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Sequencing of 50 Human Exomes
Reveals Adaptation to High Altitude
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Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced
50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes,
with an average coverage of 18× per individual. Genes showing population-specific allele frequency
changes, which represent strong candidates for altitude adaptation, were identified.
The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein
1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism
(SNP) at EPAS1 shows a 78% frequency difference between Tibetan and Han samples, representing the
fastest allele frequency change observed at any human gene to date. This SNP’s association with
erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population
genomic survey has revealed a functionally important locus in genetic adaptation to high altitude.

T
he expansion of humans into a vast range

of environments may have involved both

cultural and genetic adaptation. Among

the most severe environmental challenges to

confront human populations is the low oxygen

availability of high-altitude regions such as the

Tibetan Plateau. Many residents of this region

live at elevations exceeding 4000 m, experiencing

oxygen concentrations that are about 40% lower

than those at sea level. Ethnic Tibetans possess

heritable adaptations to their hypoxic environ-

ment, as indicated by birth weight (1), hemo-

globin levels (2), and oxygen saturation of blood

in infants (3) and adults after exercise (4). These

results imply a history of natural selection for

altitude adaptation, which may be detectable from

a scan of genetic diversity across the genome.

We sequenced the exomes of 50 unrelated in-

dividuals from two villages in the Tibet Autono-

mous Region of China, both at least 4300 m in

altitude (5). Exonic sequences were enriched with

the NimbleGen (Madison, WI) 2.1M exon capture

array (6), targeting 34 Mb of sequence from exons

and flanking regions in nearly 20,000 genes.

Sequencing was performed with the Illumina

(San Diego, CA) Genome Analyzer II platform,

and reads were aligned by using SOAP (7) to the

reference human genome [National Center for

Biotechnology Information (NCBI) Build 36.3].

Exomes were sequenced to a mean depth of

18× (table S1), which does not guarantee confident

inference of individual genotypes. Therefore, we

statistically estimated the probability of each pos-

sible genotype with a Bayesian algorithm (5) that

also estimated single-nucleotide polymorphism

(SNP) probabilities and population allele frequen-

cies for each site. A total of 151,825 SNPs were

inferred to have >50% probability of being var-

iable within the Tibetan sample, and 101,668 had

>99% SNP probability (table S2). Sanger se-

quencing validated 53 of 56 SNPs that had at least

95% SNP probability and minor allele frequencies

between 3% and 50%. Allele frequency estimates

showed an excess of low-frequency variants (fig.

S1), particularly for nonsynonymous SNPs.

The exome data was compared with 40 ge-

nomes from ethnic Han individuals from Beijing

[the HapMap CHB sample, part of the 1000 ge-

nomes project (http://1000genomes.org)], sequenced

to about fourfold coverage per individual. Beijing’s

altitude is less than 50 m above sea level, and

nearly all Han come from altitudes below 2000 m.

The Han sample represents an appropriate com-

parison for the Tibetan sample on the basis of

low genetic differentiation between these samples

(FST = 0.026). The two Tibetan villages show min-

imal evidence of genetic structure (FST = 0.014),

and we therefore treated them as one population for

most analyses. We observed a strong covariance

between Han and Tibetan allele frequencies (Fig. 1)

but with an excess of SNPs at low frequency in

the Han and moderate frequency in the Tibetans.

Population historical models were estimated

(8) from the two-dimensional frequency spec-

trum of synonymous sites in the two populations.

The best-fitting model suggested that the Tibetan

and Han populations diverged 2750 years ago,

with the Han population growing from a small

initial size and the Tibetan population contracting

from a large initial size (fig. S2). Migration was

inferred from the Tibetan to the Han sample, with

recent admixture in the opposite direction.

Genes with strong frequency differences be-

tween populations are potential targets of natural

selection. However, a simple ranking ofFST values

would not reveal which population was affected

by selection. Therefore, we estimated population-

specific allele frequency change by including a

third, more distantly related population. We thus

examined exome sequences from 200 Danish in-

dividuals, collected and analyzed as described for

the Tibetan sample. By comparing the three pair-

wise FST values between these three samples, we

can estimate the frequency change that occurred

in the Tibetan population since its divergence

from the Han population (5, 9). We found that

this population branch statistic (PBS) has strong

power to detect recent natural selection (fig. S3).

Genes showing extreme Tibetan PBS values

represent strong candidates for the genetic basis
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of altitude adaptation. The strongest such signals

include several genes with known roles in oxy-

gen transport and regulation (Table 1 and table

S3). Overall, the 34 genes in our data set that

fell under the gene ontology category “response

to hypoxia” had significantly greater PBS values

than the genome-wide average (P = 0.00796).

The strongest signal of selection came from the

endothelial Per-Arnt-Sim (PAS) domain protein

1 (EPAS1) gene. On the basis of frequency dif-

ferences among the Danes, Han, and Tibetans,

EPAS1 was inferred to have a very long Tibetan

branch relative to other genes in the genome (Fig.

2). In order to confirm the action of natural selec-

tion, PBS values were compared against neutral

simulations under our estimated demographic

model. None of one million simulations surpassed

the PBS value observed for EPAS1, and this result

remained statistically significant after accounting

for the number of genes tested (P < 0.02 after

Bonferroni correction). Many other genes had un-

corrected P values below 0.005 (Table 1), and,

although none of these were statistically significant

after correcting for multiple tests, the functional

enrichment suggests that some of these genes may

also contribute to altitude adaptation.

EPAS1 is also known as hypoxia-inducible

factor 2a (HIF-2a). The HIF family of transcrip-

tion factors consist of two subunits, with three

Fig. 1. Two-dimensional unfolded site frequency spectrum for SNPs in Tibetan (x axis) and Han (y axis)
population samples. The number of SNPs detected is color-coded according to the logarithmic scale
plotted on the right. Arrows indicate a pair of intronic SNPs from the EPAS1 gene that show strongly
elevated derived allele frequencies in the Tibetan sample compared with the Han sample.

Table 1. Genes with strongest frequency changes in the Tibetan population. The top 30 PBS values for the Tibetan branch are listed. Oxygen-related
candidate genes within 100 kb of these loci are noted. For FXYD, F indicates Phe; Y, Tyr; D, Asp; and X, any amino acid.

