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Sequencing-by-Hybridization Revisited:
The Analog-Spectrum Proposal

Franco P. Preparata

Abstract—All published approaches to DNA sequencing by hybridization (SBH) consist of the biochemical acquisition of the spectrum
of a target sequence (the set of its subsequences conforming to a given probing pattern) followed by the algorithmic reconstruction of
the sequence from its spectrum. In the “standard” or “uniform” approach, the probing pattern is a string of length L and the length of
reliably reconstructible sequences is known to be m,,,, = O(2%). For a fixed microarray area, higher sequencing performance can be
achieved by inserting nonprobing gaps (“wild-cards”) in the probing pattern. The reconstruction, however, must cope with the
emergence of fooling probes due to the gaps and algorithmic failure occurs when the spectrum becomes too densely populated,
although we can achieve m,,,, = O(4~). Despite the combinatorial success of gapped probing, all current approaches are based on a
biochemically unrealistic spectrum-acquisition model (digital-spectrum). The reality of hybridization is much more complex. Departing
from the conventional model, in this paper, we propose an alternative, called the analog-spectrum model, which more closely reflects
the biochemical process. This novel modeling reestablishes probe length as the performance-governing factor, adopting
“semidegenerate bases” as suitable emulators of currently inadequate universal bases. One important conclusion is that accurate
biochemical measurements are pivotal to the success of SBH. The theoretical proposal presented in this paper should be a convincing
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stimulus for the needed biotechnological work.
spectrum, semidegenerate bases.

1 INTRODUCTION

JANUARY-MARCH 2004

AS is well-known, more than a decade ago, several
research groups [10], [12], [6], [14], [20], [5] proposed a
radically new alternative to established wet-lab techniques
for DNA sequencing. This novel approach (sequencing by
hybridization, or SBH) is based on the property of a DNA
sequence to hybridize to its Watson/Crick (WC) comple-
ment and opens up the possibility of the simultaneous
acquisition of all relevant data in a single laboratory
experiment.

The basic idea is the deployment of a set (called a library) of
oligonucleotides on some solid support, called a “micro-
array” or “chip.” The active area of the chip is structured as a
matrix, in each region of which (called a feature) a very large
number of copies of a specific oligonucleotide are implanted.

The chip is immersed under controlled conditions within
a solution of a suitably labeled target DNA sequence and a
copy of the target DNA will bind (hybridize) to an
oligonucleotide if the oligonucleotide is complementary,
in the Watson-Crick sense, to one of its subsequences
(labeling of the target allows visualization of this event). In
DNA sequencing (denoted de novo sequencing), the micro-
array library is complete, i.e., it contains oligonucleotides
for all possible choices of the bases.

All published approaches to SBH agree with the
following model. The process consists of two cascaded
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fundamental steps. The first, biochemical in nature, is the
acquisition, by complementary hybridization with a com-
plete library of probes, of all subsequences (of a selected
pattern) of a given unknown target sequence (such a set is
called the sequence spectrumy). The second step, combinator-
ial in nature, is the algorithmic reconstruction of the
sequence from its spectrum. (Biochemical) spectrum acqui-
sition is the extraction of information from the target
sequence, (combinatorial) reconstruction uses this informa-
tion to reproduce the sequence. Sequence reconstruction is
effected by symbol-by-symbol extension of a putative
sequence from one end to the other. It is customary to
measure performance with reference to the ensemble of
ii.d. Bernoulli sequences of given length.

The key component of an SBH-scheme is its probing
pattern, a length-L binary string of the form 1(0V 1)*1:
A probe (of the unknown target) is a subsequence of the
latter obtained by positioning the pattern along the
sequence and extracting the symbols sampled by the 1s
of the pattern.

The spectrum is therefore the set of all such probes. For
each such subsequence, the spectrum provides a single bit
(1 for presence, 0 for absence). We call such spectra digital.
This mode of operation applies to all SBH schemes
heretofore proposed and analyzed, of which we shall next
review two important examples.

