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Sequencing-by-Hybridization at the
Information-Theory Bound:

An Optimal Algorithm

FRANCO P. PREPARATA and ELI UPFAL

ABSTRACT

In a recent paper (Preparata et al., 1999) we introduced a novel probing scheme for DNA
sequencing by hybridization (SBH). The new gapped-probe scheme combines natural and
universal bases in a well-de� ned periodic pattern. It has been shown (Preparata et al., 1999)
that the performance of the gapped-probe scheme (in terms of the length of a sequence that
can be uniquely reconstructed using a given size library of probes) is signi� cantly better
than the standard scheme based on oligomer probes. In this paper we present and analyze
a new, more powerful, sequencing algorithm for the gapped-probe scheme. We prove that
the new algorithm exploits the full potential of the SBH technology with high-con� dence
performance that comes within a small constant factor (about 2) of the information-theory
bound. Moreover, this performance is achieved while maintaining running time linear in the
target sequence length.
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1. INTRODUCTION

Sequencing by hybridization (Bains and Smith, 1998; Lysov et al., 1988; Drmanac et al., 1989;
Pevzner, 1989; Pevzner and Lipschutz, 1994; Waterman, 1995) is a novel DNA sequencing technique

in which an array (SBH chip) of short sequences of nucleotides (probes) is brought in contact with a
solution of (replicas of) the target DNA sequence. A biochemical method determines the subset of probes
that bind to the target sequence (the spectrum of the sequence), and a combinatorial method is used to
reconstruct the DNA sequence from the spectrum. As technology limits the number of probes on the SBH
chip, a challenging combinatorial question is the design of the smallest set of probes that can sequence an
arbitrary random DNA string of a given length.

Current implementations of SBH use “classical” probing schemes, i.e., chips accommodating all 4k k-mer
oligonucleotides (“solid” probes with no gaps), the symbols being the well-known DNA bases f A,C,G,T g
and k being a technology-dependent integer parameter. Pevzner et al. (Pevzner et al., 1991; Pevzner and
Lipschutz, 1994; Waterman, 1995) observed that the expected length of unambiguously reconstructible
sequences with solid length-k probes is O.2k/ and a tight bound of the same order has been proven
in Dyer et al. (1994). These results were con� rmed by extensive simulations. Note, however, that an

information-theoretic argument yields an upper bound of 4k ¡ 1
2 .
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In a recent paper (Preparata et al., 1999), we have introduced a novel probing scheme for DNA
sequencing-by-hybridization. This method, which uses probing patterns with a well-de� ned periodic gap
structure (and rests on the deployment of universal bases for the realization of the gaps) overcomes the
well-known shortcomings of traditional SBH based on oligomer probes, which had raised a negative prog-
nosis for the competitiveness of the approach. We had shown that a simple algorithm, which reconstructs
the target sequence from its spectrum symbol by symbol and halts the process (declares failure) when more
that one extension is con� rmed by a chosen number of probes, dramatically improves upon the oligomer
method and, with a high level of con� dence, can correctly reconstruct random sequences whose length
m is “asymptotically” optimal (for example, for 8 speci� ed nucleotides and con� dence 0.95, the simple
algorithm achieves m º 2,000, against the information-theoretic bound of 32,768).

The asymptotic result, however, despite its inherent signi� cance for a problem that has been the focus
of considerable research interest for a decade, did not fully reveal the potential of the approach. In this
paper, we present a novel, more powerful algorithm that provably exploits the potential of the probing
scheme. In addition we present a combinatorially subtle probabilistic analysis based on the hypothesis of
target sequences generated by a maximum-entropy memory-less source and show that the high-con� dence
performance comes within a constant factor (about 2) of the information-theory bound. Our analysis
is, of course, con� ned to sequences generated by the above random process, as has been the practice in
previous analogous analyses. Unfortunately, very little is known about a corresponding probability model for
natural sequences, but extensive simulations with sequences of known genomes (Haemophilus in� uenzae,
Escherichia coli) show, despite an expected minor degradation due to the constrained randomness of natural
DNA, analogous behavior.

