced crossover operator 217

The input instances are obtained in the following way:

1. Obtain a DNA sequence N of length n from GenBank (use the accession codes

previously given).

2. Derive a set P of strings of equal length l from the sequence N shifting the char-

acters one by one.

3. Modify P′ randomly eliminating a given number of strings so that some of the

resulting strings do not necessarily overlap in exactly l − 1 characters.

4. Modify P randomly adding a given number of strings of length l to obtain P′.

5. Ensure that P′ is a free subset (i.e., there are not repeated oligos) which becomes

the input S of the algorithm.

We show an example for this procedure:

N = CACCGCATCGA, n = 11, l = 4,

P = {CACC, ACCG, CCGC, CGCA, GCAT, CATC, ATCG, TCGA}

Error = 20%, Number of strings to erase = 0.20 ∗ 8 = ⌊1.6⌋ = 1

Index = rnd[1 . . . |P|] = 4

P′ = {CACC, ACCG, CCGC, *, GCAT, CATC, ATCG, TCGA}

S = {ACCG, ATCG, CACC, CATC, CCGC, GCAT, TCGA}

To add 20% of positive errors we just need to add one oligo of length four, ran-

domly generated.

The sequences produced by the algorithms have been compared with the original

sequences using a pairwise alignment algorithm (Stoye 1998). The costs of alignment

for two sequences are as follows: a mismatch (different nucleotides) brings a penalty

of one point, a gap (an insertion, a nucleotide against a space) also brings a penalty

of one point, and a match (the same nucleotides at a given position in both strings)

brings no penalty (i.e., 0). Therefore, when two sequences have an alignment cost of

zero they are identical (100% similar).

The parameters of the HGA have been set as follows. The population size is set

to 50 individuals, Pc = 1.0, and the condition for termination is 20 iterations without

improvement in the objective function. These values led to good quality solutions and

short computation times (Blazewicz et al. 2002b). The parameters of the TSS have

been set to values resulting in similar computation times to those needed by the HGA,

as it is done in (Blazewicz et al. 2004). The parameters of the SGA are identical

to those used by the HGA, Pop_Size = 50, Num_Of_Iter = 20, and Pc = 1.0. The

scaling factor for the SGA is set to k = 1.5 for all runs. The experiments have been

performed on a PC with Athlon XP 2.0 GHz processor, 512 MB RAM, and Linux

Mandrake 9.1 operating system. The SGA was implemented in ANSI C.

In Table 2, computational results of the HGA, TSS, and SGA algorithms are pre-

sented. All entries are average values over 30 runs, and at each run the algorithms

were applied to 40 instances. We use five criteria to assess the algorithm quality: av-

erage quality, optimum number, original sequences found, similarity score in points,

and similarity score in percentage. The quality is the number of oligonucleotides in

the spectrum used for composing a solution. Notice that, the optimal quality is the

number of proper (not corresponding to positive errors) oligonucleotides from the

218 C.A. Brizuela et al.

Table 2 Results of SGA, HGA

and TSS for l = 10.

Pop_size = 50,

Num_of_Iter = 20

Spectrum size 100 200 300 400 500

Optimal quality 80 160 240 320 400

Average quality

SGA 79.8 159.3 238.8 317.5 396.7

HGA 79.9 159.2 237.5 315.9 393.0

TSS 79.9 159.7 239.1 317.7 396.6

Optimum number

SGA 35.4 24.9 21.9 15.0 13.9

HGA 39.7 28.3 20.8 11.0 5.4

TSS 39.8 37.4 31.5 18.9 15.6

Original sequences found

SGA 28.3 22.0 16.1 10.6 11.5

HGA 29.8 21.2 13.8 6.5 3.7

TSS 29.8 28.2 21.3 12.4 12.7

Avg. similarity score (points)

SGA 108.5 206.4 299.8 370.7 434.7

HGA 108.6 202.4 280.4 348.9 389.8

TSS 108.5 205.3 283.6 347.8 413.2

Avg. similarity score (%)

