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Abstract 

In the past several years, there has been growing interest in the problem of se
quencing mixed-model assembly lines. So far most research concentrated on the 
'level scheduling problem' while only some papers have been published on the 'car se-
quencing problem'. The subject of the level scheduling problem is to derive 'smooth' 
production schedules while the car sequencing problem takes sequencing constraints 
related to Station loads and part usages into account. The former in general is 
a difficult optimization problem while for the latter even the feasibility problem is 
WP-complete. 

This paper presents a nonlinear integer programming model which Covers both 
the balancing requirements of level scheduling and the constraints of car sequencing. 
For the Solution of the problem we present a set partitioning/column generation ap-
proach. Solving the LP-relaxation of this model by column generation provides tight 
lower bounds for the optimal objective function value. 

KEYWORDS: MIXED-MODEL ASSEMBLY LINES, JUST-IN-TIME PRODUCTION, 
STATION LOAD-/PART USAGE-CONSTRAINTS, SET PARTITIONING/COLUMN GEN
ERATION 

1 Introduction 

In many assembly systems, products are mounted on a conveyor belt. Operators or Install
ation teams move along with the belt while working on a product. In general, an operator 
can work on a product only when it is at his Station. If the operator does not finish work on 
a product before it leaves his Station, there are two alternative approaches for completing 
what so far has not been done. Usually, in the U.S., utility workers are employed to finish 
work left undone by the primary operator. In Japan, the operator pushes a stop button 
whenever he is unable to finish his work. Clearly, the management philosophy behind such 
distinct approaches is quite different. Anyway, it is desirable to distribute products with 
high work content evenly in order to reduce the risk of conveyor stoppage or the cost for 
utility work (cp., for instance, Tsai 1995). 

Mixed-model assembly lines with negligible change-over between the products enable 
diversified small-lot production. Jüst-in-Time (JIT) production methods of the 'pull' 
variety can be used to control such systems. The use of JIT methods makes it possible 
to satisfy customers' demands for several products without holding large inventories and 
without incurring large shortages. 

When several models of the same general product have to be assembled on one common 
line the underlying design problem has two components: (i) a long-term planning problem 
called line balancing and (ii) a short-term planning problem known as model sequencing. 
In the line balancing problem, the tasks required to assemble the product have to be 
allocated to Workstations. Each Station has to be designed, tooled and equipped with 
respect to the tasks assigned to it and, hence, the allocation is based more on Strategie than 
operational issues. An analysis of these topics can be found in, for instance, Thomopoulos 
1967, Scholl 1995, and van Zante-de Fokkert and de Kok 1997. 
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In the model sequencing problem, the shop floor is the focus of attention where we have 
to decide about the specific order in which the different models have to be launched onto 
the line. Usually, the demand rate of the models varies and the problem must be solved 
periodically. 

Due to the pull nature of JIT systems, once the sequence of the models is fixed at 
the final assembly level, the production schedules at all preceeding levels are inherently 
fixed also. Therefore, the major problem to be solved as a prerequisite for the effective 
utilization of JIT systems is to determine the sequence in which the different models have 
to be scheduled at the final assembly level. 

In general, the final assembly level consists of several stations where each is serviced 
by a part feeder (cp. the shop floor layout of a final assembly line in Figure 1) or one 
feeder provides parts for several stations (cp., e.g., Sumichrast and Clayton 1996). In 
such production environments we have to take care about the Station loads and about the 
part usages which both are a function of the sequence. 

In practice, usually subsequences consisting of, for instance, six copies are used in a 
cyclic manner. These subsequences work 'reasonable good' and they evolve by experience, 
not by analysis. However, oftenly problems arise because of neglecting interdependencies 
between consecutive subsequences. The methods developed in this paper allow to evaluate 
subsequences consisting of about 20 copies in an analytical way. Hence, the contribution 
of our work shall be to reduce the number and the amount of problems arising because of 
not considering interdependencies between consecutive subsequences. 

Figure 1: Final Assembly Line — Shop Floor Layout 
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Many assembly lines, such as those in the automobile industry, have dozens or hun-
dreds of stations the Performance of which is affected by customer-selected options on the 
products assembled. However, most assembly line sequencing algorithms developed for 
situations where the various options require significantly different amounts of processing 
time cannot consider so many stations or options effectively. Then the analytical methods 
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of Rachamadugu and Yano 1994 which compute a "criticality index" for selecting stations 
shall be used. 

In addition to balancing and sequencing, there are several relevant issues such as lead 
times, work in process/kanbans, etc. which have to be considered also in order to design 
and operate JIT systems efficiently; we refer to the work by Bitran and Chang 1987, 
Krajewski, King, Ritzman, and Wong 1987, and Berkley 1992. 

The problem dealt with in this paper may be characterized also as a one machine 
sequencing (or scheduling) problem with difficult sequencing constraints and with irregulär 
criteria (which are not monotone in the job completion times). A survey of recent results 
for this area can be found in Hoogeven, Lenstra, and van de Velde 1997. 