Gene Description Nearby candidate PBS P value

EPAS1 Endothelial PAS domain protein 1 (HIF-2a) (Self) 0.514 <0.000001

C1orf124 Hypothetical protein LOC83932 EGLN1 0.277 0.000203

DISC1 Disrupted in schizophrenia 1 EGLN1 0.251 0.000219

ATP6V1E2 Adenosine triphosphatase (ATPase), H+ transporting, lysosomal 31 kD, V1 EPAS1 0.246 0.000705

SPP1 Secreted phosphoprotein 1 0.238 0.000562

PKLR Pyruvate kinase, liver, and RBC (Self) 0.230 0.000896

C4orf7 Chromosome 4 open reading frame 7 0.227 0.001098

PSME2 Proteasome activator subunit 2 0.222 0.001103

OR10X1 Olfactory receptor, family 10, subfamily X SPTA1 0.218 0.000950

FAM9C Family with sequence similarity 9, member C TMSB4X 0.216 0.001389

LRRC3B Leucine-rich repeat–containing 3B 0.215 0.001405

KRTAP21-2 Keratin-associated protein 21-2 0.213 0.001470

HIST1H2BE Histone cluster 1, H2be HFE 0.212 0.001568

TTLL3 Tubulin tyrosine ligase-like family, member 3 0.206 0.001146

HIST1H4B Histone cluster 1, H4b HFE 0.204 0.001404

ACVR1B Activin A type IB receptor isoform a precursor ACVRL1 0.198 0.002041

FXYD6 FXYD domain–containing ion transport regulator 0.192 0.002459

NAGLU Alpha-N-acetylglucosaminidase precursor 0.186 0.002834

MDH1B Malate dehydrogenase 1B, nicotinamide adenine dinucleotide (NAD) (soluble) 0.184 0.002113

OR6Y1 Olfactory receptor, family 6, subfamily Y SPTA1 0.183 0.002835

HBB Beta globin (Self), HBG2 0.182 0.003128

OTX1 Orthodenticle homeobox 1 0.181 0.003235

MBNL1 Muscleblind-like 1 0.179 0.002410

IFI27L1 Interferon, alpha-inducible protein 27-like 1 0.179 0.003064

C18orf55 Hypothetical protein LOC29090 0.178 0.002271

RFX3 Regulatory factor X3 0.176 0.002632

HBG2 G-gamma globin (Self), HBB 0.170 0.004147

FANCA Fanconi anemia, complementation group A (Self) 0.169 0.000995

HIST1H3C Histone cluster 1, H3c HFE 0.168 0.004287

TMEM206 Transmembrane protein 206 0.166 0.004537
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alternate a subunits (HIF-1a, HIF-2a/EPAS1,

HIF-3a) that dimerize with a b subunit encoded

by ARNT or ARNT2. HIF-1a and EPAS1 each act

on a unique set of regulatory targets (10), and the

narrower expression profile of EPAS1 includes

adult and fetal lung, placenta, and vascular endo-

thelial cells (11). A protein-stabilizing mutation

in EPAS1 is associated with erythrocytosis (12),

suggesting a link between EPAS1 and the regu-

lation of red blood cell production.

Although our sequencing primarily targeted

exons, some flanking intronic and untranslated re-

gion (UTR) sequence was included. The EPAS1

SNP with the greatest Tibetan-Han frequency dif-

ference was intronic (with a derived allele at 9%

frequency in the Han and 87% in the Tibetan sam-

ple; table S4), whereas no amino acid–changing

variant had a population frequency difference of

greater than 6%. Selection may have acted directly

on this variant, or another linked noncoding var-

iant, to influence the regulation of EPAS1. Detailed

molecular studies will be needed to investigate the

direction and the magnitude of gene expression

changes associated with this SNP, the tissues and

developmental time points affected, and the down-

stream target genes that show altered regulation.

Associations between SNPs at EPAS1 and

athletic performance have been demonstrated

(13). Our data set contains a different set of SNPs,

and we conducted association testing on the SNP

with the most extreme frequency difference, lo-

cated just upstream of the sixth exon. Alleles at

this SNP tested for association with blood-related

phenotypes showed no relationship with oxygen

saturation. However, significant associations were

discovered for erythrocyte count (F test P =

0.00141) and for hemoglobin concentration (F

test P = 0.00131), with significant or marginally

significant P values for both traits when each

village was tested separately (table S5). Compar-

ison of the EPAS1 SNP to genotype data from

48 unlinked SNPs confirmed that its P value is a

strong outlier (5) (fig. S4).

The allele at high frequency in the Tibetan sam-

ple was associated with lower erythrocyte quan-

tities and correspondingly lower hemoglobin levels

(table S4). Because elevated erythrocyte produc-

tion is a common response to hypoxic stress, it may

be that carriers of the “Tibetan” allele ofEPAS1 are

able to maintain sufficient oxygenation of tissues at

high altitude without the need for increased eryth-

rocyte levels. Thus, the hematological differences

observed here may not represent the phenotypic

target of selection and could instead reflect a side

effect of EPAS1-mediated adaptation to hypoxic

conditions.Although the precise physiologicalmech-

anism remains to be discovered, our results sug-

gest that the allele targeted by selection is likely

to confer a functionally relevant adaptation to the

hypoxic environment of high altitude.

We also identified components of adult and

fetal hemoglobin (HBB and HBG2, respectively)

as putatively under selection. These genes are

located only ~20 kb apart (fig. S5), so their PBS

values could reflect a single adaptive event. For

both genes, the SNP with the strongest Tibetan-

Han frequency difference is intronic. Although

altered globin proteins have been found in some

altitude-adapted species (14), in this case regu-

latory changes appear more likely. A parallel re-

sult was reported in Andean highlanders, with

promoter variants at HBG2 varying with altitude

and associated with a delayed transition from

fetal to adult hemoglobin (15).

Aside fromHBB, two other anemia-associated

genes were identified: FANCA and PKLR, asso-

ciated with erythrocyte production and main-

tenance, respectively (16, 17). We also identified

genes associated with diseases linked to low

oxygen during pregnancy or birth: schizophrenia

(DISC1 and FXYD6) (18, 19) and epilepsy (OTX1)

(20). However, the strong signal of selection af-

fecting DISC1, along with C1orf124, might in-

stead trace to a regulatory region ofEGLN1, which

lies between these loci (fig. S5) and functions in

the hypoxia response pathway (21).

Other genes identified in this study are also

located near candidate genes.OR10X1 and OR6Y1

are within ~60 kb of the SPTA1 gene (fig. S5),

which is associated with erythrocyte shape (22).

