
Genomics is extending its reach into diverse fields of 
biomedical research from agriculture to clinical diag-
nostics. Despite sharp falls in recent years1, sequencing 
costs remain substantial and vary for different types of 
experiment. Consequently, in all of these fields inves-
tigators are seeking experimental designs that gener-
ate robust scientific findings for the lowest sequencing 
cost. Higher coverage of sequencing (BOX 1) inevitably 
requires higher costs. The theoretical or expected cover-
age is the average number of times that each nucleotide 
is expected to be sequenced given a certain number of 
reads of a given length and the assumption that reads 
are randomly distributed across an idealized genome2. 
Actual empirical per-base coverage represents the exact 
number of times that a base in the reference is covered 
by a high-quality aligned read from a given sequenc-
ing experiment. Redundancy of coverage is also called 
the depth or the depth of coverage. In next-generation 
sequencing studies coverage is often quoted as average 
raw or aligned read depth, which denotes the expected 
coverage on the basis of the number and the length 
of high-quality reads before or after alignment to the 
reference. Although the terms depth and coverage can 
be used interchangeably (as they are in this Review), 
coverage has also been used to denote the breadth of 
coverage of a target genome, which is defined as the 
percentage of target bases that are sequenced a given 
number of times. For example, a genome sequencing 
study may sequence a genome to 30× average depth 
and achieve a 95% breadth of coverage of the reference 
genome at a minimum depth of ten reads.

An ideal genome sequencing method would fault-
lessly read all nucleotides just once, doing so sequen-
tially from one end of a chromosome to the other. 
Such a perfect approach would ensure that all poly-
morphic alleles within diploid or polyploid genomes 
could be identified, and that long identical or near-
identical repetitive regions could be unambiguously 
placed in a genome assembly. In real-world sequenc-
ing approaches, read lengths are short (that is, ≤250 
nucleotides) and can contain sequence errors. When 
considered alone, an error is indistinguishable from 
a sequence variant. This problem can be overcome 
by increasing the number of sequencing reads: even 
if reads contain a 1% variant-error rate, the combina-
tion of eight identical reads that cover the location of 
the variant will produce a strongly supported vari-
ant call with an associated error rate of 10−16 (REF. 3). 
Increased depth of coverage therefore ‘rescues’ inad-
equacies in sequencing methods (BOX 1). Nevertheless, 
generating greater depth of short reads does not cure 
all sequencing ills. In particular, it alone cannot resolve 
assembly gaps that are caused by repetitive regions 
with lengths that either approach or exceed those of 
the reads. Instead, in the paired-end read approach, 
paired reads — two ends of the same DNA molecule 
that are sequenced and which are separated by a known 
distance — are used to unambiguously place repetitive 
regions that are smaller than this distance.

Sequencing is enriching our understanding not 
only of genome sequence but also of genome organiza-
tion, genetic variation, differential gene expression and 
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Depth
The average number of times 
that a particular nucleotide is 
represented in a collection of 
random raw sequences.
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Abstract | Sequencing technologies have placed a wide range of genomic analyses within the 
capabilities of many laboratories. However, sequencing costs often set limits to the amount 
of sequences that can be generated and, consequently, the biological outcomes that can be 
achieved from an experimental design. In this Review, we discuss the issue of sequencing 
depth in the design of next-generation sequencing experiments. We review current 
guidelines and precedents on the issue of coverage, as well as their underlying considerations, 
for four major study designs, which include de novo genome sequencing, genome 
resequencing, transcriptome sequencing and genomic location analyses (for example, 
chromatin immunoprecipitation followed by sequencing (ChIP–seq) and chromosome 
conformation capture (3C)).
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diverse aspects of transcriptional regulation, which 
range from transcription factor-binding sites to the 
three-dimensional conformation of chromosomes. As 
these areas of genome research often adopt markedly 
different sequencing depths (FIG. 1), we review this issue 
for each area in turn. First, we examine current best 
practice in de novo genome sequencing and assembly. 
We then proceed to consider genome resequencing 
and targeted resequencing approaches, particularly 
whole-exome sequencing (WES). Second, we discuss 
the rapidly evolving area of transcriptome sequencing, 
specifically the different considerations that are needed 
for transcript discovery compared with the analyses of 
differential expression and alternative splicing. Finally, 
we explore a range of methodologies that identify the 
genomic sites of transcription factor binding, chromatin 
marks, DNA methylation and spatial interactions that 
are revealed by chromosome conformation capture (3C) 
methods. We discuss experimental considerations that 
are relevant to sequence depth, which are required for the 

generation of high-quality, unbiased and interpretable  
data from next-generation sequencing studies.

De novo genome sequencing
The major factors that determine the required depth in  
a de novo genome sequencing study are the error rate of the  
sequencing method, the assembly algorithms used,  
the repeat complexity of the particular genome under 
study and the read length. Genomes that have been 
sequenced to high depths by short-read technologies 
are not necessarily a substantial improvement in assem-
bly quality compared with those produced using the 
earlier lower-coverage Sanger sequencing technology. 
Although the human genome was initially assembled 
to high quality with 8–10-fold coverage using long-read 
Sanger sequencing2, a raw coverage of ~73-fold was 
required to generate the first short-read-only assembly 
of the giant panda genome that was of lower quality 
than the human genome4. A similarly low coverage 
(~7.5-fold) dog genome, which is similar in size to that 
of the giant panda and was assembled using Sanger 
sequencing reads, is more complete and more contigu-
ous than the giant panda genome3. These differences 
arise because Sanger sequencing reads are longer, are 
derived from larger insert libraries and can be assembled  
using mature assembly algorithms3.

High-quality assemblies are now often produced 
using hybrid approaches, in which the advantages of 
high-depth, short-read sequencing are complemented 
with those of lower-depth but longer-read sequencing. 
For example, sequencing the draft assembly of the wild 
grass Aegilops tauschii was a considerable challenge 
owing to its large size (4.4 Gb) and to the fact that two-
thirds of its sequence consists of highly repetitive trans-
posable element-derived regions5. The draft genome 
was successfully assembled first into short fragments 
(that is, contigs) using 398 Gb (that is, a 90-fold cov-
erage) of high-quality short reads from 45 libraries 
with insert sizes between 0.2 kb and 20 kb, and these 
fragments could then be linked into longer scaffolds 
using paired-end read information. Gaps between con-
tigs predominantly contained repetitive sequence, the 
unique placement of which posed difficulties. These 
gaps were filled in using a subsequent addition of 
18.4 Gb (that is, a fourfold coverage) of Roche 454 long 
reads. A recently introduced approach to sequencing 
repeat-rich genomes is to barcode and sequence to an 
average of 20× depth all reads that are derived from each 
of many collections of hundreds or thousands of short 
(6–8 kb) DNA fragments6. By assembling each collec-
tion separately, many otherwise confounding repetitive 
sequences of the Botryllus schlosseri tunicate genome 
were resolved. By applying approaches that are comple-
mentary in aspects such as read lengths and coverage 
biases, hybrid library and assembly methods are likely 
to dominate in the near future7,8.