In the “standard” or “uniform” approach, the probing
pattern is a string. It has been shown [12] that any sequence
compatible with the spectrum corresponds to an Eulerian
path in the (Eulerian) digraph whose vertices and edges are,
respectively, defined by (L — 1)-tuples and L-tuples of the
target. Pevzner also established necessary and sufficient
conditions for failure, the most stringent of which gives the
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bound m* &~ 1.22 x ¢/42 to the length of sequences
reconstructible with confidence 1 — €. This bound applies
to any SBH scheme with probe length L since sequence
reconstruction is identified with the traversal of the
Eulerian path described above: This will be evidenced by
the notation my,. Finding

Mien = CQL (1)

for some 0 < ¢ < 1 is in sharp contrast with the so-called
“information-theory bound” O(4%) [7].

A natural approach to achieve higher sequencing
performance for a given microarray area is to increase
probe length without increasing the number of probing
nucleotides. Such a lengthening can only be achieved by
inserting nonprobing gaps between probing positions and,
in the digital-spectrum model, gapped probing schemes
have been shown to achieve performances comparable to
the information-theory bound [15], [17]. Gap positions act
as “wild-cards” to be ideally realized with “universal
bases” (bases with perfect hybridization nonspecificity).

Whatever their physical realization, wild-card gaps give
rise to a novel phenomenon: the emergence of fooling probes.

Definition 1. A fooling probe is due to a subsequence conforming
to the probing pattern, agreeing with the correct extending
subsequence in all but its rightmost symbol, and occurring
elsewhere in the target sequence.

(Note that, in the uniform-array method, multiple query
responses are always correct extensions, whereas, in
gapped-arrays approaches, they almost never are.)

In sequence reconstruction, all competing alternatives
issuing from an ambiguous branching are extended up to
some maximum depth H [17]. Success is highly likely because
the correct path is deterministically extended, while the
extension of the spurious paths rests on the (probabilistic)
presence of fooling probes in the spectrum. On the other
hand, fooling probes are a serious source of algorithmic
inefficiency (as demanded by the construction of spurious
paths). When the probability of occurrence of a specific
fooling probe attains a value equal to the a priori probability
(1/4) of its extension symbol, then we face a runaway
branching process with a positive probability that spurious
path extension will never terminate [8], [18]. Denoting F' the
size of the fooling probe set, this occurs when m 4% ~ }1 so that
we define the bound:

4L71
Meomp = T (2)

to underscore the fact that performance is limited by
computational infeasibility.
We now observe:

1. The performance of uniform-array SBH is governed
by mye, since, in this case, ' =0, i.e., Meomp = 0.

2. Theperformance of gapped-array SBH is governed by
Meomp- Indeed, in the best performing schemes [17], we
have L ~ (k+1)?/2 and F = 4"~* (since the probing
pattern has L — k wild-card positions). It follows that

-1 .
Meomp = 4— =41 « CQAZT+1 = Myen

F

for any realistic value of k.

However, the above conclusions are predicated on the
validity of the digital-spectrum model. In the next sections,
we challenge the adequacy of such a model and propose an
alternative, called the analog-spectrum model, which more
closely reflects the process of hybridization. A consequence
of this model and of the adoption of “semidegenerate
bases” as suitable substitutes of not yet available universal
bases reestablishes probe length as the performance-
governing factor.

We conclude this introduction with two significant
observations:

1. Accurate biochemical measurements are pivotal to
the combinatorial success of SBH. This observation is
emblematic of the interaction between the two
disciplines, where successful combinatorial/algo-
rithmic research, originally stimulated by biochem-
istry, shifts the focus to biochemical research for the
refinement of the model.

2. The reported analysis is not intended as an experi-
mental validation of SBH; rather, it should be
viewed as a persuasive suggestion for the experi-
mental work needed to finally translate SBH
research into practical realizations.

2 THE INADEQUACY OF THE DIGITAL-SPECTRUM
MoDEL

Validation of the standard digital-spectrum model must rest
on the biochemistry of spectrum acquisition. As assay
temperaturerises, copies of an annealed duplex progressively
separate (denature) to completion: “conventional” state-
transition (annealed/denatured) occurs at the temperature
(called melting temperature T),) at which 50 percent of the
duplexes have become separated. 7T}, is an accurate measure
of the “binding strength” (internal energy AG) of the duplex.
The internal energy is a function of the nucleotide sequence,
additively and with a property of locality, sufficiently well-
modeled by “dimer” parameters [19]. For example:

AG(CGTTTGA)=CG + GT + TT + TT + TG
+ GA + AGjy,

where AG;,;;, omitted hereafter for brevity, is a special
parameter accounting for the end-pairs.