Additionally, the three histones implicated in

this study (Table 1) are clustered around HFE

(fig. S5), a gene involved in iron storage (23).

The influence of population genetic signals on

neighboring genes is consistent with recent and

strong selection imposed by the hypoxic envi-

ronment. Stronger frequency changes at flanking

genes might be expected if adaptive mutations

have targeted candidate gene regulatory regions

that are not near common exonic polymorphisms.

Of the genes identified here, onlyEGLN1was

mentioned in a recent SNP variation study in

Andean highlanders (24). This result is consistent

with the physiological differences observed be-

tween Tibetan and Andean populations (25),

suggesting that these populations have taken largely

distinct evolutionary paths in altitude adaptation.

Several loci previously studied in Himalayan

populations showed no signs of selection in our

data set (table S6), whereas EPAS1 has not been

a focus of previous altitude research. Although

EPAS1 may play an important role in the oxygen

regulation pathway, this gene was identified on

the basis of a noncandidate population genomic

survey for natural selection, illustrating the utility

of evolutionary inference in revealing functional-

ly important loci.

Given our estimate that Han and Tibetans

diverged 2750 years ago and experienced subse-

quent migration, it appears that our focal SNP at

EPAS1 may have experienced a faster rate of fre-

quency change than even the lactase persistence

allele in northern Europe, which rose in frequency

over the course of about 7500 years (26). EPAS1

may therefore represent the strongest instance of

natural selection documented in a human popu-

lation, and variation at this gene appears to have

had important consequences for human survival

and/or reproduction in the Tibetan region.
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Genome-Wide Reprogramming
in the Mouse Germ Line Entails
the Base Excision Repair Pathway
Petra Hajkova,1,3*† Sean J. Jeffries,1,4* Caroline Lee,1 Nigel Miller,2

Stephen P. Jackson,1,5 M. Azim Surani1†

Genome-wide active DNA demethylation in primordial germ cells (PGCs), which reprograms the
epigenome for totipotency, is linked to changes in nuclear architecture, loss of histone modifications,
and widespread histone replacement. Here, we show that DNA demethylation in the mouse PGCs is
mechanistically linked to the appearance of single-stranded DNA (ssDNA) breaks and the activation of
the base excision repair (BER) pathway, as is the case in the zygote where the paternal pronucleus
undergoes active DNA demethylation shortly after fertilization. Whereas BER might be triggered by
deamination of a methylcytosine (5mC), cumulative evidence indicates other mechanisms in germ cells. We
demonstrate that DNA repair through BER represents a core component of genome-wide DNA
demethylation in vivo and provides a mechanistic link to the extensive chromatin remodeling in
developing PGCs.

T
he specification of mouse primordial germ

cells (PGCs) at embryonic day 7.25 (E7.25)

is accompanied by the initiation of epige-

netic changes (1), followed by widespread epige-

netic reprogramming at E11.5, which includes

genome-wide DNA demethylation, erasure of

genomic imprints, and large-scale chromatin re-

modeling (1–3) (fig. S1). Chromatin remodeling

follows the onset of genome-wide DNA demeth-

ylation, which suggests that DNA repair might

be linked to this process (2). DNA repair–driven

DNA demethylation would involve replacement

of a methylcytosine (5mC)–containing nucleo-

tide by an unmethylated cytosine (4, 5). As the

epigenetic changes in E11.5 PGCs occur in the

G2 phase of the cell cycle and are thus inde-

pendent of DNA replication (2), the most likely

mechanisms for the replacement of 5mC would

be the nucleotide excision repair (NER) or base

excision repair (BER) pathways.

We obtained a quantitative measure of ex-

pression of BER and NER components and ob-

served an up-regulation of transcripts of BER

components Parp1, Ape1, and Xrcc1 in E11.5

PGCs, which was not seen in the neighboring

somatic cells (6). By contrast, we observed little

expression of NER components Ercc1 and Xpa

in these PGCs (Fig. 1A and fig. S2).

Expression of ERCC1 (excision repair cross-

complementing rodent repair deficiency, com-

plementation group 1), a core NER component,

occurs at low levels in PGCs and neighboring

somatic cells at the time of epigenetic repro-

gramming compared with control ultraviolet

light–irradiated primary embryonic fibroblasts

(PEFs), where we observed a dose-dependent

increase and nuclear localization of ERCC1 (fig.

S3). Although we detected XPA—another NER

component—in both somatic cells and PGCs

(fig. S4A), it was not chromatin bound and, hence,

was inactive (7) (fig. S4B). Thus, the response

of the NER pathway is not triggered during the

reprogramming process in PGCs.

XRCC1 (x-ray repair complementing defec-

tive repair in Chinese hamster cells 1), a core com-

ponent of the BER pathway (8), is present in PGC

nuclei between E10.5 and E12.5 (fig. S5A), as

is PARP1 [poly(ADP-ribose) polymerase family,

member 1] and APE1 (apurinic/apyrimidinic en-

donuclease) (fig. S5, B and C). XRCC1 is a sol-

uble nuclear factor, which binds to DNA when

single-stranded DNA (ssDNA) breaks occur (8).

We determined the amount of chromatin-bound

XRCC1 in gonadal PGCs using the preextrac-

tion method (9). Whereas we observed an over-

all enrichment of XRCC1 in PGCs during E10.5

to E12.5, we found an enhancement in chromatin-

bound XRCC1, specifically in PGCs at E11.5,

which coincides with the stage at which genome-

wide DNA demethylation occurs (Fig. 1B), which

suggested that ssDNA breaks are present (10).

We also detected high levels of PAR polymer, a

product of activated PARP1 enzyme and an ad-

ditional marker of active BER (8, 11), specifi-

cally in E11.5 PGCs (Fig. 1C). The presence of

activated BER in PGCs during ongoing epige-

netic reprogramming suggests that DNA de-

methylation in PGCs may be linked to the DNA

repair pathway (2).

In PGCs spanning a period of ~6 hours, be-

tween E11.25 and E11.5, we detected increasing

levels of PAR before the loss of signal for his-

tone H1 (Fig. 1C). Because histone H1 is a tar-

get for PARP1 ribosylation (11, 12) and PARP1

itself has been shown to displace H1 (13), it is

possible that high levels of PARP1-mediated

poly(ADP-ribose) (PAR) synthesis in the nuclei

of PGCs might be involved in H1 displacement.