Twofold coverage and lower-quality assemblies have 
been produced using Sanger sequencing for a selection 
of mammalian genomes to identify sequences that are 
conserved in eutherian species, including humans9. The 
Lander–Waterman approach (BOX 1) predicts that ~86% 

Box 1 | Sequencing coverage theory

Much of the original work on sequencing coverage stemmed from early genome 
mapping efforts. In 1988, Lander and Waterman96 described the theoretical 
redundancy of coverage (c) as LN/G, where L is the read length, N is the number of 
reads and G is the haploid genome length. The figure shows the theoretical coverage 
(shown as diagonal lines; c = 1× or 30×) according to the Lander–Waterman formula for 
human genome or exome sequencing. The coverage that is achieved by sequencing 
technologies according to the manufacturers’ websites is also indicated (see the 
figure). Unfortunately, biases in sample preparation, sequencing, and genomic 
alignment and assembly can result in regions of the genome that lack coverage (that is, 
gaps) and in regions with much higher coverage than theoretically expected. GC‑rich 
regions, such as CpG islands, are particularly prone to low depth of coverage partly 
because these regions remain annealed during amplification97. Consequently, it is 
important to assess the uniformity of coverage, and thus data quality, by calculating 
the variance in sequencing depth across the genome98. The term depth may also be 
used to describe how much of the complexity in a sequencing library has been 
sampled. All sequencing libraries contain finite pools of distinct DNA fragments. In a 
sequencing experiment only some of these fragments are sampled. The number of 
these distinct fragments sequenced is positively correlated with the depth of the true 
biological variation that has been sampled.

GAIIx, Genome Analyzer IIx; PacBio, Pacific Biosciences; PGM, personal genome machine.Nature Reviews | Genetics
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Sequence capture
The enrichment of fragmented 
DNA or RNA species of interest 
by hybridization to a set of 
sequence-specific DNA or RNA 
oligonucleotides.

GC bias
The difference between the 
observed GC content of 
sequenced reads and the 
expected GC content based  
on the reference sequence.

Variant calling
The process of identifying 
consistent differences between 
the sequenced reads and the 
reference genome; these 
differences include single base 
substitutions, small insertions 
and deletions, and larger copy 
number variants.

(that is, 1 – e−2) of bases in such genomes are covered 
once by a sequencing depth of 2× although, in reality, 
this decreases to ~65% for mammalian genomes that are 
sequenced at twofold coverage10. In these and other stud-
ies, low coverage has two principal effects on subsequent 
analyses and biological interpretation. First, it is not pos-
sible to resolve whether an absence of a protein-coding 
gene, or a disruption of its open reading frame, repre-
sents a deficiency of the assembly or a real evolutionary 
gene loss. Second, and perhaps more seriously, low depth 
can introduce sequence errors that are in danger of being 
mistakenly propagated through downstream analyses 
and misdirecting conclusions of a study. To mitigate this 
possibility, two approaches are recommended. First, low-
quality bases or sequences that align poorly against a 
closely related genome should be discarded from such 
analyses. Second, adjacent bases that have high-quality 
scores should also be discarded because they can contain 
a high density of residual sequence errors11.

DNA resequencing
DNA resequencing explores genetic variation in indi-
viduals, families and populations, particularly with 
respect to human genetic disease. Requirements for 
sequencing depth in these studies are governed by 
the variant type of interest, the disease model and the 
size of the regions of interest. Resequencing can reveal 

single-nucleotide variants (SNVs), small insertions and 
deletions (indels),  larger structural variants (such as 
inversions and translocations) and copy number vari-
ants (CNVs). Naturally, the design of a particular study 
depends on the biological hypothesis in question, and 
different sequencing strategies are used for population 
studies compared with those for studies of Mendelian 
disease or of somatic mutations in cancer. Furthermore, 
targeted resequencing approaches allow a trade-off 
between sequencing breadth and sample numbers: for 
the same cost, more samples can be sequenced to the 
same depth but over a smaller genomic region. Here, we 
discuss the merits of whole-genome sequencing (WGS) 
relative to targeted resequencing approaches, including 
WES, in the context of these different variant types and 
disease models.

WGS versus WES. High-depth WGS is the ‘gold stand-
ard’ for DNA resequencing because it can interrogate all 
variant types (including SNVs, indels, structural variants 
and CNVs) in both the minority (1.2%) of the human 
genome that encodes proteins and the remaining major-
ity of non-coding sequences. WES is focused on the 
detection of SNVs and indels in protein-coding genes 
and on other functional elements such as microRNA 
sequences; consequently, it omits regulatory regions 
such as promoters and enhancers. Although costs vary 
depending on the sequence capture solution, WES can 
be an order of magnitude less expensive than WGS to 
achieve an approximately equivalent breadth of coverage 
of protein-coding exons. These reduced costs offer the 
potential to greatly increase sample numbers, which is a 
key factor for many studies. However, WES has various 
limitations that are discussed below.

SNV and indel detection. Early genome resequencing 
studies focused specifically on the two most common 
classes of sequence variation, which are SNVs and small 
indels. The first human genome that was sequenced 
using Illumina short-read technology showed that, 
although almost all homozygous SNVs are detected at a 
15× average depth, an average depth of 33× is required 
to detect the same proportion of heterozygous SNVs12. 
Consequently, an average depth that exceeds 30× rapidly 
became the de facto standard13,14. In 2011, one study15 
suggested that an average mapped depth of 50× would 
be required to allow reliable calling of SNVs and small 
indels across 95% of the genome. However, improve-
ments in sequencing chemistry reduced GC bias and 
thus yielded a more uniform coverage of the genome, 
which later reduced the required average mapped depth 
to 35× (REF. 15). The power to detect variants is reduced 
by low base quality and by non-uniformity of coverage. 
Increasing sequencing depth can both improve these 
issues and reduce the false-discovery rate for variant  
calling. Although read quality is mostly governed by 
sequencing technology, the uniformity of depth of cov-
erage can also be affected by sample preparation. A GC 
bias that is introduced during DNA amplification by 
PCR has been identified as a major source of variation 
in coverage. Elimination of PCR amplification results in 
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Figure 1 | Sequencing depths for different applications. The frequency of studies 
that use read counts of all runs (which are typically flow-cell lanes) and that were 
deposited from 2012 to June 2013 for the Illumina platform in the European Nucleotide 
Archive (ENA) is shown. The plot provides an overview of sequencing depths that are 
usually chosen for the four most common experimental strategies. Densities have been 
smoothed and normalized to provide an area under the curve that is equal to one.  
The depth and therefore the cost of an experiment increase in the order of chromatin 
immunoprecipitation followed by sequencing (ChIP–seq), RNA sequencing (RNA-seq), 
whole-exome sequencing (WES) to whole-genome sequencing (WGS). Although  
ChIP–seq, WES and WGS have typical applications and thus standardized read depths, 
the sequencing depth of RNA-seq data sets varies over several orders of magnitude. 
Multimodal distributions of WES and WGS reflect different target coverage. To 
generate this figure, runs were summed by experiment and, for each study, one 
experiment was chosen at random to avoid counting large studies more than once. 
Note that the ENA archive only contains published data sets and excludes medically 
relevant data sets. The plot was created from 771 studies.
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Low-complexity sequences
DNA regions that have a 
biased nucleotide composition, 
which are enriched with simple 
sequence repeats.