As an underpinning to further considerations, in Table 1,
we report the AG dimer match parameters for 7 = 65°C ' in
(noncoventional) units of —10% Kcal/mole.

As this table shows, dimer values have a considerable
spread, with first two moments x(!) = 78.9 and o!!) = 40.6.

Energy parameters have also been determined for
mismatches [1], [2], [3], [4]. Specifically, such parameters
are available for single mismatches in the form of dimers
corresponding to configurations of the type

Ny Ny
Nl ]V37

where N;, N,, and N3 are arbitrary nucleotides and N, is
the WC-complement of N; (mismatches correspond to

1. T'= 65°C is a realistic average melting temperature of the hybridiza-
tion experiments considered here.
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TABLE 1
AG Match Dimer Parameters for T' = 65°C

| [4] [ o]

AI39| 82| 70130

C || 82| 127 | 140 | 70

G || 69 | 155 | 127 | 82

T| 0| 69| 82|39

N3 # Ns). The destabilization §(Ni, Ny, N3, N;) of a mis-
match configuration

Ny N
Ny N,

can be easily modeled in terms of available dimer match
and mismatch parameters. This modeling enables us to
compute (an estimate of) the binding energy of any duplex
having at most two nonadjacent mismatches, which is
adequate since the case of more than two mismatches is
unreliably estimated and uninteresting in the context of
SBH. Destabilization 6(N;, N2, N3, Ny) can be treated as a
random variable over the set of mismatches. From the
above table, we obtain that the average destabilization value
iS fmis &= —245 and its standard deviation is 7,5 ~ 96.

This sketchy review of the hybridization process is
sufficient to seriously invalidate the standard digital-
spectrum model, as explained below.

First of all, state-transition temperature has a substantial
variance, which rules out single-temperature spectrum-
acquisition experiments. In other words, digital-spectrum, if
practicable at all, must be feature-specific. Although feature-
specific detection appears adequate for uniform-array
schemes, the conclusion is quite different for gapped-array
schemes.

The main issue is that the physical realization of wild-
card positions must be realistically modeled. We can
envision three alternatives:

1. Ideal universal bases. These bases, with perfect
hybridization nonspecificity, have been postulated in
the combinatorial analysis of gapped schemes, but are
not likely to exist. Thus, this alternative is not viable.

2. Practical universal bases. These bases are chemical
compounds that exhibit imperfect nonspecificity
(about two dozen such compounds have been
synthesized to-date). To evaluate whether a practical
universal base is viable for deployment (referred to
here as an effective universal base), we model the
binding energy of a pair (practical universal base)-
(natural base) as a random variable with standard
deviation oy and treat individual pairs as indepen-
dent. It follows that, if the probe pattern contains
h universal bases, the free energies of the set of
sequences that may anneal at microarray feature f
are distributed around some nominal value with
standard deviation v/hoy. Obviously, the hybridiza-
tion-detection energy-threshold 6(f) for feature f

must be set at the smallest value over all members of
this set. Note that the condition oy = 0 characterizes
an ideal universal base.

No shortcoming arises if oy is very small. For
larger values of o7, however, (correct) matches may
compete with (incorrect) mismatches. This happens
because “weak” matches (i.e., matching sequences
with an A-T majority in the wild-card positions) may
have smaller AG than “strong” mismatches (with a
C-G majority). If we model the universal-base
fluctuation as a normal random variable with 0
mean and standard deviation oy and denote M, the
minimum mismatch destabilization for a probe with
h universal bases, we obtain the condition

M,
< —

o > 6 \/Ev (3)
which could be taken as a criterion for a synthetic
base to be considered “effectively” universal.

Unfortunately, however, no such acceptable uni-

versal base has yet been found, although its
discovery and synthesis appear as reasonable bio-
chemical objectives.
Universal-base surrogates. Universal-base surro-
gates are mixtures of natural bases intended to
emulate the behavior of universal bases. As we shall
see, a common shortcoming of such approaches is
the weakening of the luminescence signal.