Therefore, the new algorithm improves by a substantial constant factor upon the one of Preparata et al.
(1999). This fact, despite its minor signi� cance in asymptotic analysis, may have enormous practical
repercussions. We also note that the superior performance is achieved while maintaining O.m/ running
time under the criterion to adopt the smallest feasible k for the given m.

2. REVIEW OF THE PROBING SCHEME

A Sequencing by Hybridization (SBH) chip consists of a � xed number of features. Each feature can
accommodate one probe. A probe is a string of symbols (nucleotides) from the alphabet

A [ f¤g

where A 5 fA,C,G,Tg is the alphabet of the standard DNA bases and ¤ denotes the “don’t care ” symbol
(“blank”), implemented using a universal base (Loakes and Brown, 1994).

The spectrum of a target sequence is the set of probes that are Watson–Crick complementary to a
subsequence of the target. A sequencing algorithm is an algorithm that, given a set of probes and a
spectrum, decides if the spectrum de� nes a unique DNA sequence and, if so, reconstructs that sequence.

A gapped-probe scheme (Preparata et al., 1999) uses a family of probes with a well-de� ned periodic
pattern of gaps (.s; r/-probes). We denote by ap the p-fold repetition of a string a, and if u is a binary
string, u is its complementary binary string.

De� nition 1. For integers r ¶ 0 and s ¶ 1, a probing pattern is the concatenations usvr of two
periodic strings us and vr , where u and v are two binary strings related as follows:

u 5 1; v 5 us ¡ 1u; or v 5 1; u 5 vvr ¡ 1

referred to, respectively, as direct and reverse patterns.

Considering without loss of generality only direct patterns, the corresponding probes have the form
Xs.¤s ¡ 1X/r for integer parameters s and r , where X ranges over the alphabet and ¤ is blank. For example,
a .4; 3/-probe has the form

XXXX ¤ ¤ ¤ X ¤ ¤ ¤ X ¤ ¤ ¤ X:



SEQUENCING-BY-HYBRIDIZATION 623

Hereafter, we shall view an .s; r/-probe as an s.r 1 1/-symbol string over the extended alphabet A [ f¤g.
Of these s.r 1 1/ symbols, r.s ¡ 1/ are blanks, and, since in each probe there are s 1 r positions with
an X symbol, the set of .s; r/-probes has exactly jAjr1 s 5 jAjk members. Note that the classical k-mer
scheme is a very special case since it uses .k; 0/-probes.

For given s and r, the collection of all the probes that are Watson–Crick complementary to a subsequence
of a target sequence a is the .s; r/ ¡ spectrum of a, or, brie� y, its spectrum. For convenience of discussion,
we view a spectrum probe as the actual subsequence of a, rather than its WC-complement annealing to it.
Therefore, these probes are collected by placing the leftmost position of the probing pattern to correspond
to the i-th position of a, for

i 5 1; 2; : : : ; jaj ¡ s.r 1 1/ 1 1;

and extracting the sampled subsequence.
In this paper, we focus on a sequence reconstruction process that, based on the spectrum, constructs

symbol-by-symbol a putative sequence b, intended to be identical to the target sequence that originated
the spectrum. Reconstruction succeeds if and only if sequence b coincides with sequence a.

Given an arbitrary sequence c (the current putative sequence), ci denotes its i-th symbol and c.i;j / 5
cici1 1 : : : cj . The fundamental primitive operation of sequence reconstruction is extension, i.e., the con-
catenation of extra symbols (normally one) to the right of the currently constructed pre� x of the putative
sequence. The following algorithm extends a pre� x b.1;`/ of the putative sequence to its right, possibly to
its rightmost end. Obviously ` ¶ .r 1 1/s.

The following algorithm uses as a subroutine a function extend.S; q/, for some probe q which returns
a pair .b; w/ in which b is a nonempty string (normally, a single symbol), or a set of symbols, or the
empty symbol ², and, correspondingly, the parameter w is “continue,” or “ambiguous,” or “complete.”