Clonal evolution
An iterative process of  
clonal expansion, genetic 
diversification and clonal 
selection that is thought to 
drive the evolution of cancers, 
which gives rise to metastasis 
and resistance to therapy.

improved coverage of high GC regions of the genome 
and in fewer duplicate reads16.

In WES, differences in the hybridization efficiency 
of sequence capture probes, which are possibly again 
attributable to GC content variation, can result in tar-
get regions that have little or no coverage. Uniformity 
of coverage will also be influenced by repetitive or  
low-complexity sequences, which either restrict bait design 
or lead to off-target capture. Furthermore, unlike WGS, 
WES still routinely uses PCR amplification, which must 
be carefully optimized to reduce GC bias17. As a result 
of increased variation in coverage, a greater average read 
depth is required to achieve the same breadth of cov-
erage as that from WGS, and an 80× average depth is 
required to cover 89.6–96.8% of target bases, depending 
on the platform, by at least tenfold18. Different sequence 
capture kits yield different coverage profiles, and 
designs with higher density seem to be more efficient, 
which provide better uniformity of coverage and better 
sensitivity for SNV detection18,19. As capture kits have 
improved sequence coverage, the amount of sequenc-
ing required has inevitably increased. Regardless of the 
capture protocol or the sequencing platform used, there 
has been a trend for recent exome studies to require a 
minimum of 80% of the target region to be covered by 
at least tenfold20–22. All WES kits are prone to reference 
bias, which arises from capture probes that match the 
reference sequence and thus tend to preferentially enrich 
the reference allele at heterozygous sites; such bias can 
produce false-negative SNV calls23.

CNV detection. CNVs can be detected from WGS 
and WES24,25 data using methods that analyse depth of 
coverage. These methods pile up aligned reads against 
genomic coordinates, then calculate read counts in 
windows to provide the average depth across a region. 
Copy number changes can then be inferred from 
variation in average depth across genomic regions. 

In WGS, reasonable specificity can be obtained with 
an average depth of as little as 0.1× (REF. 26). However, 
sensitivity, break-point detection and absolute copy 
number estimation all improve with increasing read 
depth26,27. Regardless of average read depth, depth- 
of-coverage methods are vulnerable to false positives 
that are being called owing to local variations in coverage 
even after correction for both GC bias and ‘mappability’ 
(BOX 2), and cross-sample calling is required to reduce  
this effect28.

Study design for different disease models. In contrast to 
the high depth that is required to accurately call SNVs 
and indels in individual genomes, population genomics 
studies benefit from a trade-off between sample num-
bers and sequencing depth, in which many genomes are 
sequenced at low depth (for example, 400 samples at 4×) 
and their variants are called jointly across all samples29–31. 
Variant calls on individual low-depth genomes have a 
high false-positive rate, but this is mitigated by combin-
ing information across samples. This approach provides 
good power to detect common variants at a proportion 
of the sequencing cost of deep sequencing29,30. Indeed, 
even ultra-low-coverage sequencing (that is, sequencing 
at 0.1–0.5×) captures almost as much common variation 
(that is, variants with >1% allele frequency) as single-
nucleotide polymorphism (SNP) arrays32. Conversely, 
reliable identification of variants in either highly  
aneuploid genomes or heterogeneous cell populations, 
such as those from tumours, requires greater depth 
of coverage than those from normal tissue33. Targeted 
enrichment and ultra-deep sequencing (that is, sequenc-
ing at 1,000×) of limited regions of interest can be used 
to study clonal evolution in cancer samples, in which spe-
cific variants are present in <1% of the cell population34. 
The identification of disease-causing de novo or recessive 
variants is often best served by sequencing parent–child 
trios. In this case, it is recommended that the same depth 
of sequencing is obtained for each of the family members 
in order to minimize false-positive calls in the proband 
and false-negative calls in the parents35.

Analyses of DNA resequencing data. A typical analy-
sis pipeline for DNA resequencing data involves the 
alignment of sequencing reads to a reference genome 
followed by variant calling. A post-alignment step to 
remove all but one duplicates (that is, the removal of 
two or more read pairs with both forward and reverse 
reads that map to identical genomic coordinates) is 
important for accurate variant calling, as it ensures that 
errors that are introduced and amplified during PCR do 
not result in erroneous calls36. Duplicate read removal 
can significantly reduce the number of high-quality 
mapped reads and thus the average depth of coverage 
(TABLE 1). Even in species with a complete reference 
genome, assembly approaches (reviewed and com-
pared in REFS 37–39) offer several advantages over those 
using reference alignment. First, assembly can faithfully  
recapitulate divergent sequence, such as that of the 
human leukocyte antigen (HLA) locus, which often does 
not align well to a reference genome. Second, assembly 

Box 2 | Genomic alignment and mappability

The first major data processing step in sequencing studies for species with a 
reference genome is the alignment of sequencing reads to this reference. The choice 
of alignment algorithm often influences final coverage values, as different 
algorithms show varying false‑positive and false‑negative rates99,100. Even the best 
mapping algorithms cannot align all reads to the reference genome, which is 
perhaps due to sequencing errors, structural rearrangements or insertions in the 
query genome, or deletions in the reference. Indeed, analyses of unmapped reads 
are often used for the identification of structural variants and non‑reference 
insertions40,101. Furthermore, it is not possible to unambiguously assign reads to all 
genomic regions, as some regions will contain low‑degeneracy repeats or 
low‑complexity sequences. The ‘mappability’ (also known as uniqueness) of a 
sequence within a genome has a major influence on the average mapped depth  
and is an important source of false‑negative single‑nucleotide variant calls102. 
Mappability improves with increased read length and generally shows an inverse 
correlation with genomic repeats103. One approach to increase coverage in regions 
of low mappability is to use longer reads that improve the chance of a read 
encompassing a unique sequence that anchors all remaining sequences. A second 
approach is to generate paired‑end libraries with longer insert sizes, which increases 
the chance of one read of the pair mapping to a unique region outside the repeat 
sequence. It is often useful to use mappability data to normalize read depth, for 
example, when using depth of coverage to estimate DNA copy number.
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Dynamic range
The range of expression  
levels over which genes and 
transcripts can be accurately 
quantified in gene expression 
analyses. In theory, RNA 
sequencing offers an infinite 
dynamic range, whereas 
microarrays are limited by the 
range of signal intensities.

Long non-coding RNAs
(lncRNAs). RNA molecules  
that are transcribed from 
non-protein-coding loci; such 
RNAs are >200 nt in length 
and show no predicted 
protein-coding capacity.

Cap analysis of gene 
expression
(CAGE). In contrast to RNA 
sequencing, CAGE produces 
short ‘tag’ sequences that 
represent the 5ʹ end of the 
RNA molecule. As CAGE does 
not sequence across an entire 
cDNA, it requires a lower depth 
of sequencing than RNA 
sequencing to quantify 
low-abundance transcripts.