Additionally, we observed a correlation between

high nuclear PAR signals and the disappearance

of chromocenters in PGCs (fig. S5D) (2), which

is consistent with a proposed role for PARP1 in

the regulation of higher-order chromatin struc-

ture (11, 14, 15).
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Materials and Methods 

 

Sample description 

 

The 50 ethnic Tibetans analyzed in this study were from two villages in the Tibet 

Autonomous Region, China.  Half of these samples were from the town of Zhaxizhong, 

Dingri (9 females and 16 males), located at the foot of mountain Jomoglangma (4300 

meters in altitude).  The remainder were from the town of Zaren, Nachu (13 females and 

12 males), which is approximately 250 miles northwest of Lhasa (at 4,600 m).  All 

participants gave a self-report of at least three generations living in the sampling site, and 

provided informed consent for this study. 

 

The peripheral venous blood samples of 50 ethnic Tibetans was collected using the 

pipelines dictated by the institutional review board of the Beijing Genomics Institute 

(BGI).  In all subjects, oxygen saturation of blood was measured by Fingertip Oximeter: 

CMS-50DL twice with thirty minutes of interval.  Blood testing was done using standard 

protocols for the BC-3000 Plus Auto Hematology Analyzer (MINDRAY):  erythrocyte 

quantities were assessed by automated cell counting, and hemoglobin was quantified by 

spectrophotometry following hemolysis (using the SFT method).  Comprehensive 

medical examinations were also conducted for all individuals during sampling to ensure 

that only healthy subjects were included in our analysis.  All samples and measurements 

were obtained in the home village of each individual. 

 

DNA extraction,  library construction, exome capture and sequencing 

 

Genomic DNA was extracted from the blood samples by the use of QIAamp DNA Blood 

Mini Kit, according to protocol provided by QIAGEN.  Following the manufacturer's 

protocol, genomic DNA of each individual was hybridized with NimbleGen 2.1M-probe 

sequence capture array (S1) (http://www.nimblegen.com/products/seqcap/) to enrich the 

exonic DNA in each library.  The array is able to capture 18,654 (92%) of the 20,091 

genes that has been deposited in Consensus Coding Sequence Region database 

(http://www.ncbi.nlm.nih.gov/projects/CCDS/).  

 

First, DNA was randomly fragmented by nebulization to an average size of 500bp, and a 

pair of linkers was ligated to both ends of the resulting fragments. The linker-ligated 

DNA products were then hybridized to the capture array following NimbleGen's 

protocol, after which the exome-enriched DNA fragments were eluted from the array and 

amplified by ligation-mediated PCR,  and non-hybridized fragments were then washed 

out.   

 

Second, the captured DNA fragments were concatenated by DNA ligase and re-sheared 

to 200bp on average. Thus, we constructed a secondary library from the primary captured 

DNA library, which enabled the Illumina Genome Analyzer II platform, as previously 

described (S2), with adaptations. We performed sequencing for each captured library 

independently to ensure each sample had at least ~6-fold coverage. Raw image files were 



processed by Illumina Pipeline (version 1.3.4) for base-calling with default parameters 

and the sequences of each individual were generated as 75bp reads. 

 

Read Mapping and Data quality analysis 

 

Linker or adapter sequences that may be introduced into raw reads during the experiment 

process were masked before mapping.  More concretely, the small portion of adapter and 

linker sequences within reads was identified by using a local dynamic programming 

algorithm, and reads that had more than 12 bp overlap with adapter or linker sequences 

were identified as contaminated reads.  The contaminated sequence in reads was then 

discarded and the remaining sequence was retained.  SOAPaligner (S3, S4) was used to 

align the clean reads to the NCBI human genome reference assembly (build 36.3), with a 

maximum of two mismatches, and parameters set as -a -D -o -r 1 -t -c -f 4.  Reads that 

aligned to the designed target region were collected for SNP identification and 

subsequent analysis.  To evaluate exon capture efficiency, the proportions of reads 

mapping to target regions and to their flanking regions (within 500 bp) were calculated 

for each individual.  35.5% of reads mapped to target regions (Table S1) and 68.1% of 

reads were within 500bp of a target region.  

 

SNP calling and estimation of sample allele frequencies 

 

Calculation of genotype likelihoods 

 

Likelihoods of genotypes of each individual at every genomic location were calculated by 

SOAPsnp (S4).  The observed data in site k of a particular read, dk, contains three 

elements: (1) ok: observed allele type; (2) qk: quality score; (3) ck: sequencing cycle 

(coordinate on read) ; and (4) tk, the tk-th observation of the same allele from reads with 

the same mapping location. All three elements in each read are used for the calculation of 

likelihoods, and sequencing errors are assumed to be independent. The likelihood for 

genotype S in site k is then 

 

p(dk | S) = p(ok, qk, ck| S) = p(ok, ck | S, qk)p(qk | S) 

 

We first estimate a four-dimensional matrix of p(ok, ck | S, qk) on a grid of values of ok, qk, 

and ck for all possible genotypes, based on all of our alignments, using observed 

mismatch rates. Doing this, we can in effect recalibrate the quality score taking 

sequencing cycle into account. 

 

p(qk|S) is the probability of an allele S to have an observation with quality score qk. The 

quality distribution of each assumed allele is unknown. Here, we assumed that the 

distributions from A, C, G, and T are the same; then p(qk|S) is the function of qk only. 

 

The same alleles from reads with the same mapping locations were ordered by the 

sequencing quality scores from low to high. An empirical treatment was used to reduce 

the quality of the tk-th observation: 

 



 q' k = !
tk
qk  

 

Here, ! is called a dependency coefficient. The adjusted quality score q’k, instead of the 

original qk, was used in the likelihood matrix. ! is set between 0 and 1. Specifically, ! = 0 

means the completely dependent model, and ! = 1 is the completely independent model.  

A detailed description if this method is provided elsewhere (S4). 

 

Allele frequency estimation 

 

Population genetic inferences based on called (inferred) SNPs can lead to serious biases 

and possibly false inferences if the coverage is not so large that the genotypes are known 

with absolute certainty for each individual.  We have therefore developed a series of 

statistical techniques that can take uncertainty in genotype calls and allele frequency 

estimation into account. 

 

To call SNPs and to estimate the allele frequencies in the sample, we use a Bayesian 

approach which is applied jointly to all individuals.  SNP calling based on the joint 

information from all individuals should be more accurate than SNP calling based on 

independent analyses of single individuals.  The same algorithm which estimates the 

posterior probability that a SNP is variable can also be used to estimate the frequency on 

an allele.  We will first explain how the algorithm works for a single population.  We 

then subsequently describe how the algorithm works for multiple populations.   