SGA 99.5 98.7 97.0 90.6 85.4

HGA 99.7 96.8 90.7 85.3 76.5

TSS 99.6 98.2 91.7 85.0 81.1

spectrum used to construct the candidate sequence. The optimum number is the num-

ber of optimal solutions returned by the algorithms per run (out of 40), i.e. solutions

that were constructed using the optimal number of proper oligonucleotides (optimal

quality). This does not necessarily imply that solutions with the optimal number of

oligonucleotides generate the original sequence. The original sequences found, an-

other criterion for the quality of solutions, measures the number of times the original

sequence (out of 30 runs) is found. In order to compute the similarity, we compare

solutions generated by the algorithms with the original sequence by using a pairwise

alignment algorithm (Stoye 1998). The similarity score in points is given by the orig-

inal sequence length minus the alignment cost. The last criterion, similarity score in

percentage, is just the previous criterion divided by the original sequence length n.

A hundred percent of similarity means that the sequence generated by the algorithm

is equal to the original one.

We can see that two methods (HGA and TSS) produce solutions of very high

quality. However, the TSS algorithm is shown to be better than the HGA. The solu-

tions obtained by the HGA have average qualities that range from 98.25% (393.0)

to 99.87% (79.9) of the optimum, and by the TSS in the range from 99.15% (396.6)

to 99.87% (79.9) of the optimum. The optimum number returned by the TSS algo-

rithm is greater than the one returned by the HGA in all cases. For the first three

Sequencing by hybridization: an enhanced crossover operator 219

spectrum sizes, the TSS algorithm returns the optimal sequence more than 75% of

the time. However, the optimum returned by one algorithm does not necessarily cor-

respond to the original sequence, as it can be seen in the row of original sequences

found. This fact makes us assume that some instances have more than one optimal

solution, in terms of the objective function. For spectra of cardinality 500 there is a

notable difference in the similarity score between these algorithms. Results produced

by the SGA are also shown in this table. Average qualities range from 99.1% (396.7)

to 99.75% (79.8) of the optimum values. These outcomes are generally better than

those obtained by the HGA, and the difference becomes notable as the spectrum size

increases (note that both GAs were executed with the same parameters). This can

be seen in the optimum number and in the number of original sequences found. In

contrast, the TSS algorithm obtains better results when compared to those generated

by the SGA, but the difference decreases as the cardinality of the spectrum increases.

In a very important criterion, the similarity score, the SGA obtains better results than

the other two algorithms. Although the number of original sequences found by the

TSS is greater than the ones obtained by the SGA, the latter provides better results in

the similarity score criterion.

The difference in computation time between the SGA and the other algorithms,

SGA is the fastest, allows us to improve the results obtained by the TSS, regarding

the optimum number and the original sequences found. This improved performance is

achieved by increasing, in the SGA, the population size and the number of iterations.

Even with this increase in population size and number of iterations, the SGA remains

the fastest algorithm.

Table 3 presents the results obtained by the SGA with the new set of parameters,

Pop_size = 200 and Num_of_Iter = 40. These solutions have average qualities that

range from 99.5% to 99.87% of the optimum values. In this table we can see how

as the spectrum size increases the SGA obtains more optima and more original se-

quences than the TSS. The similarity score is improved as well, being more than 90%

in all cases. It is important to note that the similarity score produced by the SGA using

the original parameters was also better than the one produced by the TSS.

Figure 4 shows computation times of the algorithms. It is clear that the SGA ob-

tains better results than the other algorithms in much less computation time. All algo-

rithms were run on the same machine. The differences in computation time, between

SGA and HGA, are due to the number of times the algorithms go directly to the spec-

trum to search for the best successor. The SGA goes to the spectrum only 10% of the

time.