Spike-in control RNAs
A pool of RNA molecules of 
known length, sequence 
composition and abundance 
that is introduced into an 
experiment to assess the 
performance of the technique.

Fragments per kilobase of 
exon per million reads 
mapped
(FPKM). A method for 
normalizing read counts over 
genes or transcripts. Read 
counts are first normalized by 
gene length and then by library 
size. After normalization, the 
expression value of each gene 
is less dependent on these 
variables.

can avoid the mis-mapping of reads that originate from 
incomplete regions of the reference genome. Third, 
assembly enables multiple variant types to be analysed 
at once, which minimizes errors around clusters of vari-
ants. The latest assembly methods, such as Cortex40, can 
consider multiple eukaryotic genomes simultaneously 
while incorporating information about known varia-
tion. This allows variant calling against a range of dif-
ferent genomes rather than a single reference genome. 
This method required only an average depth of 16× 
during the assembly of human HLA regions to provide 
results that are in good agreement with laboratory- 
based typing40. However, as assembly methods are 
still unable to fully reconstruct entire genomes owing 
mainly to repeat content, they are only able to call  
variants in 80% of the genome.

Transcriptome sequencing
RNA sequencing (RNA-seq) allows the detection and 
the quantification of expressed transcripts in a biological 
sample. Its applications include novel transcript discov-
ery, and analyses of differential expression and alterna-
tive splicing. RNA-seq has advantages over microarray 
gene expression analyses, as it provides an unbiased 
assessment of the full range of transcripts with a greater 
dynamic range41,42. Large numbers of RNA-seq experi-
ments have now been carried out in many cell and tissue 
types across diverse conditions, yet few clear guidelines 
on read counts have emerged. This is because sequenc-
ing requirements are often dependent on the biologi-
cal question under investigation, as well as on the size 
and the complexity of the transcriptome being assayed. 
Here, we describe the concepts that govern the coverage 
required in RNA-seq experiments and illustrate these 
with examples from the literature.

Coverage in transcriptome sequencing. Coding and 
non-coding transcripts can be expressed at vastly dif-
ferent levels — from one copy to millions of copies 
per cell — in different cell types and developmental 
stages. Consequently, in any given RNA-seq experi-
ment, coverage varies considerably across transcripts, 
and read count, read length and the number of bio-
logical replicates are more important experimental 

considerations than transcriptome-wide coverage statis-
tics. Furthermore, when used for differential expression 
analyses, RNA-seq can be considered as a tag-counting 
application. In this case, a sufficient number of reads are 
required to quantify exons and splice junctions in the 
sample. Therefore, the number of reads that is required 
in an experiment is determined by the least abundant 
RNA species of interest — a variable that is not known 
before sequencing.

The number of useful reads that is generated in a 
study can be optimized either by depleting the ribo-
somal RNA (rRNA) fraction, which constitutes ~90% of  
total RNA in mammalian cells, or by enriching for the 
RNA species of interest, such as the use of immobilized 
oligo-deoxythymidine to enrich for polyadenylated 
RNAs43. Total RNA that is depleted in rRNA contains 
reads from both non-polyadenylated transcripts and 
pre-processed mRNA transcripts. Consequently, many 
reads will align to intronic sequences, thereby decreasing 
the proportion of reads that map to expressed exons and 
reducing the power to detect splice junctions. A good 
indication of the performance of an RNA-seq experi-
ment is provided by the proportion of reads that are 
mapped to rRNA and other highly expressed RNAs, 
and by the proportion that are mapped to splice junc-
tions and coding exons. Using a poly(A) selection pro-
tocol with paired reads of lengths that are >76 bp, >80% 
of read pairs can be expected to map to the reference 
genome in experiments using human samples, and >70% 
of these reads  can be expected to map with zero mis-
matches44. With this approach, the number of reads that 
map to rRNA will be minimal (that is, <1%), and ~15% 
of reads will map across splice junctions.

Transcript discovery. One application of transcrip-
tome sequencing that is not possible using microarrays 
is the identification of novel transcripts, such as long 
non-coding RNAs (lncRNAs) and alternative transcripts 
of protein-coding genes. Many of these transcripts are 
expressed at low levels45,46, and their discovery therefore 
requires either deep sampling of the transcriptome or 
mapping of transcription start sites using cap analysis  
of gene expression (CAGE). The power to detect a 
transcript depends on its length and abundance in  
the sequencing library, as well as on its mappability to the  
reference genome. The sequencing of RNA standards 
from the External RNA Control Consortium47 revealed 
that molecules that are present at frequencies of 0.6–2.5  
molecules per 107 molecules could not be detected 
using 12.4 million uniquely mapping 36-bp reads48. 
Furthermore, the accuracy of abundance estimations 
using spike-in control RNAs in deeply sequenced human 
data sets (which contain >94 million uniquely mapped 
76-bp paired-end reads) showed a clear dependence 
on both length and GC composition of an RNA mole-
cule48. Sampling of transcripts is also affected by library 
preparation. Sequenced reads that are generated using 
Illumina protocols show compositional biases at their 
5ʹ ends owing to the nonrandomness of the hexamer 
primers that are used in cDNA synthesis49. This results 
in nonrandom sampling of the transcriptome and an 

Table 1 | Sources of uninformative reads for different experiments

Source of uninformative reads WGS WES ChIP–seq RNA-seq

Sequencing adaptor reads • • • •

Low-quality reads • • • •

Unmapped reads • • • •

Reads that do not map uniquely • • • •

PCR duplicates • • • •

Reads that map out with peaks, 
transcript models or exons

– • • •

Reads that map to uninformative 
transcripts (for example, rRNA)

– – – •

ChIP–seq, chromatin immunoprecipitation followed by sequencing; RNA-seq, RNA sequencing; 
rRNA, ribosomal RNA; WES, whole-exome sequencing; WGS, whole-genome sequencing.
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Saturation
In the context of sequence 
depth, the point at which the 
addition of extra reads to an 
analysis yields no improvement 
in the number of significant 
effects identified.

Parametric methods
Methods that rely on 
assumptions regarding the 
distribution of sampled data.  
In RNA sequencing, differential 
expression analysis sampled 
reads are assumed to follow a 
Poisson or negative binomial 
distribution.

CLIP–seq
(Crosslinking immuno-
precipitation followed by 
sequencing). A method for 
interrogating RNA–protein 
interactions, in which RNAs  
are crosslinked to proteins by 
ultraviolet radiation and then 
fragmented. After immuno-
precipitation of the protein  
of interest, the RNA is 
converted to cDNA and 
sequenced.

iCLIP
(Individual nucleotide-resolution 
crosslinking and immuno-
precipitation). An extension  
of CLIP–seq that produces 
base-pair resolution. It relies 
on the fact that most cDNA 
synthesis reactions terminate 
at the crosslinked bases of  
the RNA; these prematurely 
terminated bases are purified 
and sequenced.