Degenerate bases have been proposed as a solution.
A degenerate base is a uniform mixture of the four
nucleotides so that the probe at a given microarray
feature will consist of a uniform mixture of copies of
4" distinct oligonucleotides, which are identical in
their specified positions and exhibit, instead, all
possible selections in the wild-card positions. Deploy-
ing h such surrogates, the annealing oligonucleotide
has a concentration that is only 1/4" of that of the
analogous ideal-universal-base oligonucleotide; this
fact reduces the hybridization signal and poses a
severe limit on the value of i, which is not likely to
exceed the value 5. Unfortunately, due to the wide
spread of internal energies, the deployment of
h degenerate bases may cause energy variations with
respect to the feature mean value that are comparable
to the destabilization produced by one or even two
mismatches. The net effect of this interference is a
drastic increase of the number of fooling probes, thus
seriously affecting the performance of sequence
reconstruction. This phenomenon can be carefully
analyzed by modeling both the mismatch values and
the energies of the 4" assignments of the degenerate
bases as normal random variables (see the Appendix
for documentation). Suffice it to display here the
corresponding histograms (Fig. 1).

The fact that single mismatches are the source of
an overwhelming volume of fooling probes (and so
are double mismatches) illustrates the inadequacy of
degenerate bases.

As a practical emulator of a universal base, we
have recently proposed the notion of semidegenerate
base [16]. A semidegenerate base is a uniform
mixture of the two nucleotides of similar “strength”
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Fig. 1. Histograms of binding energies for a pattern with four degenerate
(D) bases (matches above, single mismatches below).

1000

(according to the classification of A, T as “weak” (W)
bases and of C, G as “strong” (S) bases). From Table
1, we obtain standard deviation ¢® = 10.8. In this
approach, for h wild-card positions, each wild-card
position of a given feature will have a unique
assignment in the set {W,S} and the feature will
contain a uniform mixture of copies of the 2"
oligonucleotides corresponding to all base selections
consistent with the given strength selection. Clearly,
each gapped probe (ideally, a single microarray
feature) is now collectively represented by 2"
microarray features (each associated with a distinct
pattern of base-strengths).

Again, on the basis of the data of Table 1, we
may now calculate the standard deviation of a
string of eight semidegenerate bases, which is only

(8—1) x99 =26.3, compared with the corre-
sponding value of /(4 —1) x 3147 =97.16 for a
string of four degenerate bases (see the Appendix).
Semidegenerate bases can also be analyzed for
interference with mismatches. The histograms of
the energies distributions, shown in Fig. 2, clearly
illustrate the advantage over degenerate bases.

As a summary of the preceding discussion, for fixed cost
and signal reduction (a 4*-feature microarray and a 4"-fold
signal reduction), probe length k + h is achieved either with
k definite positions and h degenerate bases or with k—h
definite positions and 2h semidegenerate bases. This
observation seems to suggest that no obvious advantage
accrues from the adoption of semidegenerate bases over
degenerate bases. However, semidegenerate bases exhibit
negligible match/mismatch interference, which makes
them viable universal-base surrogates. Therefore, in what
follows, the phrase “h degenerate bases” is to be under-
stood as “h equivalent degenerate bases, emulated by
2h semidegenerate bases while reducing by h the number of
definite bases (to maintain unaltered the microarray size).”

3 THE ANALOG-SPECTRUM APPROACH

In this section, we let k and h, respectively, denote the
numbers of definite bases and equivalent degenerate bases
in the probing pattern, i.e.,, L = k+ h.

We noted in Section 2 that gapped probing patterns,
while adequate to overcome the inherent inefficiency of
uniform patterns, engender fooling probes, which prove to
be the performance-limiting factor.