Algorithm. sequence.S; b.1;`//

1: u ¬ continue
2: while .u 5 continue/ do
3: q ¬ b. ¡̀ s.r 1 1/1 2;`/¤
4: .b; w/ ¬ extend.S; q/

5: if .w 5 continue/
6: then
7: b.1; 1̀ jbj/ ¬ b.1;`/b

8: ` ¬ ` 1 jbj
9: u ¬ w

10: return .b.1;`/; w/

The “while”-loop 2–9 normally extends the putative sequence one symbol at a time. In line 3, a query
probe is prepared as the ..r 1 1/s ¡ 1/-suf� x of the current putative sequence extended with a single
“blank” (intended to sample the extension symbol). This query is used by the function extend (line 4) to
interrogate the spectrum (see next section), and will obtain the set of all the probes matching the query in
their speci� ed positions. If this probe set is a singleton, then the extension is unique, and function extend

immediately returns a single symbol b, with a certi� cate w 5 continue. Otherwise it will interrogate
the spectrum for additional evidence and will ultimately return a pair .b; w/ of the forms .b; continue/
(b a nonempty short string), .²; complete/ (² the empty symbols), or .B; ambiguous/ (B a set of symbols,
jBj > 1). Extension is implemented in line 7. The semantics of the designations fcontinue, complete,
ambiguousg are straightforward. Speci� cally, “ambiguous” means that the algorithm is unable to return a
unique extension, and therefore the process of complete reconstruction fails (only a proper pre� x of the
target sequence has been produced).

3. AN OPTIMAL SBH ALGORITHM AND ITS PERFORMANCE ANALYSIS

Clearly, the crucial component of the method is the implementation of the function extend.S; q/. In
Preparata et al. (1999) we proposed an implementation, referred to here as the “basic algorithm,” with the
following failure mechanism.
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When the interrogation of the spectrum returns a set M0 consisting of more than one probe (indicating
a potential ambiguous extension), we let B0 denote the set of the possible extensions. The veri� cation
is executed as follows. We construct the set M1 of all probes in the spectrum such that their common
.sr ¡ 1/-pre� x matches b. ¡̀ sr 1 1;` ¡ 1/ and their .s 1 1/-suf� xes agree, in appropriate shifts, with the probes
in M0. Let B1 be the set of symbols appearing in the sr -th position of the probes in M1. If B0 \ B1 is
a singleton, then we have a unique extension to the string. Otherwise, we continue by constructing the
set M2 of the spectrum probes whose .s.r ¡ 1/ ¡ 1/-pre� x matches b.` ¡ s.r ¡ 1/1 1;` ¡ 1/ and .2s 1 1/-suf� x
agrees with the probes in M1. From M2, we construct the corresponding set B2 of extensions. Again, if
B0 \B1 \ B2 is a singleton, we are done. Otherwise, we proceed by considering shorter pre� xes of lengths
s.r ¡ 2/; s.r ¡ 3/; s.r ¡ 4/; : : : ; s of the putative sequence. If j \i

j 5 1 Bj j 5 1 for some i µ r, then we have
a single-symbol unambiguous extension. Otherwise, in the basic scheme, we halt and report the current
sequence.

We now present and discuss in detail a more sophisticated technique, referred to as the “advanced
algorithm,” which we show to fully exploit the power of the probing scheme (i.e., to come nonasymptotically
very close to the information theory bound with high con� dence).

Advanced algorithm

The next-symbol extension is � rst attempted using the basic algorithm. Upon detection of an ambiguous
branching (i.e., the event causing failure of the basic algorithm), the advanced algorithm attempts the
extension (based on the spectrum), up to some maximum length H (a design parameter) beyond the
branching, of all paths issuing from such branching and of those spawned by them, in a breadth-� rst
fashion. Beyond the ambiguous branching, each path is extended on the basis of a single probe: the
absence of any such extending probe causes termination of the path. This construction stops either if there
remains only one (the correct) path, or upon reaching the threshold H . In either case, the algorithm extends
the putative sequence with the longest common pre� x of all surviving paths and fails only when such pre� x
is empty. (We show in the next section that the threshold H must be chosen to be adequately larger than
rs).

To analyze the performance of the outlined advanced algorithm, we note that the success of our approach
(for both the basic and the advanced algorithms) is based on the fact that the probability of the simultaneous
occurrence of a large number of fooling probes is adequately small. All our considerations rest on the
hypothesis that the target sequence is a maximum-entropy random sequence of length m.