PAR–CLIP
(Photoactivatable-
ribonucleoside-enhanced 
crosslinking immuno-
precipitation). An extension  
of CLIP–seq, in which the 
photoactivatable nucleotide 
uridine analogue 4SU is 
incorporated into RNA. Upon 
activation with ultraviolet 
radiation, these bases form 
covalent crosslinks with bound 
proteins. Following conversion 
to cDNA, uncrosslinked 
uridines become thymidines, 
whereas crosslinked uridines 
become cytosines, thus 
indicating the protein-binding 
sites in the RNA.

uneven coverage across transcripts49. The discovery of 
novel, rare transcripts is therefore dependent on multiple 
factors, and it is estimated that >200 million paired-end 
reads are required to detect the full range of transcripts, 
including all possible isoforms, in human samples50.

The transcriptional capacity of a genome affects the 
read depth that is required for profiling. Mammalian 
genomes contain tens of thousands of genes, many of 
which consist of multiple isoforms and are transcribed 
pervasively across intergenic segments51. Some verte-
brates, single-cell eukaryotes, bacteria and archaea have 
less complex genomes and thus lower potential tran-
scriptional output. For example, 80% of yeast genes can 
be detected (that is, with more than four reads mapping 
at their 3ʹ ends) with only four million reads, and there 
is little increase in the number of detected genes as addi-
tional data are added42,52. A similar result was obtained 
for log-phase Escherichia coli K12 cultures using two 
million sequenced reads53.

Differential expression analyses. Differences in gene 
expression over time or due to either external stimula-
tion or experimental perturbation are often of interest, 
and these differences can be used to infer the involve-
ment of specific biological pathways and to gener-
ate additional hypotheses. In RNA-seq analyses, gene 
or transcript abundance is frequently expressed as 
fragments per kilobase of exon per million reads mapped 
(FPKM), which provides a length and depth normali-
zation to permit comparisons both within and between 
samples. Current FPKM calculations use the 75th- 
percentile of the read-count distribution instead of the 
total number of mapped reads, which can be skewed 
by highly expressed outliers54. This method improves 
robustness of differential expression calls for genes 
of low expression when few highly expressed RNAs 
dominate a sample. The Encyclopedia of DNA ele-
ments (ENCODE)55 consortium have provided data to 
assess the number of reads that is required to accurately 
quantify genes across the dynamic range of FPKM val-
ues in human cells44. By generating 214 million 100-bp 
paired-end reads from H1 human embryonic stem 
cells, the consortium was able to carry out a saturation 
analysis (see Standards, guidelines and best practices 
for RNA-seq). Using the full data set as the benchmark, 
they determined that, for genes with more than ten 
FPKM, the abundance of 80% of genes could be accu-
rately quantified, within 10% of the full data set, using 
~36 million mapped reads56,57. However, genes that are 
expressed at low levels (that is, those with fewer than 
ten FPKM) could only be accurately quantified with 
~80 million mapped reads. If the research question 
requires the accurate quantification of genes across the 
entire abundance range — including, for example, those 
encoding lncRNAs — then either samples should be 
sequenced at high depth (that is, >80 million reads per 
sample) or RNA-capture techniques58 should be used 
to enrich for low-abundance transcripts. However, if 
the expectation is that the expression of abundant tran-
scripts (that is, those with more than ten FPKM) changes 
across conditions, then 36 million reads per sample 

may be sufficient. Given a fixed budget, reducing the 
amount of sequence per sample allows the inclusion of 
more biological replicates per condition. Although this 
results in a decrease in technical precision at the level 
of individual RNAs, it allows more accurate estimates of 
biological variability and contributes to a more robust 
analysis of differential expression. It is noteworthy 
that, although few biological replicates (n < 5) are often 
used for differential expression analyses, the trade-off 
between the depth at which each sample is sequenced 
and the number of biological replicates must be care-
fully considered. It is clear that parametric methods — 
for example, DESeq59, EdgeR60 and CuffDiff 61 — that 
are used to assess differential expression rely on their 
ability to accurately model biological variability. This is 
evidenced by the observation that increasing sequenc-
ing depth of few replicates (that is, one replicate per 
condition across two conditions) results in an increase 
in the number of false-positive differential expression 
calls. These false positives have been attributed to either 
short genes that are expressed at low levels or genes 
with small fold changes50. Sequencing deeper means 
that transcripts that are expressed at low abundance 
will be detected, but their relevance in a biological con-
text can only be assessed when biological variation can 
be accurately modelled through replication. Methods 
for calling differential expression are an active area of 
research, particularly complex models that attempt to 
resolve transcription at the level of the transcript rather 
than the gene61. A lack of existing benchmarking data 
sets means that it is not clear what read depth and what 
level of replication will be sufficient to carry out such 
analyses. One solution is a staged sequencing approach 
using a multiplexed library of all samples and replicates 
followed by its sequencing in stages until all transcripts 
of interest have been sufficiently covered and can be 
accurately quantified (BOX 3).

Analyses of alternative splicing. Most metazoan genes 
express numerous alternative transcripts (that is, iso-
forms) that are proposed to contribute to the complex 
development, organization and function of different 
tissues62. RNA-seq experiments can incorporate infor-
mation from reads that span exon junctions to infer the 
presence of alternative isoforms. Two early alternative- 
splicing studies63,64 used between 3.5  million and 
4.4  million 27-bp reads and between 12  million  
and 29 million 32-bp reads per sample. Despite being 
shallow by today’s standards, these depths of sequence 
have allowed the following conclusions to be drawn: the 
majority of human genes are alternatively spliced64; exon 
skipping is the major class of alternative splicing63; and  
exon usage varies substantially depending on tissue type 
or cell type63,64. A more recent study used ~30 million 
80-bp single-end reads to assess differential exon use 
between embryonic and adult brain tissue in mice65. 
By identifying the exons with expression levels that 
are higher than expected relative to the overall gene 
expression level, the study was able to identify alterna-
tive splicing events for genes that are involved in actin 
cytoskeleton regulation in adults and in neuronal signal 
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CHART
(Capture hybridization analysis 
of RNA targets). A method  
that uses biotinylated 
oligonucleotides to pull  
down complementary RNAs 
(which are generally long 
non-coding RNAs) and their 
associated DNA after 
crosslinking. The resulting DNA 
is then sequenced to identify 
sequences that are associated 
with the RNA.

transduction in embryos65. Nevertheless, even with this 
increased depth of sequencing, the transition from exon 
usage analyses to the assembly of complete isoforms at 
every expressed locus remains a substantial challenge.

Location, location, location: from ChIP–seq to Hi-C
By location-based methods we are referring to experi-
ments that seek to map the sites of interaction between 
nucleic acids and other molecules. These include sites of 
DNA–protein interactions (using chromatin immuno-
precipitation followed by sequencing (ChIP–seq)66 and 
ChIP-exo67); RNA –protein interactions (using methods 
that are based on crosslinking immunoprecipitation 
(CLIP), including CLIP–seq68,69, iCLIP70 and PAR–CLIP71); 

RNA–DNA interactions (using CHART72 and CHiRP73); 
and DNA–DNA interactions (using 3C-based methods, 
including circularized chromosome conformation cap-
ture (4C), chromosome conformation capture carbon 
copy (5C), Hi-C and chromatin interaction analysis by 
paired-end tag sequencing (ChIA–PET))74,75. Our dis-
cussion of such approaches also includes some methods 
that are aimed at assaying the state of the DNA, such as 
those that interrogate the openness of chromatin (for 
example, DNaseI-seq76) without histone precipitation 
and those that measure DNA methylation (for example, 
MeDIP–seq77 and CAP–seq78).