Therefore, the fact that, in current technology, only small
values of h appear feasible may seem to lead to a pessimistic
prognosis for SBH. Upon closer examination, however, we
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Fig. 2. Distributions of binding energies for a pattern with eight
semidegenerate (S) bases (matches above, single mismatches below).

realize that the bound m,, (Which, by and large, governs
gapped-scheme SBH) is essentially due to the stated digital-
spectrum acquisition policy. Indeed, in order to avoid the
occurrence of false-negatives which are very detrimental to
the reconstruction process, for each microarray feature, we
are forced to set the detection threshold at the lowest value
compatible with the probes that correctly hybridize at the
feature. Such a policy, which is at the root of the fooling
probe phenomenon, is due to the entirely arbitrary
decoupling of biochemistry and combinatorics, which is
the basis of all approaches heretofore proposed. As we shall
see, such decoupling sacrifices valuable information avail-
able to the reconstruction algorithm.

We now propose to abandon this standard digital-
spectrum model and adopt instead a policy where the
biochemical and combinatorial steps interact or, equiva-
lently, the biochemical step provides much richer informa-
tion to the reconstruction process and lets the latter use it
contextually. We call such a policy analog-spectrum
acquisition, defined as follows:

e The sequence spectrum consists, for each feature
undergoing a hybridization transition, of the mea-
surement of the quantity (typically, temperature) at
which its state transition conventionally occurs.
Formally, if we denote T'(f) the measurement at
feature f:

analog spectrum = {T'(f)|f € probe library}.

We must underscore that, although there is no current
instrumentation for achieving the desired measurements, its
realization (a temperature ramp and a high-precision scan-
ning of the microarray) is well within the state-of-the-art.

A crucial feature of the analog spectrum approach is that,
since reconstruction occurs by extension of a putative
sequence,

for any reconstruction path being extended, the algorithm has full

knowledge of the entire sequence suffix, not just the k — 1 definite

positions used in constructing the spectrum query in the digital-
spectrum approach.

This additional information enables the algorithm to
specify with some accuracy the temperatures at which each
of the four possible state-transitions (corresponding to
extension {A,C,G,T}) is expected to occur and therefore
classify the responses in a much finer way. In other words,
rather than letting the instrument make hard decisions as to
the presence/absence of a response on a worst-case basis,
we require the instrument to provide a finer measurement



50 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1,

and let the algorithm make full use of contextual informa-
tion to produce the classification.

For a microarray feature f, we let 6(f) denote the
nominal transition value generated by the algorithm, either
computed or experimentally predetermined; the analogous
“measurement” is denoted T(f). In addition, we let 7
denote a tolerance value intended to account for unavoid-
able experimental errors. The spectrum query will now
have three responses, rather than two as in the digital
spectrum:

L T(f) <0(f) —n.

This event is interpreted as a mismatch.

2.0(f) —m=T(f) =0(f) +n

This event is interpreted as a match.

3. 0(f) +n<T(f).

This event is interpreted as a fooling probe.

This 3-way classification, to be contrasted with the 2-way
{mismatch, match/fooling — probe} classification of the di-
gital-spectrum approach, affords significant algorithmic
flexibility and higher performance. In fact, in the most
simplistic implementation, path extension could be per-
formed only for matches. A more subtle implementation
could quantitatively score both mismatches and fooling
probes and terminate spurious paths on the basis of their
score. Notice, however, the asymmetry between Cases 1
and 3: Due to the fact that a Case-3 response may actually
conceal a correct match (and not so a Case-1 response), a
mismatch could be ignored, whereas a fooling probe must
be handled as such.

With reference to performance, we show below that the
main cause of the improvements is the drastic reduction of the
fooling probe set. In order to be able to obtain a quantitative
estimate of this reduction, we adopt some simplifications
that—although not rigorously justifiable—do not seem to
alter the nature of the process. These simplifications are
essentially: 1) normal distribution for random variables of
known mean and variance and 2) statistical independence
when needed. Let N(z; y1, o) denote the density function of a
Gaussian random variable x with mean p and variance o°.