Table 3 Results of the Sequencing Genetic Algorithm with Pop_size = 200 and Num_of_Iter = 40

Spectrum size 100 200 300 400 500

Optimal quality 80 160 240 320 400

Average quality 79.9 159.7 239.4 318.4 398.0

Optimum number 39.7 33.1 30.3 23.1 21.5

Original sequences found 29.8 25.6 21.0 14.6 17.0

Avg. similarity score (points) 108.6 207.8 303.0 381.0 461.3

Avg. similarity score (%) 99.7 99.4 98.0 93.1 90.6

220 C.A. Brizuela et al.

Fig. 4 Computation times for the HGA, TSS and Sequencing GA (with two different set of parameters)

To assess the statistical difference among the results of the HGA, TSS and the

SGA, the non-parametric Kruskal–Wallis (Zar 1999) and Tukey multiple compar-

ison (Zar 1999) tests were used. Given the importance of the application of these

algorithms in real sequencing experiments, we considered applying these tests on the

similarity score criterion. For a confidence level of α = 0.01 the tests proved statisti-

cal difference among the SGA and the other algorithms for spectra cardinality greater

than 200 oligonucleotides. It means that with a high level of confidence (99.99%), the

differences in similarity scores of the SGA and those of the HGA and TSS algorithms

are due to real differences in their performances, and not to random events. For spec-

tra cardinality of 100 oligonucleotides, the similarity score of the algorithms are alike,

i.e. the differences are not statistically significant.

Although for real hybridization experiments the original sequences have 109 ≤

n ≤ 509 (Caviani et al. 1994), another series of experiments were performed in or-

der to observe the behavior of the algorithms for larger sequences (709 and 1009

nucleotides). A total of 40 instances were derived for each sequence length (using

l = 10). Their accession numbers (GenBank) are:

D00726, X05299, X07994, X12654, X51408, X51841, X52104, X57548,

Y00093, Y00264, Y00649, AACZ02005042, AACZ02008280, AACZ02024680,

AACZ02043728, AACZ02044283, AACZ02067430, AACZ02069750,

AACZ02072337, AACZ02099914, AACZ02095742, AACZ02104255,

AACZ02114766, AACZ02121490, AACZ02122970, AACZ02136257,

AACZ02144575, AACZ02165291, AB170718, AB172116, AB172473, AB209268,

DD222988, DD232731, NM_001034, NM_003199, NM_005860, NM_008709,

NM_025481, and NM_033488, respectively.

The experiments where normalized to the performance of a PC with AMD Athlon

(tm) 3.0 GHz processor, 512 MB RAM, and Linux Mandrake 10.2 operating system.

Sequencing by hybridization: an enhanced crossover operator 221

Table 4 Results of the HGA, TSS and the SGA applied to large spectrum cardinalities, and l = 10.

Pop_size = 200 and Num_of_Iter = 40

HGA TSS SGA HGA TSS SGA

Spectrum size 700 700 700 1000 1000 1000

Optimal quality 560 560 560 800 800 800

Average quality 550.01 556.65 556.66 778.16 793.37 792.36

Optimum number 1.93 5.90 11.13 0.23 2.37 2.9

Original sequences found 1.73 2.43 6.77 0.00 0.23 0.33

Avg. similarity score (points) 478.88 500.82 558.21 571.02 646.15 660.32

Avg. similarity score (%) 67.54 70.64 78.73 56.59 64.04 65.44

Computation time (sec.) 62.21 150.98 4.91 131.79 351.58 10.03

Table 4 presents results produced by the algorithms over the mentioned data. All

entries are average values over 30 runs, and at each run the algorithms were applied

to 40 instances. The SGA was executed using the parameters Pop_size = 200 and

Num_of_Iter = 40. The other algorithms maintain the same parameters used in the

previous set of experiments. As it can be seen in this table, there is an important im-

provement in results (for all criteria) produced by the SGA over the ones produced by

the other meta-heuristic approaches. Furthermore, the reduction in the computation

time is significantly high.