We begin by showing the following property of paths beyond an ambiguous branching.

Lemma 1. After an ambiguous branching with two or more paths, only one of which is legitimate,
both the legitimate path and the spurious paths are deterministically extended by additional rs symbols
(so that both diverging paths achieve length rs 1 1 beyond the branching).

Proof. Let p.1;.2r 1 1/s/ denote the segment of the correct (legitimate) path such that the ambiguous
extension occurs at position t 5 .r 1 1/s. Let pt be the correct extension and ct 65 pt be a spurious
extension.

Since we have an ambiguous extension at position t , the spectrum contains at least one set of .r 1 1/

fooling probes q.1/; q .2/; : : : ; q.r 1 1/ supporting the (incorrect) extension. These fooling probes collectively
specify .r 1 1/ arbitrary symbols ct ; ct 1 s; : : : ; ct 1 rs , with ct 1 js possibly different from the correct pt 1 js

for j > 0.
For all positions in the range [t 1 1; 2t ¡ s] ¡ I, where I 5 ft 1 is : i 5 1; 2; : : : ; r g, the probe

that extends the correct path in that position (which is guaranteed to exist) also extends the spurious path
since it does not overlap with any of the symbols ct ; ct 1 s; : : : ; ct 1 rs . Extension in position t 1 is 2 I ,
i 5 1; 2; : : : ; r , of the spurious path is provided by fooling probe q .i/.

This result shows that we must select H > rs and a quantitative criterion will be formulated on the
basis of Theorem 1. We assume conventionally as position 1 the position of the ambiguous branching.
Beyond position rs, the correct path is deterministically extended, but spurious paths must be supported
by fooling probes present in the spectrum.

Whereas in the basic algorithm (Preparata et al., 1999), which halts upon detection of an ambiguous
branching, there is a single event that characterizes the algorithm’s failure (the presence in the spectrum
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of r 1 1 fooling probes supporting a spurious extension), we shall see that the advanced algorithm being
analyzed has a more complex failure mechanism.

We begin with a technical result. A probe is said to be the probe j for position i of sequence a if it
samples symbol ai with its j -th speci� ed position from the right. Thus, for the .s; r/-scheme, the k probes
that sample ai have their initial symbol in positions i ¡ .r 1 1/s 1 1; i ¡ rs 1 1; i ¡ .r ¡ 1/s 1 1; : : : ;

i ¡ s 1 1; i ¡ s 1 2; : : : ; i of the target sequence a.
We now wish to evaluate the probability of the following event: Given a segment a.g;g1 2.r 1 1/s ¡ 1/, along

the same sequence a (but not overlapping with a.g;g1 2.r 1 1/s ¡ 1/) there are fooling probes identical to the
correct probes for position g 1 .r 1 1/s. Speci� cally we wish to prove the following.

Lemma 2. For an integer r 0 µ r 1 1, let ¾j , j 5 1; : : : ; r 0, be the j -th fooling probe for position
g 1 .r 1 1/s of segment a.g;g1 2.r 1 1/s ¡ 1/. The probability of ¾2; : : : ; ¾r 0 conditional on ¾1 is at most

³
m

4k
1

1

3 4s ¡ 1

´r 0 ¡ 1

5

³
m

4k

´r 0 ¡ 1 ³
1 1

4r1 1

3m

´r 0 ¡ 1

:

Proof. Let tj be the position of the � rst symbol of ¾j . The spans of probes are allowed to overlap, but
not with a.g;g1 2.r 1 1/s ¡ 1/. Given ¾i and ¾j , with i 65 j and tj ¡ ti < .r 1 1/s, we note that only for tj 5 ti
mod s they intersect in more than one symbol. In all other cases, their intersection is exactly one symbol,
which implies that two speci� c symbols of a.t ;t 1 2.r 1 1/s ¡ 1/ coincide, thereby constraining one additional
symbol. Therefore, in such a case, the total number of constrained symbols is the same as if the probes
did not overlap. Thus we shall restrict ourselves to the situations tj 5 ti 1 hs, in which case we must have
j 5 i 1 h, for any other choice will result in a constraint on a.g;g1 2.r 1 1/s ¡ 1/. In such a case, ¾j , rather
than k symbols, constrains just s ¡ 1 1 h symbols of a. If two probes overlap, we say that they share the
same site.