In a typical experiment, nucleic acid fragments that 
are involved in an interaction are isolated and are sub-
jected to high-throughput sequencing. The resulting 
reads are regarded as tags that can be used to quantify 
distinct molecules in the sample. In this case, the read 
length and the error rate only need to be sufficient to 
distinguish between the different molecules, for exam-
ple, to unambiguously identify a location in the genome. 
The number of reads that map to a particular nucleotide 
is the primary quantity of interest and is used to esti-
mate the abundance of molecules sequenced. Thus, the 
required sequencing depth depends on the number of 
true genomic locations. In the case of ChIP–seq experi-
ments for transcription factor binding, such depth is 
often unknown at the outset, although it may be known, 
for example, when comparing methylation profiles 
between cell types.

Although the number of reads that is necessary to 
complete a reasonably detailed ChIP–seq experiment 
has been examined, similarly detailed studies are cur-
rently lacking for all other techniques. Here, we first 
examine the read counts that are necessary for a suc-
cessful ChIP–seq experiment. We then discuss general 
considerations that influence the number of read counts 
that are required when using other techniques.

Identifying DNA–protein interactions using ChIP–seq. 
The original ChIP–seq study sequenced only 2–5 mil-
lion reads per sample, and yet nearly all sites across 
the genome with a strong match to the canonical bind-
ing motif of RE1-silencing transcription factor (REST, 
which is the protein of interest) were found among the 
1,946 peaks that were identified66. Subsequent stud-
ies found that, in general, by sequencing more reads a 
greater number of binding sites are identified79–81. An 
important factor that influences the read count that is 
required for a ChIP–seq experiment is whether the pro-
tein (or chromatin modification) is a point-source factor,  
a broad-source factor or a mixed-source factor79 (FIG. 2). 
Point sources occur at specific locations in the genome. 
This class includes sequence-specific transcription fac-
tors as well as some highly localized chromatin marks, 
for example, those associated with enhancers and tran-
scription start sites. Broad sources are generally those 
that cover extended areas of the genome, such as many 
chromatin marks (for example, histone H3 lysine 9 tri-
methylation (H3K9me3) marks). Mixed-source factors, 
such as RNA polymerase II, yield both types of peaks. 
As expected, broad-source and mixed-source factors 

Box 3 | Staged sequencing for predicting sequencing requirements

Upon commencing any next‑generation sequencing experiment it is difficult to predict 
the level at which samples should be sequenced. For example, the detection of lowly 
expressed transcripts and rare splice events in RNA sequencing requires very deep 
sequencing. Regardless of the specific interest of the experiment, it is prudent to predict 
the amount of sequence that is required both to answer the biological question and to 
prevent excessive sequencing. An initial round of sequencing of all experimental samples 
can be achieved through multiplexing libraries on a single lane: by adding unique DNA 
tags to each library, sequence reads for individual samples can be extracted after 
sequencing. Depending on the total number of samples in the experiment, multiple lanes 
each containing all libraries can be sequenced. Multiplexing each sample on a single lane 
removes any biases that are associated with inter‑lane or inter‑run variability, thus 
permitting data supplementation. These data can then be used to assess the sequencing 
requirement for the study by sub‑sampling various proportions of the full data set and by 
carrying out saturation analyses. Experiment‑specific metrics can aid in study design 
(see the figure). For example, if the interest is in identifying differentially expressed 
genes between two conditions, then it would be useful to assess the number of 
differentially expressed genes that are identified as a function of sequencing depth. 
Nevertheless, if only few biological replicates are included in the analysis, then there are 
likely to be false‑positive differential expression calls. The number of replicates should 
be carefully considered in the design phase of the experiment — without appropriate 
replication the curve may not reach saturation until all genes are called as differentially 
expressed. In a chromatin immunoprecipitation followed by sequencing experiment, 
the number of peaks that are discovered could be used. The same concept can be 
applied to replicate number to determine the level of biological replication at which 
saturation of differentially expressed genes is reached. If these data are insufficient, 
then additional sequence can be generated and the process repeated until saturation is 
achieved. Such approaches were recently formalized using capture–recapture statistics 
to predict saturation of uniquely sequenced reads, enriched peaks or expressed genes 
from small initial sample reads104.
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Number of mapped reads or number
of biological replicates

More sequencing would
provide little additional
information 

More sequencing could
increase information 

Possible metrics:

• General transcriptome coverage:
percentage of genes covered over
90% at a given expression level

• Differential expression:
number of differentially 
expressed genes

• Alternative isoform detection:
percentage of split reads (that is, 
junction that spans reads)

• ChIP–seq peak detection:
number of enriched loci
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CHiRP
(Chromatin isolation by RNA 
purification). A method to 
capture DNA that is associated 
with RNA (particularly long-non 
coding RNAs); it is based on a 
similar principle to CHART.

DNaseI-seq
(DNase I hypersensitive site 
sequencing). A method to 
identify regions of open 
chromatin. Regions of  
open chromatin are sensitive  
to DNase I digestion, whereas 
those in regions of close 
chromatin are not. Sequencing 
of fragment ends after DNase I 
digestion thus reveals the 
locations of open chromatin.

MeDIP–seq
(Methylated DNA immuno-
precipitation followed by 
sequencing). A method to 
identify regions of methylated 
DNA, in which chromatin 
immunoprecipitation is carried 
out using an antibody that 
recognizes methylated  
cytosine and the resulting 
immunoprecipitated DNA 
fragments are subjected to 
sequencing.

require a greater number of reads than point-source 
factors79,81.

The ENCODE project’s guidelines for ChIP–seq 
experiments suggest that point-source factor experi-
ments should use 20 million reads per factor, summed 
across replicates, in mammals or two million reads per 
factor in organisms with smaller genomes, such as the 
fruitfly and the nematode worm79. However, at this level 
most of the factors assayed have not reached saturation in  
the numbers of peaks identified79,57, and saturation is 
not achieved even at 55 million reads, or 100 million 
reads for some factors, in human cells. In a study of 
the smaller fruitfly genome, it was found that peak 
identification for one transcription factor started to 
show signs of saturation at 16.2 million reads, which is 
equivalent to ~327 million reads in humans81, although 
the numbers of reproducible peaks between multiple 
replicates started to saturate at 5.4 million reads (and at  
~110 million reads in humans).

For broad-source or mixed-source factors it remains 
unclear what an appropriate number of reads might be; 
as a guide, the ENCODE consortium used 40 million 
reads across all replicates79. Evaluating the saturation of 
the number of enriched regions for broad-source fac-
tors is complicated because the generation of more reads 
results in fewer regions as many smaller enriched regions 
combine81. Nonetheless, at 16.2 million reads in fruitflies 
(which is equivalent to 327 million reads in humans), 
the number of regions that are enriched in H3K36me3 
shows little sign of saturation, although fewer reads are 
needed to saturate the calling of reproducible peaks81.