The exposition of our work is as follows: In Section 2 we review previous work. Section 
3 introduces a set partitioning/column generation approach for the mixed-model assembly 
line sequencing problem under Station load- and part usage constraints. The computa-
tional evaluation is presented in Section 4. Section 5 outlines some of the special cases 
covered by the set partitioning/column generation model. In addition, some extensions 
are discussed also. Finally, Section 6 provides a summary and an outlook for future work. 

2 Review of Previous Work 

In this section first we describe one of the fundamental models developed for level schedul
ing and discuss related work. Second, we present a formal model of the car sequencing 
problem. 

Throughout the paper we use the following basic notation: 
V : set of variants, index v 

Dv : set of copies (demand) to be produced of variant v\ for the sake of simplicity 
the copies are represented by numbers, i.e. Dv = {1,..., |D„|}, index t 

T : total production volume (periods, cycles), i.e. T = {1,..., J2vev | AJ|}, 
index t 

2.1 Level Scheduling 

The focus of most of the work done over the past years in JIT sequencing was on scheduling 
Problems with penalties for both earliness and tardiness. Baker and Scudder 1989 give 
a comprehensive review of earlier research in this area. The main objective of another 
important class of scheduling problems considered in JIT production is the minimization 
of rates with which processes within a system supply their Outputs. The main idea to 
achieve this is keeping the quantity of each product manufactured per unit time as close 
as possible to the demand for that product per unit time. 

As outlined by Kubiak 1993 a JIT system, because being a pull system, initiates a 
supply process only if there is is another process that requires the supplying process' 
Output (raw material, part, subassembly). Consequently, the final assembly line is the 
focus of scheduling. 

Miltenburg 1989 has formulated the problem as a nonlinear integer programming prob
lem where the objective is to minimize the total deviation of actual production from the 
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desired production rates. He developed an exact algorithm with exponential (in the number 
of products) worst case complexity, and, in additon, two heuristicprocedures. Miltenburg, 
Steiner, and Yeomans 1990 propose a dynamic programming algorithm whose run time 
is also exponential in the number of products. Kubiak and Sethi 1991, 1994 subsequently 
developed an optimization algorithm that solves the problem and its extensions in polyno-
mial time in the total demand for all products produced on the line over a given planning 
horizon. Similarly, Inman and Bulfin 1991 proposed a formulation which can be solved to 
optimality by ordering the copies according to the earliest due date (EDD) rule. 

In order to describe the approach by Inman and Bulfin 1991 formally we use the 
following parameters and variables: 

ideal position of copy i G Dv of variant v G V 
xVti : positive integer denoting the period in which copy i G Dv of variant v G V 

is scheduled 

A formal definition of the ideal positions fVli,v G V,i G Dv, is given by equation (1). 

1/2) \T\/\DV\ (1) 

Based on these definitions the level scheduling model can be stated by the eypressions 
(2H5). 

min £ (i„,i - (2) 
i;6 V i€Dv 

s.t. xv>i+1 > xV)i + 1 V G V,i G Dv \ {|D^|} (3) 

xv,i f v €V,i € Dv, v' G V, i' G Dv>, (v, i) ^ (v\ i') (4) 

xv>i G T veV,ieDv (5) 

The objective (2) minimizes the sum of deviations of the scheduled periods from the 
ideal ones. Inequalities (3) restrict the decision variables to be monotically increasing 
from copy to copy for each variant. Constraints (4) require the variables to be pairwise 
disjoint while (5) defines the domain of the variables. Clearly, constraints (4) are not in 
the Standard format of integer programs. They simply require that exactly one unit can be 
produced in each period. Inman and Bulfin 1991 observe that the model (2)-(5) describes 
a single machine scheduling problem with penalties for both earliness and tardiness, where 
each copy of a product is a separate job and is the due date of Job (v,i). They prove 
that the level scheduling model (2)-(5) can be solved to optimality by ordering the copies 
according to the EDD rule. 

For illustrative purposes consider the instance given in Table 1 having \V\ = 6 variants 
and a planning horizon of |T| = 14. Note that the first two columns and rows two to five 
can be skipped for the moment. For this instance the ideal positions are reproduced in 
Table 2. Finally, Table 3 provides the optimal level schedule with an objective function 
value of 10.8 (disregard rows three to six until later). Note, in this instance option o = 3 
could be deleted because |Z)2| + |Dg| = 3 < i/3 = 3. 

A practica! example of balancing the production of Coronas at Toyota is given by 
Monden 1983. 250 sedans, 125 hardtops, and 125 wagons must be produced within an 
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eight-hour production shift which essentially means that one car leaves the shop floor 
every minute. A balanced production schedule would be sedan, wagon, sedan, hardtop, 
sedan, wagon, sedan, hardtop, etc. 

Apparently, the level scheduling model (2)-(5) does not take care about the work 
contents of the products which might be different. Hence, it neither allows to control the 
risk of conveyor stoppage nor enables to reduce the cost for Utility work. 

Recently, some other level scheduling topics have been addressed in the literature. 
First, the min-max criterion has been the subject of research instead of the min-sum 
criterion in the paper of Steiner and Yeomans 1993. Second, Steiner and Yeomans 1994 
study the Pareto optimality Version of the problem which has both, the min-sum and 
the min-max objective. Finally, multi-level approaches can be found in Miltenburg and 
Goldstein 1991, Miltenburg and Sinnamon 1992, Steiner and Yeomans 1996, and Kubiak, 
Steiner, and Yeomans 1997. 