Let G be the average of the energy of the probes correctly
hybridizing at feature fandleto’ = \/Eagj)/,where 022/)/ =9.94
is the effective standard deviation of a single semidegenerate
base (see the Appendix). The density function of their energies
is N(t; G, ¢’). If T denotes the measurement, then, observing
that n may be assumed to be small with respect to ¢/, the
number of (match) fooling probe is estimated as

0+n 277
4" N(t;G,o')dt = 4" - 2n- N(6;G,o') < 4" . .
0—n o'\ 2

The corresponding analysis carried out for mismatches
shows that their contribution to the fooling probe pool is
negligible. Thus, the size of the fooling probe pool is
estimated as

L (2n h
F=—0x|—]-4"
=)

It is apparent that the crucial role is played here by the
parameter 2n/0’, which, in some sense, measures how fine

NO. 1, JANUARY-MARCH 2004
the quantization of the analog measurement is, i.e., how rich
the information content of the analog spectrum is.

Specifically, referring back to (2), in our case, we obtain
Meomp = 4L/ F = 41 % ; correspondingly, referring to
(1), we have (for some c = 0.5)) my., = 2" = 2" so that
the target condition my., < Mom, becomes

2 2

o~ 4dc
In current technology, it is reasonable to assume k = 8, h = 5,
and c¢=0.6. In addition ¢ = \/ﬁag} =v2x5x994=
31.43.Thisresultsin theinequality n < 53, whichisapparently
well within current experimental capabilities. This finding
leads to the following very significant conclusion:

e The adoption of analog-spectrum SBH and the
realization of gaps by means of semidegenerate
bases (and, possibly, a few effective additional
practical universal bases) reestablishes probe length
as the parameter controlling the length of reliably
reconstructible target sequences.

3.1 The Sequence Reconstruction Algorithm

Before addressing the overall sequence reconstruction algo-
rithm, we note that the analog-spectrum policy has beneficial
effects on the computational load. In fact, despite the presence
of fooling probes (caused by the adoption of gaps in the
pattern), each symbol of a path being extended is classified as
a match or a fooling probe so that each path is correspond-
ingly scored. Significant score differences can be used for the
truncation of paths that are extremely likely to be spurious.
This feature drastically lightens the computation of sequence
reconstruction.

The gapped-probe sequencing algorithm [17] must be
substantially modified to combine it with the traditional
Eulerian-path reconstruction algorithm [13]. The resulting
algorithm exhibits important features of both its predeces-
sors. The algorithm uses a queue @), designed to store disjoint
segments of the sequence to be reconstructed (the symbol <
denotes enqueue/dequeue operations). Queue () is initia-
lized with the length-(L — 1) prefix of the target sequence
(assumed to be known for simplicity), denoted seed. P is a
predicate governing the extension. Next, we give a high-level
version of the algorithm:

1. Q < seed; P:=1

2. putative < Q
3. while (P =1) do

4. R:= query(putative)

5. Case|R|=0:P:=0

6. Case|R| = 1 : extend putative

7. Case|R| = 2 : store completed segment
8. Q < R(1)

9. Q < R(2)

10. putative < Q

11. Case|R| = 3,4 : return FAIL

12. stitch — Fuler — path

Barring failure (which is correctly detected in Line 11
below), the algorithm first reconstructs a collection of
disjoint segments whose union covers the original target
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sequence and then rearranges these segments in the correct
order in Line 12 (subroutine stitch-Euler-path?).

The novelty of the procedure resides in the implementa-
tion of Line 4: R := query(putative), R being the set of
accepted responses. Whereas, in the uniform-array algo-
rithm, this step simply involves four table look-ups, in this
case, for each of the four possible L-mers, the algorithm
must determine the actual threshold either by computation
or, more likely, by table look-up of experimental values, and
compare it with the corresponding measured value. If all
but one of the responses are reliably classified as mis-
matches, then the singleton set R is returned. Otherwise, we
have an ambiguous branching situation and competing
paths are extended and scored with the elimination policy
outlined above. The path extension process terminates
either when all surviving paths have a nonempty common
prefix (in which case a singleton set R is returned) or when
path-extension reaches some predetermined depth H, at
which point all distinct initial symbols of the surviving
paths are reported for the construction of Eulerian paths.

In Fig. 3, we give the analytical expected performance
(based on standard Eulerian graph analysis) of the analog-
spectrum method for a (k = 8)-microarray with h = 0,...,4.
This diagram shows the superiority of the outlined approach
over wet-lab methods. Moreover, we note that the addition of
each effective universal base nearly doubles the performance
without increasing the array size.