If we have a DNA chip with longer oligos, say l = 20, and sequences of length,

119 ≤ n ≤ 1019 we should expect a better result from the algorithms. This is because

the overlap between consecutive oligos is bigger and the probability of maximum

overlap between two non-adjacent oligos decreases as well as the probability of get-

ting more than one optimum sequence. This is due to the known result (Southern et

al. 1992) stating that for a fixed spectrum size the probability of getting unique (non

repeated) oligos increases with the oligo’s length.

A set of experiments are performed with l = 20, and 119 ≤ n ≤ 519. These exper-

iments are performed under the same conditions as those of Table 2. Table 5 shows

the results, and as expected the solutions are of very high quality. The clear winner is

the TSS in terms of solution quality. On the other hand, SGA is the fastest algorithm.

Another set of exploratory experiments were performed for n = 719 and 1019.

The results are shown in Table 6. The average values for HGA and TSS are computed

over 10 runs only, due to the large computation time they require. SGA averages are

computed over 30 runs. It is clear that for l = 20, a spectrum cardinality of 1000 is

not yet a threshold for the algorithms’ performance degradation. An interesting open

question is to know the threshold, in terms of n, for each algorithm when l = 20. As

we also expect, the relative performance, considering quality of solution, of SGA is

improving as |S| increases. Again, when the issue is computation time then SGA is

the clear winner. We can predict with much confidence that our SGA will outperform

the other two, in terms of solution quality for larger values of |S|.

4.1 Discussion

The reason for success of the proposed algorithm is conjectured to be the quasi-

deterministic choices it makes when selecting successors in the crossover operator.

222 C.A. Brizuela et al.

Table 5 Results of the SGA,

HGA and TSS for l = 20.

Pop_size = 200 and

Num_of_Iter = 40

Spectrum size 100 200 300 400 500

Optimal quality 80 160 240 320 400

Average quality

SGA 79.87 159.55 239.56 319.37 399.32

HGA 79.99 159.96 239.86 319.71 399.65

TSS 79.99 159.98 239.98 319.78 399.82

Optimum number

SGA 35.06 26.90 26.50 21.96 23.73

HGA 39.96 38.63 35.50 31.36 30.23

TSS 39.96 39.93 39.96 39.46 39.63

Original sequences found

SGA 23.46 19.13 20.10 18.86 18.16

HGA 25.00 22.16 21.26 21.73 19.03

TSS 24.96 22.90 24.00 26.63 24.80

Avg similarity score (%)

SGA 99.51 99.62 99.77 99.76 99.81

HGA 99.57 99.74 99.79 99.80 99.82

TSS 99.53 99.73 99.80 99.33 99.57

Computation time (sec.)

SGA 0.42 1.12 2.01 3.14 4.45

HGA 3.11 15.50 38.79 73.39 117.28

TSS 1.09 9.01 38.06 56.86 96.13

Table 6 Results of the SGA, HGA and TSS for large spectrum cardinalities, and l = 20. Pop_size = 200

and Num_of _Iter = 40

HGA TSS SGA HGA TSS SGA

Spectrum size 700 700 700 1000 1000 1000

Optimal quality 560 560 560 800 800 800

Average quality 558.38 559.47 558.77 797.24 799.60 797.82

Optimum number 19.40 36 17.20 15.30 36.5 16.23

Original sequences found 14.10 25.80 13.2 12.70 27 16.46

Avg. similarity score (points) 702.72 697.99 697.48 990.88 995.05 980.36

Avg. similarity score (%) 97.74 97.08 97.00 97.24 97.65 96.21

Computation time (sec.) 124.93 180.85 5.55 267.54 443.38 10.22

The only random part in the whole process is in the selection of the initial locus and

allele (Step 1 of Algorithm 2). This operator exploits the problem structure by using a

deterministic greedy procedure which allows the SGA to select the best successor for

Sequencing by hybridization: an enhanced crossover operator 223

Fig. 5 A Source from where the crossover operator selects the oligonucleotides. B Percentage of oligo-

nucleotides taken from parents that actually are the best options in the spectrum

a given oligonucleotide. The use of this operator makes the selection of the successors

faster, and selecting the best successor helps to improve the solution quality.