2.2 Car Sequencing 

The subject of the so-called 'car sequencing' approach (cp. Parello, Kabat, and Wos 1986 
and Parello 1988) also is to derive schedules for the final assembly line. In contrast to 
level scheduling it is based on the assumption that the different options (i.e. parts such as 
engines, transmissions, accelerators, number of doors) required by the different variants do 
affect Station loads and that the implied part demand for the Output of the feeder process 
has to be taken into account also. More precisely, the goal is to produce a sequence for 
the final assembly level while taking maximal Station loads (capacities) and implied part 
usages explicitely into account via sequencing constraints. Clearly, to look at Station loads 
reduces the risk of stopping the conveyor while the part usage aspect avoids shortages. 

The central part of the car sequencing approach shall be explained by means of the 
following example (which is of relevance in the final assembly of cars): Assume that 60% 
of the cars manufactured on the line require the option 'sun roof'. Moreover, assume that 
five cars (copies) pass the Station where the sun roofs are installed during the time for the 
Installation of a single copy. Then, three operators (Installation teams) are necessary for 
the Installation of sun roofs. Hence, the capacity constraint of the final assembly line for 
the option 'sun roof' is three out of five in a sequence, or "3 : 5" for short. Constraints 
with respect to the used parts can be dervied similarly. 

In order to describe the car sequencing model formally we use the following parameters 
and variables: 

0 : set of options, index o 
aVt0 : 1, if variant v € V requires option o € 0 (0, otherwise) 

H0 : N0 : at most Ha out oi N0 successively sequenced copies may require option 
o e 0 

T0 : set of constrained periods for option o € 0, 
i.e. T0 = T \ {|T| — N 0 + 2,..., |T|} 

Qf0 set of forward-constrained periods for option o € 0 w.r.t. period t, 
i-e. Qt = + N0-1} 

xV}t : 1, variant v € V is assigned to period t G T (0, otherwise) 
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Table 1: Instance 1 — Data 

o H0 : N0 v = 1 v = 2 u = 3 u = 4 v = 5 u = 6 

1 2 : 3 X X X X 
2 2 : 4 X X 
3 3 : 5 X X 
4 2 : 6 X X 

\DV\ 4 1 2 2 2 3 

Table 2: Instance 1 — Ideal Positions 

u \DV\ i 

1 4 1.75 5.25 8.75 12.25 
2 1 7.00 
3 2 3.50 10.50 
4 2 3.50 10.50 
5 2 3.50 10.50 
6 3 2.30 7.00 11.60 

Table 3: Level Schedule of Instance 1 — Optimal Solution with Objective 10.8 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
V 1 6 3 4 5 1 2 6 1 3 4 5 6 1 

o = 1 X X X X X X X X 
o = 2 X X X X 
o = 3 X X X 
o = 4 X X X X X X 

Table 4: Car Sequence of Instance 1 — Feasible Solution 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
V 1 1 2 3 5 3 1 4 6 5 6 6 1 4 

0=1 X X X X X X X X 
o = 2 X X X X 

© II CO
 

X X X 

o II X X X X X X 
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Based on these definitions the car sequencing model can be stated as a constraint 
satisfaction problem by expressions (6)-(9). 

53 xv,t — i teT (6) 
v6V 

53 Xv<t ~ \^v V € V (7) 

(8) yi ®V,T ^ Ho 
"6V r€Q+0 

€ {0,1} v € V,t € T 

o € 0,£ € T0 

(9) 

Equations (6) are assignment constraints, i.e. exactly one copy has to be produced 
in each period. Inequalities (7) require to manufacture the prespecified number of copies 
of each product. Inequalities (8) restrict sequences to be feasible only if the UH0 : iV0" 
constraints are fulfilled. Finally, constraints (9) define the decision variables to be binary. 

We 'extracted' the car sequencing model (6)-(9) out of the verbal description and the 
codes given in Parello, Kabat, and Wos 1986, Dincbas, Simonis, and van Hentenryck 1988, 
and Parello 1988. Note, the car sequencing model (6)-(9) is «VP-complete (cp. problem 
MP1 in Garey and Johnson 1979). 

Recall instance 1 (cp. Table 1) where in addition to what was needed in the level 
scheduling context column two and rows two to five are of relevance now. (Note, an ' x' 
indicates which variants require which options.) Without surprise, a closer look at the 
optimal level scheduling Solution for this instance (cp. Table 3) reveals that it is infeasible 
within the periods 2 < t < 4 with respect to the sequencing constraints imposed by 
option 1 and in the periods 1 < t < 6,4 < i < 9,6 < i < 11, and 9 < t < 14 with 
respect to the sequencing constraints imposed by option 4. Table 4 provides a feasible car 
sequencing Solution for this instance. 