 

Let pj be the posterior probability that a di-allelic SNP has MAF of j/2k, where k is the 

sample size (number of individuals). We assume that a fraction, pvar, of nucleotide sites 

are variable in the population (not the sample!).  Let the observed sequencing data for the 

SNP be Xi, and let S = (S1, S2,…,Sk) be a sample configuration where , 

. Also, assume that the MAF in the population is p, 

and let be an indicator function which returns 1 if the sample MAF in 

configuration S is j/2k.  pj is then, for 0<i<k,  given by 

 

, 

 

and 

, 

 



for i = 0.  p(Xi | Si) is given (up to a scaling factor) by the genotype likelihoods which can 

be calculated as described above.   can be calculated assuming Hardy-Weinberg 

equilibrium if the allele frequency p is know.  Our algorithm, therefore, proceeds by first 

estimating p from the raw sequencing reads.  The entire calculation can be done very fast 

using a dynamic programming algorithm for summing over all elements in . In the 

following we give a detailed description of the algorithmic details of the inference 

method:   We first estimate allele frequencies in each site, and we then estimate the Site 

Frequency Spectrum (SFS). 

 

Estimating allele frequencies from reads in one site 

 

Let the individuals be I1, I2,…,Ik, i.e. we assume k individuals. 

(1) For each site in each individual, eliminate all reads with Q score < 20. Determine 

which two nucleotides are most common among {A, C, T, G} and let the set of these 

nucleotides be B, i.e. if there are 400 A’s, 42, C’s, 13 T’s and 9 G’s, then B = {A, C}. 

Then eliminate all reads that are not elements of B  

(2) For i=1 to k 

Let ni be the number of reads of the minor allele in B in individual Ii.  Let the total 

number of reads in B in individual Ii be niT. Calculate  

pi = 
n
i
! en

iT

n
iT
1! 2e( )

 

This is an error corrected estimate of the allele frequency in individual Ii, obtained 

as the solution for pi to the equation ni = piniT 1! e( ) + (niT ! piniT )e. The 

parameter e is the error rate and is considered a fixed parameter, here assumed to 

be e = 0.005.  Also calculate w
i

=
2n

iT

n
iT

+1
, the inverse of the variance of pi (up to a 

scalar). 

 (3) The estimate of the MAF is then calculated as  

 

, , 

 

 

Estimating Sample Allele Frequencies 

 

Likelihood values for all G ! {AA, AC, AG,AT,…,TT} have been calculated using the 

previously described algorithm. .  We are interested in estimating the posterior 

probability that the minor allele frequency exists in a frequency j in the sample of 2k 

chromosomes. We assume that the prior probabilities of the different genotypes are given 

by the probabilities predicted under Hardy-Weinberg equilibrium with a MAF of ˆ p .  This 

corresponds to using an empirical Bayesian approach where the shared parameter ( ˆ p ) 

first is estimated and then provides a prior for each individual.  We will denote the minor 

allele by ‘A’ and the major by ‘a’.  Then a dynamic programming algorithm for 

calculating the posterior probability is given by (for each site): 



 

If ˆ p  = 0, set p0 = 1 and pj = 0 for all j > 0. 

Else 

 (1) Set hj = 0,  j = 3,4,…,2k . 

(2) For i=1 to k 

Set PAA,= gAA ,i( ˆ p 
2
(1! F) + ˆ p F) , PAa = cf igAa,i2(1! ˆ p ) ˆ p (1! F)  and Paa = 

gaa,i(1! ˆ p )
2
(1! F) + (1! ˆ p )F . 

Here gG,i is the previously calculated likelihood for genotype G in 

individual i..  The parameter Fi is the inbreeding coefficient and needs to 

be obtained prior to analyses jointly for all sites We will assume here that 

F = 0.  

 

If i=1  

Set h
0

= P
aa

  

Set h
1

= P
Aa

  

Set h
2

= P
AA

  

Otherwise 

 For j = 2i to 2 (count backwards) 

Set h j =  PAAh j!2
+ PAah j!1

 +Paah j    

Set h
1

= P
aa
h

1
+ P

Aa
h

0
  

Set h
0

=  P
aa
h

0
  

 

(3) Set  ! j =
h j pvar

p
var

hr + (1" p
var
) gaa
i=1

k

#
r

$
, j =1,2,..,2k  

 

 

The estimated values of pi, can then be used for population genetic inferences, either by 

averaging over pi, or by using a Maximum a posteriori Probability (MAP) estimate of the 

sample allele frequency.   Notice that this procedure explicitly takes into account 

differences in sequencing depths between samples when estimating allele frequencies, 

and quantifies the uncertainty in these estimates. Likewise, SNP calling can proceed in a 

probabilistic fashion by choosing a cut-off for p0 (p2k is so close to zero that it can be 

ignored because the definition of p as the minor allele frequency). For example, if we 

wish to call sites with a probability >95% of being SNPs, we would select all sites with 

p0  < 0.05.   

 

 

 



Extension to multiple populations 

 

We here discuss the extension to two populations, in this case Han (H) and Tibetans (T).  

We will use a single estimate of p, calculated as previously described for both 

populations.  The main motivation for doing this is to avoid situations in which = 0 for 

one population and > 0 in another population.  Another justification for using the 

shared estimate is that we would rather be conservative with regards to inferences of 

differences in sample allele frequencies between populations.  We therefore prefer to use 

the same prior for both populations. 

 

The joint posterior probability of a site having allele frequency i in H and j in T, is then 

given by 

 

! ij =
h j

T
hi

H
p
var

p
var

r

" hr
T
hs

H
+ (1# p

var
)( gaa

m,T

m=1

Tk

$ )
s

" ( gaa
m,H

m=1

Hk

$ )

 

where Tk is the number of Tibetan individuals and Hk is the number of Han individuals.  

All functions sub- or super-scripted with either T or H are calculated as previously 

described marginally for population T and H, respectively.  A SNP is then called if p00 is 

less than some specified cut-off. 