To describe probe overlap, we imagine a process in which the probes are successively assigned to
sites. We begin by assigning ¾1 in an arbitrary position of a.1;m ¡ .r 1 1/s 1 1/. After ¾1; : : : ; ¾j ¡ 1 have been
assigned, let u µ j ¡ 1 be the current number of distinct sites: ¾j can be assigned in u 1 1 ways, either
isolated or to any of the current sites. Thus the number of assignments is the number of distributions
of r 0 distinct items into up to r 0 nondistinct cells (i.e., the number of possible equivalence classes of
an r 0-element set). The process is conveniently described by a rooted tree of r 0 1 1 levels from 0 to r 0,
in which a node at level h describes an assignment of ¾1; : : : ; ¾h, and the arcs exiting this node are
labeled by the conditional probabilities of the assignment of ¾h1 1. If ¾h1 1 is isolated (a new site), then
the corresponding probability is (unconditionally) º m=4k ; in all other cases the conditional probability is
of the form 4 ¡ p where p is the number of additional symbols of a constrained by the chosen assignment
of ¾h1 1. Therefore, the sought probability is the sum of the products of the labels over all leafward paths
of this tree.

The particular structure of our probing pattern lends itself to a simple upper bound. If all nodes of the
tree at levels ¶ 1 had identical sets of exiting arcs of total probability P , then the sought probability would
be at most P r 0 ¡ 1. We now observe that no two distinct overlap assignments of a probe constrain the same
number of symbols of a, so that the sum of the labels of the exiting arcs for every node at levels ¶ 1 is
bounded above by

m

4k
1

1

4s ¡ 1

1X

h5 1

1
4h

<
m

4k
1

1

3 4s ¡ 1
:

This establishes the lemma.

By an identical argument we can establish the following.

Lemma 3. For an integer s 0 µ s, let ¾j , j 5 r 1 1; : : : ; r 1 s0, be the j -th fooling probe for position
g 1 .r 1 1/s of segment a.g;g1 2.r 1 1/s ¡ 1/. The probability of ¾r 1 2; : : : ; ¾r1 s0 conditional on ¾r 1 1 is at most

³
m

4k
1

1

3 4r

´s 0 ¡ 1

5

³
m

4k

´s0 ¡ 1 ³
1 1

4s

3m

´s0 ¡ 1

:
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We now prove the main result of this paper.

Theorem 1. The probability that the advanced algorithm fails to reconstruct a (maximum-entropy)
random DNA m-mer is bounded above by

3m

"³
m

4k

´k ³
1 1

4r 1 1

3m

´r ³
1 1

4s

3m

´s ¡ 1

1

³
m

2 4.r 1 1/s

³
1 1

s4k

4k ¡ m

´´#

1

³
m

4k ¡ 1 1
1

42

´H ¡ rs ¡ 1

(1)

Proof. With the previous notation, extension beyond position rs 1 1 occurs supported either by fooling
probes (probabilistically) or deterministically, because the target sequence contains a substring of length
.r 1 1/s ¡ 1 identical to a substring of the spurious path. We assume at � rst that the latter condition does
not hold and consider the probabilistic extension.

1. Event E1: “A spurious path, starting at position 1 (deterministically extended up to position rs 1 1 by
Lemma 1) is extended up to position H .” Extension between positions rs 1 2 and H must be supported by
fooling probes. Let fp be the probability of extension up to position rs 1 p. Clearly, f1 5 1. Extension to
position rs 1 p 1 1 occurs either if the current fooling probe is isolated and therefore constrains all but its
last symbol (with probability m=4k ¡ 1) or if it overlaps with a subset of the preceding .r 1 1/s ¡ 1 fooling
probes occurring at the same site. We wish to obtain a conservative, but yet useful, upper bound to the
probability of the latter event. We observe that the current fooling probe constrains at least two symbols
at the site where it occurs (with probability 1=42), except when at least one of these two events happens:

° F1: The current probe and the one offset by ¡ s positions co-occur at the same site.
° F2: The current probe and the one offset by ¡ 2s positions co-occur at the same site.