The car sequencing model (6)-(9) pays attention to the work contents of the products. 
Hence, it allows to control the risk of conveyor stoppage or — depending on the preferences 
of management — enables to control the cost for utility work. Note, the car sequencing 
model does not require to define upstream and downstream Station limits explicitely. In 
other words, it is not necessary to state whether the problem setting confines to what 
is called open or closed Station. This is advantageous because in practice there is in 
general some degree of freedom in this aspect which sometimes makes a clear distinction 
between open and closed difficult. Furthermore, it is not necessary to model the upstream 
and downstream movements of the Operators explicitely in order to control the risk of 
conveyor stoppage or the cost for utility work; cp., e.g., Yano and Rachamadugu 1991, 
Bard, Shtub, and Josh 1994, Tsai 1995, Bolat 1997, and Kim, Hyun, and Kim 1996. 

In the case where each of the stations in series has a finite capacity buffer blocking of 
the line may also occur if one of the buffers is füll. If the amount of storage needed is a 
function of the sequence imposed then sequencing has to take care of this type of blocking 
also. A related assembly line sequencing problem with blocking due to finite capacity 
buffers has been studied in McCormick, Pinedo, Shenker, and Wolf 1989. 
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So far, only very few papers are dedicated to the car sequencing model. Constrained 
logic programming approaches have been proposed by Parello, Kabat, and Wos 1986, 
Dincbas, Simonis, and van Hentenryck 1988, Parello 1988, and Drexl and Jordan 1995. 
Unfortunateley, the Performance of these approaches in general is totally disappointing. 
Drexl and Jordan 1995 provide limited computational results based on an Implementation 
in the constraint programming language CHARME. The result is that even very small 
instances might take minutes on a fast Workstation. As shown in this reference also, to 
use Standard MlP-solvers is impractical, too. 

At the end of this section we have the following intermediate result: While the level 
scheduling model Covers 'smoothing' capabilities which are very relevant in a JIT envir-
onment the car sequencing model provides equations which suitably address constraints 
imposed on Station loads and on part usages. Consequently, to combine both features 
within one single model — which is the subject of the remainder of the paper — gives a 
very interesting approach of practical importance which has not been studied before. Un-
fortunately, this combination comes up with an A/'P-hard optimization problem. Hence, 
to compute tight lower bounds, the focus of the next section, is of primary concern. 

3 Integrated Level Scheduling/Car Sequencing 

This section is dedicated to the computation of lower bounds for the combined level 
scheduling/car sequencing problem. The lower bounds are calculated by solving the LP-
relaxation of a restricted master problem via column generation. The use of column 
generation techniques is neat because the master problem is a set partitioning model with 
an exponential number of columns. For an introduction to column generation cp. e.g. 
Bradley, Hax, and Magnanti 1977. 

3.1 Set Partitioning/Column Generation 

The basic idea is to iteratively compute sequences for each of the variants by means 
of a shortest path model. From the set of sequences on hand those are chosen by the 
set partitioning model which respect the H0 : N0 sequencing constraints (in the LP-
relaxation). 

In order to describe the set partitioning model formally we use the following parameters 
and variables: 

v(k) : variant v € V column k is associated with 
Sv : set of columns representing sequences for variant v 6 V, 

i.e. Sv = {k | v(k) = u}, index k 
K,i,k,t = 1, if copy i 6 Dv of variant v € V is assigned to period t € T 

within sequence k where v(k) = v (0, otherwise) 
Fv(k),i,t : squared deviation of copy i € Dv(k) of variant v(k) within sequence 

k from its ideal position fv(k),i 
cjt : objective function coefficient of sequence k related to variant v(k), 

i.e. Cfc = J2ieDvW 12(67 >(k),i,t 
yk : 1, if sequence k is part of the optimal Solution (0, otherwise) 
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A formal definition of the functions Fv(k),i,t is given by equation (10). 

Fv(k),i,t = (t~ fv(k),i f • K(k),i, k,t (10) 

Based on these definitions the (restricted) maater problem can be stated by equations 
(11)—(15) as a set partitioning model. 

min E E (11) 
v£V Jfees» 

s-t. 53 Vk — 1 v € V (12) 

53 53 53 yk = i t € T (13) 
v€V i£Dv fces» 

EE E E <tv,obv,i,k,Tyk < H0 oeO,teT0 (14) 
v£V i$Dv k$Sv 

yk € {0,1} fceiws" (15) 

The objective (11) is to select a subset of columns at minimum costs. Equations (12) 
make exactly one sequence per variant to be part of the Solution, while equations (13) 
require to assign exactly one copy of any variant to each period. Finally, restrictions (14) 
are the sequencing constraints. 

Figure 2: Instance 1 — Basic Structure of the Shortest Path Graph for Variant 1 

' i 

H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t 

3.2 Shortest Path Model 

For each variant v G V sequences are computed by solving shortest path problems. Fig
ure 2 illustrates the (shortest path) graph for variant 1 of instance 1 with \D\ | = 4 and 
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\T\ = 14. Diagonal (horizontal) arcs denote the decision (not) to produce a copy of variant 
1. This (shortest path) graph with source node (left bottom) and sink node (top 
right) Covers all the possibilities to assign four copies to the 14 available periods. 