 

Population genetic inferences 

 

Population genetic statistics that do not use linkage/linkage disequilibrium information 

into account are all functions of Site-Frequency-Spectrum (SFS).  In our case, an estimate 

of the joint SFS for Tibetans and Han is giving by the matrix p = {pij}.  Statistic such as 

FST, the number of segregating sites, the average number of pairwise differences, etc, can 

be calculated directly from p for each gene.  This can be done based on the MAP estimate 

for called SNPs (i.e. SNPs with p00 less than some specified cut-off), or it can be done by 

summing over the values in p, thereby taking uncertainty in both SNP calling and 

inference of allele frequency into account.   For example, the number of segregating sites 

in the Tibetan population in a gene would be calculated as  1! "
i0

i=1

2T
k

#
$ 

% 

& & 

' 

( 

) ) 
sites

#  and the total 

number of segregating sites in a gene would be calculated as .  Likewise, the 

average number of pairwise differences per site can be calculated as  

 

j(2Tk ! j)" ij

2Tk

2
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$ 
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Any other statistic calculated on a per site basis, which normally for a single variable site 

with sample allele frequency i in H and j in T is given by f(i, j), can similarly be 

calculated as  

 

f (i, j)! ij

j=1

2Tk

"
i=1

2H k

"
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% % 
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sites
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Our inference of natural selection is primarily based on a new statistic aimed at detecting 

strong changes in allele in one population.  Pairwise differences in allele frequencies can 

be quantified using FST.  We use the FST estimator of Reynolds et al. (S5), based on the 

MAP estimates for SNP frequencies where sites are considered if they satisfy  (1.0-p00 ) > 

0.01. We also excluded sites for which the minor allele has MAP frequency estimate of 0 

in at least two populations or for which no data was available for the Danish population. .  

We then use the classical transformation by Cavalli-Sforza (S6),  

 

T = - log(1 – FST) 

 

to obtain estimates of the population divergence time T in units scaled by the population 

size.  For each RefSeq gene, we calculate this value between the Tibetans and Han 

populations (T
TH

), and between these populations and a Danish population (T
TD

 and T
HD

), 

for which data obtained using similar techniques was previously published for 200 

individuals, providing very accurate estimates of allele frequencies.  The length of the 

branch leading to the Tibetan population since the divergence from Han, is then obtained 

as 

 

PBS =
T
TH

+ T
TD

!T
HD

2
 

 

A population’s PBS value represents the amount of allele frequency change at a given 

locus in the history of this population (since its divergence from the other two 

populations).  This approach is similar to the “locus-specific branch lengths” statistic 

used by Shriver et al. (S7), except that by using the above log-transformation, we obtain 

additive distances that place branches of different magnitudes on the same scale.  This 

statistic should be very powerful to detect selection.  It should have power, for example 

to detect incomplete selective sweeps, a type of selection that is highly relevant here and 

which most other statistics based on the SFS have little power to detect. 

 

Evaluation of the PBS statistic 

 

Recent simulation studies have shown that FST-based statistics (S8) have more power to 

detect recent adaptation when selection is acting on standing variation.  Because of the 

very short divergence time between Han and Tibetan individuals, and the fact that the 

waiting time to a new mutation might be large, we expect much local adaptation to be 



driven by selection acting on standing variation rather than de novo mutations.  The test 

statistic we are using is, therefore, a simple transformation of FST designed to take 

advantage of an outgroup and to identify Tibetan specific selection. 

 

To evaluate if this approach also has power to detect selection on de novo mutations, we 

performed a small scale simulation study. Using the Wright-Fisher model simulator 

sfscode (S9), we simulated 3 populations (representing Danes, Tibetans and Han) 

introducing one new selected mutation in the Tibetan population at the time of the split of 

Han and Tibetans.  We simulated data sets under a range of scaled selection coefficient,  

(g = 2Ns, where s is the selection coefficient and N is the population size), assuming the 

population size  N = 1000 for each of the 3 populations, and we assumed divergence 

times between Danes and Asians, and Han and Tibet, of 1680 and 120 generations, 

respectively.  The locus size was set to 1kb, the population mutation rate and the 

population recombination rate were set to 0.001 per site.  No further complications to the 

demographic model were used in this analysis, because these simulations were only used 

for evaluating the power of the PBS statistic, and not to generate P values for empirical 

observations.   

 

Often the selected mutation in a simulation will be lost after a few generations due to the 

effect of genetic drift.  However, as we were interested in evaluating the power under a 

complete or incomplete selective sweep, we only examined simulation replicates where 

the selected mutation was not lost from the Tibetan population, effectively conditioning 

on the presence of the allele.  To determine critical values, we ran neutral simulations (no 

selected mutation was introduced).  The power was then calculated by comparing the 

simulations with selection to simulations without selection.  For comparison, we also 

calculated Tajima’s D (S10) for each simulation replicate and evaluated the power of 

Tajima’s D based on the same simulations.  Results indicated that PBS has strong power 

to detect a recent selective sweep (Figure S3).  The power of Tajima’s D, in contrast, is 

quite low in this setting, potentially due to low numbers of segregating sites.  Because our 

exonic data contains relatively few SNPs per gene, the high power of PBS under these 

conditions represents an important advantage for our analysis.  A similar set of 

simulations were also conducted with the population recombination rate elevated to 0.01, 

in order to simulate a locus that is ten times longer, but with only the same number of 

sampled sites (analogous to our exonic data).  Results were qualitatively similar:  PBS 

retained high power in these simulations, while Tajima’s D had modestly higher power 

than it had with shorter loci (data not shown).   

 

Demographic estimation and neutral simulations 

 

For the inference of demographic parameters we used the unfolded site frequency 

spectrum (based on ancestral alleles shared by chimpanzee and macaque  genomes) of the 

synonymous sites (61,347 SNPs) in the Han and Tibetan samples. Parameter inference 

was carried out with the software package "a"i (version 1.2.3) (S11).  We took ancestral 

population events such as the out-of-Africa bottleneck from the model inferred by 

Gutenkunst et al. (S11), but we estimated parameters pertaining to the two Asian samples 

studied here.  Models were compared via Akaike and Bayesian Information Criteria; the 



best fitting-model is shown in Figure S2.  As further detailed in the legend of this figure, 

this model involves a population split 2,750 years ago.  The Han size is initially small but 

grows larger, while the Tibetan size is initially large but contracts with time.  Migration 

occurs from the Tibetan sample to the Han sample, but 20% of the Tibetan gene pool is 

replaced by Han admixture at the present time.  A wide variety of models were tested, but 

the model shown in Figure S2 fit better, for example, than the same model with 

symmetric migration, and much better than a similar model lacking the ancestral African 

time and growth estimates of Gutenkunst et al. (S11).  The model of European history 

from Gutenkunst et al. (S11) was used for the history of the Danish sample in the 

simulations described below. 