4 CONCLUSION

In this paper, we have proposed the analog-spectrum model
of SBH, which is based on the thermodynamics of DNA
hybridization. This more realistic modeling tightly couples
biochemistry and combinatorics, providing the reconstruc-
tion component with physical measurements to be used
contextually. Moreover, the analog model enables the
analysis of appropriate universal-base surrogates in the form
of semidegenerate bases. The latter should be used to achieve
significant probe length without increasing the microarray
cost. We underscore again that the presented theoretical
investigation is intended to motivate serious experimental
work, with the potential of transforming SBH into a practical
technology.

APPENDIX

VARIANCE OF BINDING ENERGY OF OLIGOS

Let random variable E(j1, . .., ji) denote the binding energy
of a string ji,...,j, € D" = {A,C, G, T}h’. With our conven-
tion to consider only consecutive pairs, if 1 is the average of
the dimer energy, then (h — 1) is the average of E(j1, . . ., jn)-
The corresponding variance has the expression:

2. This subroutine is based on standard graph-theoretic notions. Each
sequence segment A is represented as a triple aAf, where a and § are,
respectively, the (L — 1)-symbol prefix and suffix of A. The intersection graph
([20, p. 32]) of Eulerian graph G is a tree if and only if G has a unique
Eulerian cycle. A tree has at least two leaves, each of which is associated
with a triple of the form aAa. Stitching is the node-reduction step that
replaces 3Ba, aAa, aCy with SBACY.

-
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m

Fig. 3. Expected performance of analog-spectrum approach for k£ =8
and h=0,1,...,4 from left to right.
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This expression is easily manipulated as follows:

o} (D) = D]~V ' Z (Ka(jr,ga) —p) + -
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Notice that the second sum above is empty when h = 2. We
now observe that
D" ST SN (Ko jusr) — 1)’ =07
Jtyeesdh €D Jusjust

and that

>
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(KZ(jTajr+l) - M)(KQ(jsvjs+l) - M) =0

when r+1# s since the index sets are disjoint and

ijjm (K2(Ju, jut1) — ) = 0 by definition. Therefore,
op = (h—1)*+2[D "D

h—2
D (Ka(irs 1) = 1) (K (Grin, dria) — 1)

r=1
Moreover, we have

h

9
(K2(Grs gri1) — 1) (K2 (Fri1, Jrr2) — 1)
Jlseesdn€D =1

=470V A= 2) Y (Ka(i,f) — w) (K (3, k) — ).

i,j,k
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If we now define the correlation term p, as

pr =472 (Ko(i, ) — w) (Ka(j, k) — p),

igk

we obtain

h—2
2 2
=(h-1 2 .
Oh ( ) <J + h—1 P2>
This relation allows us to interpret the quantity

h—1
as an “equivalent” variance, as if the dimers where
independent random variables. For degenerate bases from
Table 1 (see Section 2), we obtain ¢ = 1646 and 2p, = 1501.

The result is that o'} = /1646 + 1501 = 56.01.
A parallel analysis can be carried out for strings of

semidegenerate bases. In this case, we obtain ([16])
o? =117, 2p = —18.06, and

P +2

2
pa R 0% +2py = (UE%)

@2 _
Ocff = 9.94.

ACKNOWLEDGMENTS

The author acknowledges with gratitude technical discus-
sions with biochemist J. S. Oliver. The author was partially
supported by the US National Science Foundation under
Grant DBI-9983081

REFERENCES

[1] H.T. Allawi and J. SantaLucia Jr., “Thermodynamics and NMR of
Internal G-T Mismatches in DNA,” Biochemistry, vol. 36, pp. 10581-
10594, 1997.

[2] H.T. Allawi and J. SantaLucia Jr., “Nearest-Neighbor Thermo-
dynamic Parameters for Internal G-A Mismatches in DNA,”
Biochemistry, vol. 37, pp. 2170-2179, 1998.

[3] H.T. Allawi and J. SantaLucia Jr., “Thermodynamics of Internal
C-T Mismatches in DNA,” Nucleic Acid Research, vol. 26, pp. 2694-
2701, 1998.

[4] H.T. Allawi and J. SantaLucia Jr., “Nearest-Neighbor Thermo-
dynamics of Internal A-C Mismatches in DNA,” Biochemistry,
vol. 37, pp. 9435-9444, 1998.