In order to describe the shortest path model formally we use the following parameters 
and variables: 

or. = set of backward-constrained periods for option o € 0 w.r.t. period t, or. = 
i.e. Qt>0 = {i-iV0 + l)...)t}nTl, 

Nv : set of nodes of the graph associated with variant v € V, 
i.e. Nv = {(i, t) | i 6 Dv U {0}, t E |T| — \DV | + «}} 

Ev : set of arcs of the graph associated with variant v € V, i.e. Ev = € 
Nv x Nv | (h = (i - 1 ,t — l )and j = (%,<))or (^ = (i,t — l)andj = («,<)) 

: original weight of arc (h,j) € Ev 

A„ . dual variable associated with the one sequence per variant constraint (12), 
€ IR 

: dual variable associated with the one variant per period constraint (13), 
Hi € IR 

0,t • dual variable associated with the H0 : N0 constraint (14), 7r0ii > 0 

a'L : updated weight of arc (h,j) € Ev 

xh,j : 1, if arc (h,j) € Ev is element of the shortest path (0, otherwise) 

Equation (16) formally defines the original weights of arcs (h,j) 6 Ev. Equation 
(17) explains how to calculate the arc weights taking the dual variables and 7T0it into 
account. 

M _ f 0 > h — (i,t 1 ),j — ( i,t) . . 
'3 \ (* - /v,i)2 » h = 1 ),j = (i,t) 

f<;=° , h = = (i,t) 
h'3 1 dl,j ~t*t~ Eoeo °v,o £T€<3-0 Vo,r , h = (i - 1, t - l),j = (i, t) ( ' 

Based on these definitions the objective function of the shortest path model for variant 
v can be stated by equation (18). 

Zv = min ffhjxXj- A„ (18) 
(hJ)eE» 

Note that the shortest path graph is acyclic with node weights . 6 1R . Because of 
the topological structure, the shortest path problems are solvable in linear time. 

Finally, pricing out occurs if min{Zv | v € V} > 0. This is accomplished by Computing 
the shortest path in the overall shortest path graph comprising all the variants. Figure 3 
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shows what the overall shortest path graph is all about for the case of two variants. We 
just add a source node and a sink node connect the variant-specific shortest path 
graphs to the source and sink node and count for the (constant) dual variables as shown 
in Figure 3. In our Implementation, we compute at most |V| columns per Iteration, one 
for each variant v € V with Zv < 0. 

Figure 3: Overall Shortest Path Graph for Two Variants 

If we apply the column generation technique to instance 1 given in Table 1 then the 
optimal Solution of the LP-relaxation of the set partitiong model is integral — and hence 
we are done. Table 5 provides the optimal Solution with an objective function of about 24 
— which is more than twice as large as in the unconstrained case. 

Table 5: SPP/CG Sequence of Instance 1 — Optimal Solution with Objective 24.305 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
V 1 4 6 5 3 6 1 1 2 3 5 6 4 1 

0=1 X X X X X X X X 

lo
 II to
 

X X X X 
0 = 3 X X X 

II o X X X X X X 

Unfortunately, the size of the shortest path graph is growing exponentially in terms of 
Dv, v 6 V, and T. Fortunately, simple techniques allow to reduce the size of the shortest 
path graph in a preprocessing stage. 

3.3 Shortest Path Graph Reduction 

The number of potential columns |<S"| o f variant v is defined by 

in = (m) - M ISI ) 
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is the number of potentiell columns of the master problem. 
Figure 4 explains the basic idea of the shortest path graph reduction techniques by 

means of an instance with |T| = 16 and \DV\ = 6. Paths which correspond to an in-
sequence production of more than H0 out of N0 copies can be eliminated without affecting 
the set of feasible solutions. Figure 4 shows via dotted arcs that different H0 : N0 con
straints drop different subsets of arcs and nodes. Note, the shortest path graph reduction 
technique can be applied during a preprocessing stage and needs not be done over and 
over again. 

Figure 4: Instance 2 — Shortest Path Graph Reduction — |T| = 16, \DV\ = 6 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 t 

More formally, let us define a 0-1-valued function Sv : Nv —» {0,1} which assigns the 
value zero to a node if this node (and arcs pointing to/from that node) can be deleted 
from the shortest path graph associated with variant v G V. Since a variant v G V may 
require several options o € 0,8V can be defined as 

*«(»»<) = II 
ogO 

u G V, (i, t) € Nv (19) 

where 5Vi0 : Nv -» {0,1} are 0-1-valued functions each of which, in analogy to 8V, 
yields zero, if a node (i,t) G Nv can be deleted due to a restriction on option o G O. We 
define 

= otherwise .€V,M6Ä-,.€0 (20) 
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In turn, 5^0 : Nv -» {0,1} is a 0-1-valued function which reveals those nodes in the 
upper left part of the graph that can be deleted. Likewise, 8%0 : Nv -> {0,1} is a 0-1-
valued function that indicates which nodes in the lower right part can be deleted. These 
functions are defined by (21) and (22) for all v (E V,(i,t) 6 Nv and o € O. [orj denotes 
the greatest integer smaller than or equa! to a. 

The reduction of the size of the shortest path graph is important because of three 
reasons: First, although requiring only a linear number of steps, solving smaller shortest 
path problems is faster than solving larger ones. Second, updating superfluous arcs of 
the shortest path graph would just waste CPU-time. Third, generating columns of the 
set partitioning model which subsequently are suppressed by the H0 : N0 constraints 
(14) increases the size of the set partitioning model and, hence, the time to solve its 
LP-relaxation. 