In order to have a clearer idea of the performance of the greedy crossover and

its influence on the construction of good solutions, the source from where the oligos

come is analyzed. The criteria are measured considering a single run of a randomly

selected instance. The larger the number of times the oligos are selected from the

parents the faster the algorithm becomes. This is because searching the best oligo

from the spectrum is computationally more expensive than searching it from the par-

ents. Figure 5A shows the source (parents or spectrum) for selecting the next oligo-

nucleotide in the crossover operator for constructing new individuals. It shows that

the main source are the parents and that as the GA’s population evolves (through gen-

erations) this source is selected approximately 90% of the time. We can see in this

figure that the SGA can tune itself dynamically, i.e. the source for selecting oligos is

not fixed as it was proposed by Blazewicz et al. (2002b).

Given one oligonucleotide, the application of a greedy strategy (Step 6 of Algo-

rithm 2) guarantees the selection of the best successor in the spectrum. This does not

necessarily happen if we select the next oligonucleotide from the parents. Therefore,

it will be interesting to see what the differences are between oligonucleotides selected

from the parents and oligonucleotides selected in a greedy strategy, considering the

same previous oligonucleotide. Figure 5B shows the quality of oligonucleotides se-

lected from the parents. After the first 10 generations, the oligonucleotides selected

from the parents are almost (90%) the same as the ones selected if we would search

in the spectrum for the best successors. This shows how high quality genetic infor-

mation is passed from parents to children and this is a key point for determining

the operator’s performance given the short computation time needed to transfer this

information.

5 Conclusions

We have presented an efficient and effective genetic algorithm for the computational

part of the sequencing by hybridization problem. An almost deterministic greedy

crossover operator is introduced to improve the solution quality and to reduce the

224 C.A. Brizuela et al.

computational cost of a recently proposed hybrid genetic algorithm. Experimental

results obtained on real DNA data show that the proposed algorithm can handle a

large percentage of both positive and negative errors, yielding very high quality so-

lutions. Computational experiments were performed to compare the algorithm with

two other meta-heuristic approaches: a previous hybrid genetic algorithm and a tabu-

scatter search algorithm. The new results are shown to be better than the previous

ones. The algorithm achieved high similarity score (more than 90%), in average, in

all instances with 100 to 500 oligonucleotides of lengths 10 and 20.

The main criterion for comparing these algorithms was the similarity score be-

tween the generated sequences and the original ones. Statistical tests applied to the

results of these algorithms proved the superiority of the new variant of the hybrid

genetic algorithm. The proposed algorithm does not use any additional information

about spectra or original sequences, which could be derived from biochemical ex-

periments, and may help to obtain better similarity scores. Furthermore, some ideas

explaining the behavior of the crossover operator are given in order to get a better

understanding of the rationale for success of the algorithm.

As a future research we will further explore the rationale for success of the algo-

rithm as well as its robustness to larger values of positive and specially of negative

errors.

Acknowledgements This research was partially supported by the Laboratorio Franco–Mexicano de In-

formática. The first author work was partially supported by CONACyT under grant C01-45811. The au-

thors would like to thank Jacek Blazewicz and Marta Kasprzak for their valuable help in providing the

test data and the executables for the HGA and TSS algorithms. The authors would also like to thank the

anonymous referees for their comments that have been very helpful in writing this final version.

References

Bains, W., Smith, G.: A novel method for nucleic acid sequence determination. J. Theor. Biol. 135, 303–

307 (1988)

Blazewicz, J., Kasprzak, M.: Complexity of DNA sequencing by hybridization. J. Theor. Comput. Sci.