 

Neutral simulations under the model estimated above were used to calculate P values for 

the PBS values inferred for each gene in the ethnic Tibetan sample.  Simulations were run 

using the program ms (S12) with demographic parameters from the above model and 

recombination rates drawn randomly from the map of McVean et al. (S13).  Gene lengths 

for simulations were sampled randomly from the lengths of all human genes.  One 

million simulations were performed for each number of SNPs (for 1 to 15 SNPs) or using 

5-SNP bins (from 20 to 40 SNPs) and conservatively comparing genes to simulations 

with slightly fewer SNPs (e.g. comparing a gene with 28 SNPs to simulations with 25 

SNPs).  P values were defined simply as the proportion of simulated replicates yielding a 

higher PBS value than empirically observed for a particular gene. 

 

Genotyping and association testing for a candidate SNP at EPAS1 

 

The SNP at EPAS1 showing the most dramatic frequency difference between ethnic 

Tibetan and Han samples (located at position 46441523 on chromosome 2) was 

genotyped in a larger sample of 366 ethnic Tibetans (from the same localities, and 

collected via the same protocols, as described above.  Genotyping was done by use of the 

mass-spectrometry-based MassArray platform of Sequenom (San Diego, CA, USA).  

PCR and extension primers were designed using Assay Design v3.1 (Sequenom, San 

Diego, CA, USA).  Forward and reverse PCR primers were 

ACGTTGGATGTCCATGTCTGACCCTTCCAC and 

ACGTTGGATGTATTGTGAGGAGGGCAGTTG.  Genotyping primers had the 

unextended sequence GACCCTTCCACGCCTGT, extending to a “C” or “G” for the 

alternate alleles.   

 

PCR reactions were performed in 5!l PCR cocktail mix, consisting of 1!l DNA template 

(10-25 ng/!l), 1 " PCR Buffer (including 2 mmol/L MgCl2), 2 mmol/L MgCl2, 500 

!mol/L dNTP mix, 0.1pmol/!l of each PCR primer, and 0.5U Hotstar Taq (Roche).  PCR 

conditions were as follows: incubation at 94°C for 15 min, followed by 45 cycles of 20 

sec at 94°C, 30 sec at 56°C, 1 min at 72°C, and a final extension of 3 min at 72°C.  

Shrimp alkaline phosphatase treatment was performed to dephosphorylate unincorporated 

dNTPs under the following conditions: 37°C for 40 min, 85°C for 5 min, cooling to 4°C. 

 

The iPLEX primer extension reaction was performed using the iPLEX cocktail mix 

(Sequenom, San Diego, CA, USA), which contains buffer, iPLEX termination mix, 



iPLEX enzyme and extension primers, under the following conditions:  the DNA sample 

is denatured at 94°C, Strands are annealed at 52°C for 5 seconds and extended at 80°C 

for 5 seconds ,The annealing and extension cycle is repeated four more times for a total 

of five cycles and then looped back to a 94°C denaturing step for 5 seconds and then 

enters the 5 cycle annealing and extension loop again. The five annealing and extension 

steps with the single denaturing step are repeated an additional 39 times for a total of 40. 

A final extension is done at 72°C for three minutes and then the sample is cooled to 4°C. 

Six milligram clean resin was added into 384-well PCR plate to desalt the iPLEX 

extension products before mass spectrometric analysis. An average of 3-10 nl products 

were dispensed onto a 384-element SpectroCHIP bioarray (Sequenom) by a 

nanodispenser. MassARRAY Workstation version 3.4 software (Sequenom) was used to 

process and analyze iPLEX SpectroCHIP bioarrays. Positive and negative control 

samples were run at each step and on each chip. 

 

Association testing was performed using simple linear regressions of the measurements 

oxygen saturation, erythrocyte count, and hemoglobin concentration on the genotypes of 

the focal SNP at EPAS1.  The genotypes were encoded as numerical values 0, 1, 2 

corresponding to homozygous, heterozygous and homozygous (for the other allele) 

genotypes.  We used the model E[Y|Xi] = ß0 + ß1Xi and tested whether the slope (ß1) is 

different from zero. Here Y is the quantitative trait and Xi takes the values {0, 1, 2} for 

the genotypes at SNP site i.  The regressions were performed for the full sample of 366 

individuals, for each of the two villages separately (Table S5).  The analysis made use of 

the linear regression function from the R programming language and F-test P-values were 

recorded.  Genotypes at the focal EPAS1 SNP were uncorrelated with gender.  To further 

control for gender-related phenotypic differences, we also performed association testing 

in females only, and in males only.  Results were very similar to the overall results:  

associations for erythrocyte count and hemoglobin quantity remained statistically 

significant or marginally significant, and associations for oxygen saturation did not 

approach statistical significance.  Since population stratification may be an issue, we 

calculated the inflation factor from non-associated SNPs (S14) in the full sample, and 

used this inflation factor to compute EPAS1 association P-values corrected for population 

stratification for our most differentiated SNP.  The results remained statistically 

significant.  The phenotypic associations observed for focal SNP at EPAS1 were also 

compared against 48 additional SNPs from around the genome, genotyped in the same 

large sample.  The P value observed for EPAS1 was a clear outlier from this set (Fig. S5).  

Positions for these “genomic control” SNPs were as follows:  chr1-12491677, chr1-

27151140, chr1-45846284, chr1-52675081, chr1-53448299, chr1-65630810, chr1-

110567989, chr1-154829060, chr1-194962365, chr1-201404410, chr2-43955048, chr2-

71215412, chr2-178202419, chr2-218391384, chr3-19936334, chr3-57113459, chr4-

77284346, chr5-35912031, chr5-96357847, chr5-172274635, chr5-172274640, chr6-

25881584, chr6-26164595, chr6-133146813, chr6-151715282, chr7-6032976, chr8-

101796892, chr8-105430170, chr10-29931167, chr11-1934128, chr11-3642019, chr11-

61767439, chr11-74793531, chr11-89541802, chr11-106702850, chr12-9208040, chr14-

64267910, chr17-39581008, chr17-64702135, chr19-1005255, chr19-1776926, chr19-

6864707, chr19-8097184, chr19-46314107, chr19-59665806, chr20-33678648, chr20-

36217869, chr22-40816669.