4 Computational Evaluation 

The approach presented in this paper explores a new area, hence, no established test-
bed is available. Therefore, first, we elaborate on the instances which are used in our 
computational study. Second, numerical results shall be presented. 

4.1 Instance Generation 

Even in current literature, the systematic generation of test instances does not receive much 
attention. Generally, two possible approaches can be found adopted in literature when 
having to come up with test instances. First, practica! cases. Their strength is their high 
practica! relevance while the obvious drawback is the absence of any systematic structure 
allowing to infer any general properties. Thus, even if an algorithm performs good on some 
practica cases, it is not guaranteed that it will continue to do so on other instances as well. 
Second, artificial instances. Since they are generated randomly according to predefined 
specifications, their plus lies in the fact that Atting them to certain requirements such as 
given probability distributions poses no problems. However, they may reflect situations 
with little or no resemblance to any problem setting of practica! interest. Hence, an 
algorithm performing well on several such artificial instances may or may not perform 
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satisfactorily in practica. Because of the unavailability of practical cases we must choose 
the second approach here. 

The generator we used in our computational study was designed such that the instances 
have two properties:1 First, each instance has at least one feasible Solution which is the 
result of the instance generation. This is an important aspect, because to compute lower 
bounds for an instance which does not have any feasible Solution would make no sense. 
Clearly, having an initial feasible Solution provides an initial upper bound also. Second, 
each instance comprises a non-trivial example of the integrated level scheduling/car se
quencing variety. Non-triviality is assured by requesting each option 'as often as possible'. 
We decided to use T, O, H0 • N0 as input and to produce V, Dv, and the matrix (a„,0) as 
Output. 

The basic working principle of the generator is best illustrated by the use of the ex
ample given in Table 6. The first column specifies the input while columns 2 to 12 provide 
the Output. More precisely, the Ha : Na constraints of each option are considered separ-
ately. Taking option o — 1 as an example we get row UH\ : AV' of Table 6. The procedure 
fills in as many options ' x' as possible which — ceteris paribus — makes the H0 : N0 

constraints more difficult to maintain. We drop the first 2 = min{#0 | o € O} columns 
(because here every row has an entry 'x') and generate |T| + min{/7„ | o € 0} columns 
in total. Finally, we identify identical columns which gives the number of variants V and 
thus the number of copies \DV\ for each variant v € V. For the example of Table 6 we get 
|y| = 5, |D„| = 2,v € V, and 

(0 1 1 > 
1 1 0 
1 0 0 
0 1 0 

u 1 u 

(o«,o) — 

For experimental purposes we used the following testbed: 

. |0| e {3,5,7} 

• |T| € {10,15,20,30,40,50} 

• {H0 : N0} £ 4:5 
1:7 

7:8 
2:8 

3:4 
1:6 

6 : 7 
2:7 

2:3 
3 : 8 

5: 6} 
1 : 5} ) 

Note, the 'grouping' of the H0 : N0 constraints by semicolons is done with respect to 
the numbers of options \0\ € {3,5,7}. In total we have 3 x 6 x 2 = 36 instances. 

Note that the choice of the set {H0 : N0} specifies two subsets of sequencing constraints 
with a different difficulty of finding feasible solutions. More precisely, as shown in Table 7 
the H0 : N0 constraints along the main diagonal comprise those constraints which are easy 
to maintain while those in the top right corner are very difficult to ascertain. In what 
follows we will refer to both as : N0 — easy' and lH0 : N0 — hard', respectively. 

'AU the instances used in this study are available in the internet via anonymous ftp (ftp://ftp.wiso.uni— 
kiel.de/pub/operations-research/cars-jit). 
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Table 6: Instance Generation — Input and Output 

|T| = 10 t 1 2 3 4 5 6 7 8 9 10 
\0\ = 3 V 1 2 3 4 5 5 1 3 2 4 
Hi : Ni = 2 : 3 X X X X X X X X 
H% : N2 = 4:5 X X X X X X X X X X 
H3 : N3 = 3 : 6 X X X X X X 

Table 7: Degree of Difficulty — H0 : N0 

N0 

1 2 3 4 5 6 7 8 

1 X X X X X 
2 X X X 
3 X X 

Ho 
4 X 

Ho 
5 X 
6 X 
7 X 
8 

Table 8: Instance 1 — Initial Columns 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
v = 1 1 1 1 1 
v = 2 1 
v = 3 1 1 
u = 4 1 1 
u = 5 1 1 
u = 6 1 1 1 
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4.2 Computational Results 

The methods described earlier have been imlemented in GNU C using the CPLEX callable 
library (LP-solver; cp. Bixby and Boyd 1996) on a 200 MHz Pentium Pro machine with 
128 MB main memory. 

Each instance has been solved starting with \V\ initial columns, one for each variant 
v G V. Furthermore, the incidence vector u G V, has been initialized according to 
equation (23). Table 8 shows what the outcome of equation (23) is for the instance in 
Table 1. Finally, an initial feasible Solution is computed with the Big M method. 