Obviously we have

Prob.F1/ 1 Prob.F2/ ¡ Prob.F1 \ F2/ µ Prob.F1 [ F2/ µ Prob.F1/ 1 Prob.F2/

and, considering the numbers of constrained symbols, both Prob.F1/ and Prob.F2/ are about m=4k1 s ¡ 2,
and Prob.F1 \ F2/ is about m=4k1 2s ¡ 2. We conclude that

fp1 1 < fp

³
m

4k ¡ 1 1

³
1 ¡ 2

m

4k1 s ¡ 2 1
m

4k1 2s ¡ 2

´
1

42 1 2
m

4k1 s ¡ 2

´
º

³
m

4k ¡ 1 1
1

42

´p

: (2)

Next we analyze the case of deterministic extension, supported by a substring u of length .r 1 1/s ¡ 1
of the target sequence.

2. Event E2: “Denoting by v1v2av3, with jv1v2j 5 jv2av3j 5 .r 1 1/s ¡ 1, the correct segment of the tar-
get sequence (a being the current symbol), the target sequence also contains a substring v2bv3, with b 65 a.”
In general, the positions of v2av3 and v2bv3 can be chosen in

¡
m
2

¢
º m2=2 ways. When jv1j 5 jv3j 5 0

(i.e., jv2j 5 .r 1 1/s ¡ 1) .r 1 1/s ¡ 1 symbols of v2 and v3 are fully constrained and symbol b can be chosen
in 3 out of 4 ways, thereby yielding probability .m2=2/.3=4/=4.r 1 1/s ¡ 1 5 3m2=2 4.r 1 1/s . For 1 µ jv1j µ s,
there must be one additional fooling probe, supporting extension b, that fully agrees with v3 (thereby con-
straining k rather than k ¡ 1 symbols): the corresponding probability is .m2=2/s.m=4k/.3=4/.1=4.r 1 1/s ¡ 1/;
analogously, for s 1 1 µ jv1j µ 2s, there must be two additional fooling probes supporting b and agreeing
with v3; the corresponding probability is bounded by .m2=2/s.m=4k/2.3=4/.1=4.r 1 1/s ¡ 1/, and so on, for
is 1 1 µ jv1j µ .i 1 1/s, so that the total probability is bounded by

3m2

2 4.r 1 1/s
1

3m2

2 4.r 1 1/s
s

³
m

4k

´
1

3m2

2 4.r 1 1/s
s

³
m

4k

´2

1 : : : <
3m2

2 4.r 1 1/s

³
1 1

s4k

4k ¡ m

´
(3)

Finally, we consider the case when deterministic extension is supported by fooling probes.
3. Event E3: “Again denoting u1au2 the correct string, with ju1j 5 ju2j 5 .r 1 1/s ¡ 1, a denoting the

current symbol, the spectrum provides evidence of a substring u1bu2.” In this case, u1bu2 need not be an
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actual substring of the target sequence, but may be emulated by fooling probes. We wish to estimate the
probability of this event. As in Lemmas 2 and 3, the fooling probes are denoted ¾1; ¾2; : : : ; ¾k . Then,

Prob.¾1; : : : ; ¾k/ 5 Prob.¾1; : : : ; ¾r 1 1/Prob.¾r 1 2; : : : ; ¾k j¾r 1 1/

since ¾r 1 2; : : : ; ¾k are independent of ¾1; : : : ; ¾r . We next observe that by Lemma 2

Prob.¾2; : : : ; ¾r 1 1j¾1/ 5

³
m

4k

´r ³
1 1

4r 1 1

3m

´r

and by Lemma 3

Prob.¾r 1 2; : : : ; ¾k j¾r 1 1/ 5

³
m

4k

´s ¡ 1 ³
1 1

4s

3m

´s ¡ 1

:

Because Prob.¾1/ º .3m=4k/ (since symbol b can be chosen in 3 ways), we conclude that:

Prob.u1bu2/ 5
3m

4k

³
m

4k

´k ¡ 1 ³
1 1

4r 1 1

3m

´r ³
1 1

4s

3m

´s ¡ 1

5 3

³
m

4k

´k ³
1 1

4r 1 1

3m

´r ³
1 1

4s

3m

´s ¡ 1

: (4)

We can now piece together the preceding intermediate results. The probability of E1 is conditional on
the detection of an ambiguous extension by the basic algorithm, whose probability is trivially majorized
by 1. With the only simplifying assumption being that u1au2 and the fooling probes are disjoint, the
probabilities of E2 and E3 are conditional on the selection of the position of the correct substring. The
latter can be chosen in at most m ways, so that multiplying the computed bounds by m achieves an upper
bound to the probability of failure. This establishes the theorem.

In Figure 1, we display a diagram of a lower bound to the probability of successful sequence reconstruc-
tion (the complement to 1 of expression (1)) for k 5 8 in the range [:9; 1], as a function of the sequence
length (in the range [25; 15000]) and of the parameter r 2 [0; 7], for H 5 3rs.

Expression (1) tells us that the corresponding bound (to the probability of E1) grows dramatically as
m=4k ¡ 1 approaches 15=16. However, choosing H ¶ 3rs assures us that the probability of failure is almost
insensitive to E1 for m < 15 4k ¡ 3. Considering now E2 and E3, inspection of (1) reveals that the the � rst
term is symmetric in r and s ¡ 1, and that the second term is nearly so. A more detailed analysis, treating
r as a continuous parameter, yields a minimizing value of r very close to k=2 (as Figure 1 illustrates for
k 5 8). Therefore we shall choose

r 5

·
k

2

¸
:

We now observe that in (1) for k ¶ 6 the second term is dominant for small and large values of r ,

but becomes negligible in correspondence of r º k=2. Therefore, for r 5 k=2, we obtain .1 1 4r 1 1

3m / º
.1 1 4s

3m / º 1 and

Prob. failure/ º 3m

³
m

4k

´k

:

So Prob. failure/ < ², for a conveniently small ² , leads to

m < 4k ¡ 1 ¡ 1
k1 1 log2

q
3
4² ;

i.e., for any � xed con� dence value, the length of the unambiguously reconstructible sequence is within a

small constant factor of the information-theoretic bound 4k ¡ 1
2 for relatively small values of k (for example,

for ² 5 0:05, k 5 8, the exponent is º 8 ¡ 1:21).
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FIG. 1. A lower bound to the probability of successful sequence reconstruction for the new algorithm, as a function
of target sequence length (x < 16,000) for all possible choices of .s; r/ with k 5 8.

4. RUNNING TIME OF THE ALGORITHM

Since the algorithm performs a type of “bounded breadth-� rst search” of all possible sequence recon-
structions from the given spectrum, it is important to verify that the running time of the algorithm is not
signi� cantly degraded by this search. In this section, we give bound on the expected execution time of the
algorithm on a randomly generated target sequence. The time performance is expressed in terms of the
number of accesses to the spectrum, each assumed doable in O.1/ time.

In our analysis, we assume that the algorithm operates at its best performance for a given con� dence
level, i.e., that m and k are related by m 5 4k ¡ 1 ¡ ´, for some ´ > 0, and r 5 k=2.

Theorem 2. If T .m/ is the run-time of the algorithm on a random target sequence of length m, then
E[T .m/] 5 O.m/.

Proof. As discussed is Section 3, the sequencing algorithms works in two modes. In the � rst mode,
the algorithm is working with one putative sequence, and each one-symbol extension is con� rmed by up
to .r 1 1/ spectrum probes. When the algorithm fails to con� rm a unique extension, it switches to the
second mode, in which all possible paths extensions are explored up to maximum length H . In the second
mode, each one symbol extension is con� rmed by only one spectrum probe.