High numbers of reads are required to identify all 
possible peaks. Peaks that are newly discovered as the 
number of reads increases tend to show a lower average 
enrichment relative to the control sample, which sug-
gests that they mark either more weakly bound sites79,80 
or sites where a lower proportion of histones are modi-
fied. It should be noted that, although the enrichment 
of a peak compared with the control sample may pro-
vide an indication of binding strength, it is not neces-
sarily a good measure of the probability that the site is  
biologically functional82.

The number of reads in each sample must be balanced 
against other factors when deciding on experimental 
design. It is important that all ChIP-enriched samples 
are matched by appropriate control samples. These 
controls include input DNA that is not enriched, sam-
ples that are enriched by ChIP for a non-DNA-binding  
protein (such as immunoglobulin G) and, in the case 
of histone modifications, enrichment for unmodified 
histones. Such control samples should be acquired from 
the same cell type under the same conditions as the test 
sample and ideally be processed in parallel79. These sam-
ples should be sequenced to an equivalent depth to, or 
an even greater depth than, the ChIP-enriched sample 
because reads will be distributed across a larger propor-
tion of the genome79–81,83,84. Although technical replicates 
are generally not necessary, it is important to include at 
least two biological replicates in any experimental design 
to ensure maximum sensitivity79,83 but not necessarily 
accuracy. The Irreproducible Discovery Rate framework 
provides a means by which to select reproducible peaks 
across replicates85 and is more simply applied to two rep-
licates. Paired-end sequencing is preferred over single-
end sequencing, as it allows improved identification of 
duplicated reads and a better estimation of the fragment 
size distribution, and it also increases the efficiency of 
mapping to repeat regions81. Long reads are not gener-
ally thought to be necessary, although they also assist in 
uniquely mapping reads to repetitive regions.

ChIP–exo extends the ChIP–seq technique by pro-
viding base-pair resolution for the binding sites of 
DNA-binding proteins86. In a ChIP–exo experiment, 
after immunoprecipitation of fragmented chroma-
tin with the protein of interest and ligation of adaptor 
sequences, a 5ʹ-to-3ʹ exonuclease is applied. Digestion 
of the precipitated DNA proceeds until the exonucle-
ase is blocked by the bound protein. The point at which 
digestion terminates indicates the location of the pro-
tein of interest. Published ChIP–exo studies have exam-
ined samples in Saccharomyces cerevisiae and have used 
between 200,000 reads (for the sequence-specific Reb1 
(REF. 86)) and seven million reads (for a study of general 
transcription factors87) per factor per replicate, which 
would translate to very high read numbers in a mam-
malian genome. Nevertheless, one successful experiment 
for the translational repressor CTCF in human cells used 
20–40 million mapped reads per replicate and identified 
93% of ~19,000 previously identified binding sites as well 
as a further ~17,000 locations, 99.5% of which contained 
a canonical CTCF-binding motif 86. Currently, ChIP–exo 
experiments have not included control samples because 

Figure 2 | The three different types of peaks in chromatin immunoprecipitation 
followed by sequencing experiments. Point sources (top panel), such as 
sequence-specific transcription factors, bind to specific locations in the genome and 
generate narrow peaks of a few hundred base pairs. Broad sources (middle panel), 
which include many chromatin marks (such as histone H3 lysine 27 trimethylation 
(H3K27me3) marks), generate large regions of enriched signal. Mixed-source factors 
(left panel), notably RNA polymerase II (RNA Pol II), generate enriched regions of a 
range of sizes. CTCF, transcriptional repressor CTCF; MYC, myc proto-oncogene 
protein; SUZ12, Polycomb protein SUZ12.
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CAP–seq
(CxxC affinity purification 
sequencing). A method to 
identify genomic regions that 
are enriched for unmethylated 
CpG dinucleotides on the basis 
of binding of the CxxC domain 
to such regions. A recombinant 
CxxC domain from the KDM2B 
protein is biotinylated and  
is bound to DNA. After 
fragmentation, DNA bound to 
the biotinylated CxxC domain 
is recovered and sequenced. 

Peaks
Regions of the genome with an 
enrichment of mapped reads 
compared with a control  
track or a local background. 
Produced by peak callers, 
these are often the output of 
location-based experiments.

Point-source factor
A protein factor that yields 
narrow and localized peaks in 
chromatin immunoprecipita-
tion followed by sequencing 
experiments, such as 
sequence-specific transcription 
factors or some modified 
histones that occur in localized 
regions.

Broad-source factor
A protein factor or modification 
that marks extended genomic 
regions, such as many modified 
histones.

background levels are assumed to be low, but such exper-
iments have included three or four replicates per sample. 
This low background level contributes to a high signal-
to-noise ratio in ChIP–exo and could partly explain its 
extra sensitivity.

Other location-based techniques. In recent years, a 
plethora of techniques for assessing the sites of interac-
tions between a molecule and nucleic acids using high-
throughput sequencing have been described68–72,75,76,88. 
These techniques are superficially similar to ChIP–seq 
in that nucleic acids that interact with the factor of 
interest are enriched and then sequenced. However, the 
sequencing requirements may differ from a traditional 
ChIP–seq experiment that uses a sequence-specific tran-
scription factor. Representative sequencing read counts 
for recently published examples of these techniques are 
shown in TABLE 2.

Of all issues that require consideration when design-
ing such experiments, the most important one is per-
haps the complexity of the library to be sequenced 
(BOX 1), which is mostly influenced by the proportion 
of the genome that is expected to be targeted and by 
the amount of starting material. Experiments that tar-
get a large proportion, or even most, of the genome (for 
example, DNaseI-seq and MeDIP–seq) require a larger 
number of reads than experiments that target a small 
proportion of the genome (for example, iCLIP and 4C). 
Additionally, a library that is produced from a small 
amount of starting material will be of low complexity, 
and its sequencing will be rapidly exhausted. For exam-
ple, CLIP experiments often start from small amounts 
of purified RNA, which cause many of the sequenced 
reads to be identical69,89,90. These identical reads are 

assumed to be PCR duplicates, although new techniques, 
such as random barcoding, are helping to ameliorate this 
problem70. A second issue for consideration is that the 
signal-to-noise ratio determines the number of reads 
that is necessary to distinguish genuine signals from 
background signals, and higher noise levels require a 
greater number of reads. Techniques that use exonucle-
ases, such as ChIP–exo and iCLIP, are expected to show 
low background signals, as nonspecific nucleic acids are 
removed by digestion67,70. This does not only reduce the 
necessary sequencing depth but also removes the need 
to sequence negative-control samples.

In MeDIP–seq, the required coverage is determined 
by the number of CpG dinucleotides in the genome. It 
is suggested that 60 million reads (36-bp paired-end 
reads) are sufficient to interrogate the majority of meth-
ylated CpG in the human genome74. To assess differential  
methylation, window-based read-counting methods 
can be applied, in which the genome is segmented into 
regions of equal size and differential methylation is 
inferred if the number of reads in a region differs signifi-
cantly between conditions. Methods such as DESeq and 
EdgeR take into account different read depth between 
samples, as well as the noise due to the counting process 
and biological variation. However, there are no current 
guidelines for the amount of coverage and the number of 
replicates that are required to accurately call differentially  
methylated regions.