Table 9 provides the lower and Upper bounds obtained in our experiments. The entries 
within each cell have the following meaning: 

• The symbol indicates that the method yields a binary feasible Solution, that is, 
we have an optimal Solution. 

• The symbol "o" indicates that the method does not yield a binary feasible Solution. 
However, solving the master problem with all generated columns and with binary 
constraints gives a feasible Solution with identical objective function value. Thus, 
again the methods provides the optimal objective function value. 

• A value "X%" means that the method does not give a binary feasible Solution. 
However, solving the master problem with all generated columns and with binary 
constraints leads to a feasible Solution. The gap between upper and lower bound 
(UB and LB) is X = 100 • UB£^B. We conjecture that large gaps are due to poor 
upper bounds. 

• A value "X%" means again that the method does not find a binary feasible Solution. 
Unfortunately, the master problem with all generated columns and with binary con
straints is either not feasible or cannot be solved within reasonable time. Thus the 
only available upper bound is the one given by the instance generator. Again, X is 
the gap between upper and lower bound. We are highly convinced that large gaps 
are due to poor upper bounds. 

Table 10 provides Information about the size of the last master problem. A value in 
this table is the ratio of the number of generated columns and the number of all possible 
columns, i.e. 

(23) 

100 1^1 
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Table 9: Lower and Upper Bounds 

|0| = 3 \0\ = 5 |0| = 7 \0\ = 3 \0\ = 5 |0| = 7 
\T\ = 10 • • • 18% # # 
\T\ = 15 0 • • 0 # 6% 
|rj = 20 151% • 0 14% 49% 12% 
jrj = 30 71% 246% 100% # 167% 98% 
\T\ = 40 • 281% 76% 255% 302% 122% 
|r| = so 314% 148% 124% 497% 168% 91% 

H0 : N0 — easy Ha : N0 — hard 

Table 10: Size of the Last Master Problem — Percentages 

0\ = 3 \0\ = 5 \0\=7 \0\ = 3 |0| = 5 O
 

II 

|r| = io 11.11 29.30 68.00 14.55 17.88 66.40 
\T\ = 15 1.48 6.56 37.56 2.11 1.72 8.04 
|T| = 20 0.12 0.51 4.88 0.15 0.10 1.47 
|T| = 30 0.00 0.00 0.03 0.00 0.00 0.02 
|T| = 40 0.00 0.00 0.00 0.00 0.00 0.00 
|T| = 50 0.00 0.00 0.00 0.00 0.00 0.00 

H0 : N0 — easy Ho : N0 — hard 

Table 11: Size of the Last Master Problem — Absolute Numbers 
\0\ = 3 \0\ = 5 

r-II Ö
 \0\ = 3 |0| = 5 O

 
II 

\T\ = 10 40 63 85 40 54 83 
\T\ = 15 92 120 169 68 115 135 
| T\ = 20 198 206 274 119 165 241 
\T\ = 30 444 611 569 283 384 498 
|T| = 40 1,209 971 1,129 478 637 735 
|T| = 50 2,240 2,293 1,409 1,616 1,180 1,179 

H0 : N0 — easy Ho : N0 — hard 
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Table 12: Run-Time Performance 

\0\ = 3 \0\ = 5 PI = 7 O
 

II CO
 II O

 

t— Ii 

\T\ = 10 0.03 0.06 0.10 0.03 0.03 0.03 

\T\ = 15 0.19 0.27 0.62 0.08 0.18 0.18 

\T\ = 20 0.88 1.11 2.36 0.31 0.53 1.05 

\T\ = 30 9.31 22.17 24.14 2.41 5.97 9.28 

\T\ = 40 119.78 124.15 256.86 19.56 28.45 39.19 
\T\ = 50 1,073.94 2,447.47 415.50 355.15 161.90 147.25 

H0 : N0 — easy H0 : N0 — hard 

Table 13: Run-Time Performance — One Column Per Iteration 

\0\ — 3 01 = 5 \0\ = 7 \0\ = 3 \0\ = 5 |0| = 7 

|r| = 10 0.06 0.15 0.26 0.05 0.06 0.08 
\T\ = 15 0.39 0.69 1.10 0.12 0.26 0.49 
\T\ = 20 2.77 4.08 6.35 0.56 1.14 2.65 
|T| = 30 24.92 63.36 67.71 5.17 14.52 18.38 
|T| = 40 321.76 430.19 845.16 19.74 68.85 92.11 
|T| = 50 1,605.81 >3,600.00 1,826.72 389.31 270.07 335.89 

H0 : N0 — easy Ho : N0 — hard 

Table 14: Size of the Last Master Problem — Percentages — One Column Per Iteration 

\0\ — 3 \0\ — 5 

t-II \0\ — 3 \0\ = 5 O
 

II 

|T| = 10 10.00 24.19 47.20 13.82 13.91 43.20 
\T\ = 15 1.32 5.51 22.00 1.51 1.15 6.19 
|r| = 20 0.13 0.50 3.97 0.15 0.08 1.19 
\T\ = 30 0.00 0.00 0.03 0.00 0.00 0.03 

II o
 

0.00 0.00 0.00 0.00 0.00 0.00 
|T| = 50 0.00 0.00 0.00 0.00 0.00 0.00 

H0 : N0 — easy Ho : N0 — hard 
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The value 0.00 in the table means that the size actually is below 0.005%. We see 
that especially for large instances only a very small percentage of all potential columns is 
generated. This proves that column generation indeed pays off for our problem. Table 11 
shows the size of the last master problem also, now in absolute figures. The run-times 
measured in CPU-seconds are provided in Table 12. 