[S] W. Bains and G.C. Smith, “A Novel Method for DNA Sequence
Determination,” J. Theoretical Biology, vol. 135, pp. 303-307, 1988.

[6] R.Drmanac, I. Labat, I. Bruckner, and R. Crkvenjakov, “Sequen-
cing of Megabase Plus DNA by Hybridization,” Genomics, vol. 4,
pp. 114-128, 1989.

[71 M.E. Dyer, A.M. Frieze, and S. Suen, “The Probability of Unique
Solutions of Sequencing by Hybridization,” J. Computational
Biology, vol. 1, pp. 105-110, 1994.

[8] W. Feller, An Introduction to Probability Theory and Its Applications.
New York: J. Wiley and Sons, 1960.

[9] D. Loakes, “The Application of Universal DNA Base Analogues,”
Nucleic Acids Research, vol. 29, pp. 2437-2447, 2001.

[10] Y.P. Lysov, V.L. Florentiev, A.A. Khorlin, K.R. Khrapko, V.V.
Shih, and A.D. Mirzabekov, “Sequencing by Hybridization via
Oligonucleotides: A Novel Method,” Dokl. Acad. Sci. USSR,
vol. 303, pp. 1508-1511, 1988.

[11] N. Peyret, P.A. Seneviratne, H.T. Allawi, and ]. SantaLucia Jr.,
“Nearest-Neighbor Thermodynamics and NMR of DNA Se-
quences with Internal A-A, C-C, G-G, and T-T Mismatches,”
Biochemistry, vol. 38, pp. 3468-3477, 1999.

[12] P.A. Pevzner, “l-Tuple DNA Sequencing: Computer Analysis,”
J. Biomoleculular Structure & Dynamics, vol. 7, no. 1, pp. 63-73, 1989.

[13] P.A. Pevzner, Computational Molecular Biology: An Algorithmic
Approach. MIT Press, 2000.

NO. 1, JANUARY-MARCH 2004

[14] P.A. Pevzner, Y.P. Lysov, K.R. Khrapko, A.V. Belyavsky, V.L.
Florentiev, and A.D. Mirzabekov, “Improved Chips for Sequen-
cing by Hybridization,” ]. Biomoleculular Structure & Dynamics,
vol. 9, no. 2, pp. 399-410, 1991.

[15] F.P. Preparata, AM. Frieze, and E. Upfal, “On the Power of
Universal Bases in Sequencing by Hybridization,” Proc. Third Ann.
Int’l Conf” Computational Molecular Biology, pp. 295-301, Apr. 1999.

[16] E.P. Preparata and ].S. Oliver, “DNA Sequencing-by-Hybridiza-
tion Using Semidegenerate Bases,” ]. Computational Biology, to
appear.

[17] E.P.Preparata and E. Upfal, “Sequencing-by-Hybridization at the
Information-Theory Bound: An Optimal Algorithm,” ]. Computa-
tional Biology, vol. 7, no. 3/4, pp. 621-630, 2000.

[18] F.P. Preparata, E. Upfal, and S.A. Heath, “Sequence Reconstruc-
tion from Nucleic Acid Micro-Array Data,” Analytic Techniques for
DNA Sequencing, B. Nunnally ed., M. Dekker, 2003.

[19] J.J. SantaLucia, “A Unified View of Polymer, Dumbells, and
Oligonucleotide DNA Nearest-Neighbor Thermodynamics,” Proc.
Nat’l Academy of Science, vol. 95, pp. 1460-1465, 1998.

[20] M.S. Waterman, Introduction to Computational Biology. Chapman
and Hall, 1995.

Franco P. Preparata is the An Wang Professor
of Computer Science at Brown University and
the Kwan im Thong Visiting Professor at the
National University of Singapore. Previously, he
was a professor of electrical engineering and
computer science at the University of lllinois at
Urbana-Champaign. Over the years, he has
carried out research in a number of algorithmic
domains, with special emphasis on computa-
tional geometry and parallel computation. Cur-
rently, computational biology is a main focus of his research interests.
He is a fellow of the IEEE and the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