In some experiments, only a proportion of all reads 
that are mapped will prove to be useful. For example, in 
CLIP experiments, mutations at the site of crosslinking 
can be used to identify the precise location of crosslink-
ing, but these mutations only happen in a minority of the 
reads that map to a region91.

Finally, some interactions will be rarer than others,  
and their detection requires greater numbers of reads. 
This is particularly apparent in experiments that involve 
transcripts, such as CLIP and CHART. This is because 
transcripts are expressed at varying levels and most reads 
from any experiment map to highly expressed tran-
scripts. Thus, to confidently identify interactions that 
involve lowly expressed transcripts, considerably more 
reads are required.

3C assays. 3C is a high-throughput sequencing approach 
for capturing interactions between two genomic regions. 
The frequency by which paired reads are mapped to two 
regions is considered to indicate the physical proximity 
of these regions in the nucleus. Concepts and applica-
tions of several methods that are derived from 3C have 
been reviewed elsewhere75. One of these methods — 
4C — assays the interactions from one location in the 
genome and requires relatively few reads (that is, one to  
two million reads92,93). A trans interaction is unlikely  
to be captured because each cell in a population can only 
contribute at most two ligation products to a library — 
one from each copy of the bait — and most of these are 
likely to be local interactions.

A second method — Hi-C — measures interac-
tions between all possible sites with all other pos-
sible sites that cover the whole genome. This results 

Table 2 | Representative read counts for location-based approaches

Techniques Read counts in representative studies Refs

DNaseI-seq and FAIRE–seq 20–50 million 79

CLIP–seq 7.5 million; 36 million 89, 90

iCLIP and PAR–CLIP 8 million; 14 million 105, 106

CHiRP and CHART 26 million 72

4C 1–2 million 92

ChIA–PET 20 million 107

5C 25 million 108

Hi-C >100 million 94

MeDIP–seq 60 million 109

CAP–seq >20 million 110

ChIP–seq >10 million per sample (point source);  
>20 million per sample (broad source)

79

4C, circularized chromosome conformation capture; 5C, chromosome conformation capture 
carbon copy; CAP–seq, CxxC affinity purification sequencing; CHART, capture hybridization 
analysis of RNA targets; ChIA–PET, chromatin interaction analysis by paired-end tag 
sequencing; ChIP–seq, chromatin immunoprecipitation followed by sequencing; CHiRP, 
chromatin isolation by RNA purification; CLIP–seq, crosslinking immunoprecipitation  
followed by sequencing; DNaseI-seq, DNase I hypersensitive site sequencing; FAIRE–seq,  
formaldehyde-assisted isolation of regulatory elements followed by sequencing; iCLIP, 
individual nucleotide-resolution crosslinking and immunoprecipitation; MeDIP–seq, 
methylated DNA immunoprecipitation followed by sequencing; PAR–CLIP, photoactivatable-
ribonucleoside-enhanced crosslinking immunoprecipitation.
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Mixed-source factor
A protein factor or modification 
that produces peaks which  
are similar to those of both 
point-source and broad-source 
factors.

Technical replicates
Replicates that are derived 
from the same initial biological 
sample (as opposed to 
biological replicates). The 
variation between two such 
samples will be due to the 
variation that is introduced  
by the technique used rather 
than the underlying variation  
in the biology.

PCR duplicates
Pairs of reads that originated 
from the same molecule in the 
original biological sample and 
that are filtered out in many 
analyses.

Library complexity
The number of unique 
biological molecules that are 
represented in a sequencing 
library.

in as many as 1011 possible combinations, and library  
complexity is therefore not a limiting factor94. The 
required read count depends on the required resolu-
tion of the results and on the expected frequency of the 
interactions. In experiments that have fewer reads or 
regions with fewer interactions, the contact frequency 
must be averaged over large windows to gain an accurate 
estimate. Thus, for cis interactions a resolution of 400 kb 
requires 16.5 million unique reads, whereas to achieve 
a resolution of 100 kb, >100 million reads are recom-
mended94. Trans interactions are expected to be much 
rarer, and thus more reads are required for their detec-
tion: 100 million reads that allow a resolution of 100 kb 
for cis interactions only yield a resolution of 1 Mb for  
trans interactions94.

For other approaches, including 5C (in which a large 
number of individually designed 3C experiments are 
conducted in parallel) and ChIA–PET (which combines 
Hi-C with a ChIP step to recover interactions that are 
facilitated by a protein factor), the required read count 
depends on what is being captured. The number of inter-
actions that is assayed in a 5C experiment is completely 
at the discretion of the experimenters95. In ChIA–PET 
studies the number of interactions depends on the DNA-
binding protein used; a recent protocol recommends the 
use of at least 20 million reads81. It must also be borne in 
mind that a proportion of the molecules in these librar-
ies do not represent valid interactions. For example, 
in Hi-C, unligated fragments (that is, ‘dangling ends’) 
may be present in as much as 10–45% of a library94. 
Processing pipelines for all 3C-based methods recom-
mend the removal of duplicate reads. This means that 
the total number of reads with useful information is even 
smaller than the initially apparent number.

Conclusions and future directions
Many factors influence the minimum read depth that 
is required to adequately address a biological question 
using sequencing. Design of these experiments requires 
careful consideration of issues that relate to biases in 
genome structure, transcriptome complexity and read 

mappability; to the relative abundance of reads that 
inform about the biological question (TABLE 1); and to 
the trade-off between controlled, replicated design and 
sequencing depth. Approaches that deplete uninforma-
tive reads or that enrich for informative reads will boost 
experimental power, for example, by allowing greater 
sampling of rare alternative protein-coding transcripts 
or lncRNAs. Features that are more rarely sampled 
by sequencing are not necessarily the least interesting 
because, for example, a transcription factor may carry 
out its critical function only at a single genomic site to 
which it has moderate binding affinity, and a lncRNA 
may be required to convey its function close to its site of 
synthesis before being degraded rapidly. To reveal such 
instances requires sequencing at greater depths.

Saturation analyses can be applied as an attempt to 
calculate the required depth at which sequencing must 
be carried out. However, such analyses presume a fixed 
true-positive set of transcripts or binding locations,  
the recovery of which is increased with increased 
sequencing depth. Care must be taken when dealing 
with heterogeneous samples, as the true set may be cell 
type specific.

Future experiments are likely to benefit from lower 
sequencing costs. The greater benefit is perhaps expected 
from increases in the numbers of samples — such  
as from individuals in WGS or WES and from single 
cells when studying somatic changes during tumour 
evolution — that can be sequenced. However, lower 
costs would also provide more widespread opportuni-
ties for laboratories to increase the sequencing depth 
that is used in their experiments. Increased depth would 
be expected to improve the precision by which known 
phenomena can be defined and to reveal new phenom-
ena that cannot be observed using current experimental 
designs. Future improvements in sequencing technology, 
such as longer read lengths and/or reduced error rates, 
would lower the sequencing depths that are required for 
genome sequencing and resequencing experiments but 
not for many counting-based methods, such as RNA-seq 
and ChIP–seq.
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