290, 1459–1473 (2003)

Blazewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W., Weglarz, J.: DNA sequencing with positive

and negative errors. J. Comput. Biol. 6, 113–123 (1999)

Blazewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W., Weglarz, J.: Tabu search for DNA se-

quencing with false negatives and false positives. Eur. J. Oper. Res. 125, 257–265 (2000)

Blazewicz, J., Formanowicz, P., Guinand, F., Kasprzak, M.: A heuristic managing errors for DNA sequenc-

ing. J. Bioinformatics 18(5), 652–660 (2002a)

Blazewicz, J., Kasprzak, M., Kuroczycki, W.: Hybrid genetic algorithm for DNA sequencing with errors.

J. Heuristics 8, 495–502 (2002b)

Blazewicz, J., Glover, F., Kasprzak, M.: DNA sequencing-tabu and scatter search combined. INFORMS J.

Comput. 16(3), 232–240 (2004)

Brizuela, C.A., González, L., Romero, H.J.: An improved genetic algorithm for the sequencing by hy-

bridization problem. In: Raidl, G. et al. (eds.) Applications of Evolutionary Computing. Lecture Notes

in Computer Science, vol. 3005, pp. 11–20. Springer, Berlin (2004)

Bui, T.N., Youseef, W.A.: An enhanced genetic algorithm for DNA sequencing by hybridization with pos-

itive and negative errors. In: Deb, K. (ed.) Proceedings of the Genetic and Evolutionary Computation

Conference, Seattle, Washington, United States. Lecture Notes in Computer Science, vol. 3103, pp.

908–919. Springer, Berlin (2004)

Caviani, P., Solas, D., Sullivan, E., Cronin, M., Holmes, C., Fodor, S.: Light-generated oligonucleotide

arrays for rapid DNA sequence analysis. Proc. Nat. Acad. Sci. USA 91, 5022–5026 (1994)

Sequencing by hybridization: an enhanced crossover operator 225

Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness, 21st

edn. Freeman, New York (1978)

Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,

Reading (1989)

Grefenstette, J., Gopal, R., Rosmaita, B., Gucht, D.V.: Genetic algorithms for the travelling salesman

problem. In: Grenfestette, J.J. (ed.) Proceedings of the First International Conference on Genetic Al-

gorithms and their Applications, vol. 1, pp. 160–168. Erlbaum, Hillsdale (1988)

Hirschhom, J., Sklar, P., Lindblad-Toh, K., Lim, Y.-M., RuizGutierrez, M., Bolk, S., Langhorst, B.,

Schaffner, S., Wichester, E., Lander, E.: SBE-TAGS: An arraybased method for efficient single-

nucleotide polymorphism genotyping. Proc. Nat. Acad. Sci. USA 97, 12164–12169 (2000)

Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor

(1975)

Iduri, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. J. Comput. Biol. 2(2), 291–

306 (1995)

Krebs, J., Dunaway, M.: DNA length is a critical parameter for eukaryotic transcription in vivo. Mol. Cell.

Biol. 16(10), 5821–5829 (1996)

Maxam, A., Gilbert, W.: A new method for sequencing DNA. Proc. Nat. Acad. Sci. 74, 560–564 (1977)

Pevzner, P.: l-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)

Sanger, F., Coulson, A.: The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 87, 107–110

(1978)

Southern, E.: United Kingdom patent application GB8810400 (1988)

Southern, E., Maskos, U., Elder, J.K.: Analyzing and comparing nucleic acid sequences by hybridization

to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017 (1992)

Stoye, J.: Multiple sequence alignment with the divide-and-conquer method. Gene 211(2), GC45–GC56

(1998)

Zar, J.H.: Biostatistical Analysis, 4th edn. Prentice-Hall, Englewood Cliffs (1999)

Zhang, J., Wu, L., Zhang, X.: Reconstruction of DNA sequencing by hybridization. J. Bioinform. 19(1),

14–21 (2003)