We � rst need to bound the work done in the � rst mode, and the probability of an “ambiguous branching,”
which occurs when more than one extension (the correct one and at least a spurious one) is con� rmed
by .r 1 1/ spectrum probes, causing the algorithm to switch to the second mode of “path extension” in
an attempt to resolve the ambiguity. The probability of these events is readily supplied by the following
corollary to Lemma 2.
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Claim 1. The probability that h probes failed to con� rm a unique extension at a speci� c position of
the target sequence is bounded above by

3
4

³
m

4k ¡ 1

´h ³
1 1

4r 1 1

3m

´h ¡ 1

:

In particular, the probability of an ambiguous branching at a speci� c position of the target sequence is
bounded above by

3
4

³
m

4k ¡ 1

´r1 1 ³
1 1

4r 1 1

3m

´r

:

Proof. The only difference from the situation of Lemma 2 is that now each of the fooling probes
¾2; : : : ; ¾h1 1 constrains at most k ¡ 1 rather than k symbols (all but the rightmost one). In addition, the
probability of the � rst probe (¾1 in Lemma 2) is .3=4/.m=4k ¡ 1/, because its last symbol is selectable in
3, not 4, ways.

Following an ambiguous branching, the algorithm switches to a second mode in which one-symbol
extensions are veri� ed with only one probe. A spurious path is either terminated or is not; in the latter
case, it is either extended or it may spawn up to three additional paths. As we did for Event E1 in
Theorem 1, we argue that the expected number of paths extended from a given symbol in that case is very
conservatively bounded above by

³
m

4k ¡ 1 1
1

4

´
:

On the other hand, the expected number of branches from the correct path (at a speci� c position in the
single-probe path-extension mode) is bounded by 3 m

4k , since it depends upon a single fooling probe with
3 choices for its last symbol. Thus, in both cases, the expected number of branches spawned at a given
symbol is bounded away from 1.

Lemma 4. If A.m/ denotes the total work on one symbol extensions in the � rst mode of the algorithm,
then E[A.m/] 5 O.m/.

Proof. The algorithm performs up to m one-symbol extensions in the � rst mode. By Claim 1, the
probability that at least h 1 1 µ r 1 1 probe accesses are performed at a speci� c position is given by

Zh1 1 5
3

4

³
m

4k ¡ 1

´h ³
1 1

4r 1 1

3m

´h ¡ 1

:

Thus, the expected work done at a speci� c symbol of the target sequence is bounded by
Pr 1 1

h5 1 Zh, and

E[A.m/] µ m

r 1 1X

h5 1

Zh 5
3m

4

³
1 1

4r1 1

3m

´r ¡ 1 rX

h5 1

³
m

4k ¡ 1

´h

µ 3m

4

³
1 1

4r 1 1

3m

´r ¡ 1 rX

h5 1

³
1
4´

´h

5 O.m/:

Next we bound the total amount of work the algorithm performs in its second mode.
The expected number of ambiguous branchings on the target sequence (the expected number of times

the algorithm switches to the second mode) is bounded by

º 5
3m

4

³
m

4k ¡ 1

´r 1 1 ³
1 1

4r 1 1

m

´r

µ m1 ¡ ´
2



630 PREPARATA AND UPFAL

Each time the algorithm switches to its second mode, it explores up to H symbols on the correct target
sequence and at least rs 1 1 symbols on the spurious path. We can analyze the total work done in the
second mode as a collection of branching processes. The branches explored by the algorithm correspond
to branching processes with roots at each symbol of the target sequence explored by the algorithm in the
second mode, plus the � rst sr 1 1 symbols of the con� rmed spurious path.

There are a total of º.H 1 rs 1 1/ 5 O.m1 ¡ ´
2 log2 m/ 5 o.m= log m/ such branching processes. The

expected number of offsprings of each node in the branching process is bounded away from 1. Thus,
the expected size of each branching process is O.1/. The work associated with each node of the tree is
O.1/, since each branch is con� rmed by only one spectrum access. Thus, the total expected work of the
algorithm in the second mode is o.m/.

We close this section by observing that, when we consider the actual running time of the algorithm
for a � xed k and m µ 4k ¡ 1 ¡ ´, the work due to the processing of the ambiguous branching becomes the
dominant factor for large values of m, so that for m 2 [4k ¡ 1 ¡ ´=2; 4k ¡ 1 ¡ ´] the number of accesses is
proportional to O.m log2 m/.
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