For getting the results presented so far, we generated at most | V| columns per Iteration, 
one for each variant v with Zv < 0. To reveal that this is indeed a good idea, we also show 
the results when we generated at most one column per iteration which is determined by 
the overall shortest path. Table 13 provides the run-times while Table 14 shows the figures 
for the size of the last master problem. Comparing this with Table 12 and Table 10 the 
run-time upon termination is much shorter when more than just one column is generated 
per iteration. The price we have to pay for this is that slightly more columns are generated 
in total. 

5 Special Gas es and Extensions 

In what follows we will point to some special cases covered by the model formulation. In 
addition, an important extension will be outlined also. 

(i) We conjecture that the approach described in this paper is valid for many functions 
Fv,iti which can be 'locally' computed which means that F^t only depends on copy i but 
not on other copies. Important special cases are where FVyi,t is the /p-norm for —oo < p < 
oo. Note that this Situation covers absolute deviations and weighted earliness/tardiness 
for p = 1 also. Note also, that some values p don't make sense, e.g. p G [0,1). 

Clearly, in practice the decision maker has to chose an appropriate value for p. Then 
the question arises how robust optimal solutions are with respect to changing values of p. 
Table 15 shows for instance 1 optimal objectives Z(p) for different values of p. Apparently, 
even more interesting than what is presented in Table 15 would be to know how sensitive 
optimal sequences are with respect to changes of p. 

(ii) If we replace the min-sum criterion through a min-max objective (/p-norm for 
p = oo) then only minor changes of the set partitiong/column generation approach and 
of the shortest path model are required. Note, however, that in the presence of H0 : N0 

constraints a min-max objective seems to be of minor relevance. 
(iii) The approach covers also the Situation where the work load of a Station stems from 

more than one option. Consider the Situation presented in the first six rows of Table 16. 
Assume that the load of a Station depends on both the options o = 2 and o = 3. Similarly, 
the load of another Station may jointly depend on the options o = 2 and o = 4. Then 
we generate two additional options o = 6 and o = 7. An added option gets a x if and 
only if variant v requies both options. Then each sequencing constraint Ha : Na of the 
newly generated options must express the maximal workload as a function of the number 
of successively sequenced copies requiring both options. 
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Table 15: Stability of Optimal Solutions With Respect to p 

1 p | 1 2 3 4 5 

1 z(p) 16.00 24.31 43.65 85.98 179.37 

Table 16: Instance 3 — Data 

o H0 : N0 v = 1 v = 2 II CO
 

v — 4 v — 5 

1 2 : 3 X X X 
2 3 : 4 X X X X 
3 3 : 7 X X X 
4 2 : 6 X X 
5 4 : 5 X X 

6 
7 

2 : 8 
2 : 9 X 

X 
X 

X 

6 Summary and Future Work 

Mixed-model assembly lines with negligible change-over between the products enable di-
versified small-lot production. Just-in-Time (JIT) production methods of the pull variety 
can be used to control such systems. The use of JIT methods makes it possible to satisfy 
customers' demands for several products without holding large inventories and without in-
curring large shortages. In assembly systems, products usually are mounted on a conveyor 
belt. Operators move along with the belt while working on a product. An operator can 
work on a product only when it is at his Station. If the operator does not finish work on 
a product before it leaves his Station, there are two alternative approaches for completing 
what so far has not been done. Usually, in the U.S., utility workers are employed to finish 
work left undone by the primary operator. In Japan, the operator pushes a stop button 
whenever he is unable to finish his work. Obviously, the management style behind such 
distinct approaches is quite different. Anyway, it is desirable to distribute products with 
high work content evenly in order to reduce the risk of conveyor stoppage or the cost for 
utility work. 

This paper presents a nonlinear integer programming model which covers both the 
balancing requirements of level scheduling and the constraints of car sequencing. Hence, 
it allows to control the risk of conveyor stoppage or — depending on the preferences of 
management — enables to control the cost for utility work while producing 'smooth' JIT 
schedules. For the Solution of the problem we specify a set partitioning/column generation 
approach. Solving the LP—relaxation of this model by column generation pro vi des tight 
lower bounds for the optimal objective function value. 

As already mentioned in the introduction, in practice usually subsequences consisting 
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of only a few copies are used in a cyclic manner. The methods developed in this paper allow 
to compute lower bounds for instances having up to 50 copies, while for up to 20 copies 
in general we get feasible, oftenly optimal sequences. Hence, considerable improvements 
have been achieved. 

Future research should be directed towards the development of local search methods 
which allow to compute feasible solutions for large-size problem instances. Furthermore, 
branch-and-price methods (cp. Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance 
1997) and exact branch-and-cut/row and column generation methods (cp. for instance 
van den Akker 1995) shall be the subject of research. 
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