Figure S1. Alternative site frequency spectra (SFS) for Tibetan exome data.  

a) Comparison between AFS of known (blue; in dbSNP v129) and novel SNPs (red).  

b) Comparison between AFS of empirical data and the estimated demography model.  
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Figure S2.  Illustration of best-fitting demographic model according to Akaike 

Information Criterion and Bayesian Information Criterion.  Parameters in red were 

estimated; parameters in black were fixed according to the model of Gutenkunst et al. 

(2009).  Estimates for inferred parameters were as follows:  The ancestral non-African 

population grows to a size of NAS = 7360 at time T1 = 42,955 years ago (all time estimates 

assume 25 years per generation).  At time T2 = 2,750 years ago, the Han and Tibetan 

lineages split, with the Han population having initial size NH = 288 and the Tibetan 

population having initial size NT = 22,642.  At time T3 = 1,973 years ago, the Tibetan 

population begins exponential decline to a final size of NTF = 1,270.  At time T4 = 1,813 

years ago, the Han population begins exponential growth to a final size of NHF = 12,850, 

and migration from the Tibetan to the Han population occurs at rate mHT = 0.00526.  

Finally, at the present time, a proportion FTH = 0.2 of the Tibetan gene pool is drawn 

from the Han sample (instantaneous admixture). 

 



Figure S3.  Power of the PBS and Tajima’s D statistics to detect a recent selective sweep, 

depending on the strength of selection (X-axis).  Simulations were conducted as 

described in the Supplemental Text. 



Figure S4.  Distribution of loge p-values for 48 genomic control SNPs regressed against 

erythrocyte count, and for the genotyped EPAS1 SNP (red star) 

 



Figure S5.  Linked pairs or groups of genes that appear on the list of most extreme PBS 

values (Table 2) are shown in green.  Nearby candidate genes are marked in red. 

 

 
 



Table S1. Data production by individual sample 

 

Sample ID 

Raw 

reads 

(x1e+6) 

Raw data 

yield (Mb) 

Reads mapped to 

genome  (x1e+6) 

Reads mapped to 

target region  

(x1e+6) 

Data mapped 

to target region 

(Mb) 

Mean depth 

of target 

region 

Coverage of 

target region 

(%) 

Average 

read length 

(bp) 

Rate of 

nucleotide 

mismatch (%) 

DR-F11 44.75 3,356 13.7 4.08 201.92 5.92 87.01 62.07 2.04 

DR-F14 35.51 2,663 31.38 11.15 614.64 18.02 95.25 69.93 0.96 

DR-F17 38.23 2,867 32.23 11.6 638.52 18.72 95.26 70.32 0.9 

DR-F18 47.41 3,556 18.88 6.48 316.87 9.29 90.13 61.47 2.17 

DR-F19 42.30 3,172 12.37 4.02 199.88 5.86 88.05 62.32 2.03 

DR-F35 44.19 3,314 29.94 11.92 596.22 17.48 97.55 61.43 1.29 

DR-F40 33.01 2,476 29.07 10.4 557.68 16.35 96.37 69.78 1.08 

DR-F6 31.84 2,388 28.48 10.08 556.31 16.31 94.94 69.98 0.96 

DR-F8 46.18 3,463 19.08 6.7 328.47 9.63 92.75 61.55 2.24 

DR-M10 39.01 2,926 34.29 12.85 704.01 20.64 95.97 69.76 1 

DR-M19 40.06 2,404 34.51 8.06 398.73 11.69 96.21 61.5 0.76 

DR-M22 41.24 1,526 21.79 9.54 440.34 12.91 97.09 56.16 1.26 

DR-M23 21.06 1,685 17.91 7.34 424.31 12.44 95.1 73.92 0.89 

DR-M24 40.76 3,057 36.47 14.18 785.87 23.04 96.05 70.68 0.85 

DR-M28 40.58 3,043 27.67 11.63 578.14 16.95 97.89 60.69 1.21 

DR-M30 41.19 3,089 28.34 11.82 587.35 17.22 97.95 60.64 1.21 

DR-M31 36.41 2,731 31.49 10.95 587.69 17.23 95.51 69.66 1.1 

DR-M38 40.10 3,007 25.97 12.1 642.27 18.83 96.9 65.67 1.1 

DR-M42 40.14 3,010 26.38 10.77 536.19 15.72 97.39 60.96 1.28 

DR-M43 40.80 3,060 25.85 10.52 526.3 15.43 97.4 61.27 1.1 

DR-M44 40.91 1,514 22.67 9.41 435.23 12.76 97.22 56.28 1.1 

DR-M46 37.95 2,846 16.9 7.47 372.13 10.91 96.55 60.77 1.18 

DR-M7 45.35 3,401 17.43 5.88 298.79 8.76 90.37 64.51 1.84 

DR-M8 46.58 2,795 39.98 11.85 597.59 17.52 97.14 62.83 0.72 

DR-M9 41.28 3,096 27.96 11.49 573.37 16.81 97.63 60.92 1.22 

NQ-F15 66.40 4,980 47.15 15.59 819.98 24.04 96.01 66.33 1.15 

NQ-F16 38.01 2,851 30.67 10.97 603.04 17.68 96.71 69.86 0.99 



NQ-F17 65.31 4,898 44.84 13.82 717.99 21.05 96.92 65.33 1.21 

NQ-F19 70.48 3,947 48.48 15.33 819.98 24.04 95.38 67.93 1.17 

NQ-F20 41.22 1,525 22.94 8.88 411.69 12.07 97.14 56.51 1.04 

NQ-F24 62.88 4,716 49.48 18.6 977.9 28.67 97.68 65.93 1.52 

NQ-F25 64.36 4,827 45.8 16.34 845.22 24.78 97.15 65.19 1.26 

NQ-F26 59.85 4,489 48.25 18.59 978.24 28.68 97.53 65.85 1.56 

NQ-F32 67.11 5,033 47.13 14.32 753.46 22.09 94.68 66.49 1.13 

NQ-F34 46.40 3,480 15.25 4.97 242.51 7.11 90.47 61.21 2.11 

NQ-F35 57.04 4,278 43.41 15.01 794.74 23.3 97.61 66.08 1.14 

NQ-F36 58.83 4,412 39.95 13.27 689.68 20.22 97.27 64.98 1.29 

NQ-F7 58.93 4,420 40.16 12.39 647.73 18.99 97.44 65.41 1.23 

NQ-M12 48.98 3,674 19.23 5.8 294.7 8.64 89.62 64.17 1.76 

NQ-M13 39.68 2,976 33.82 13.64 758.92 22.25 92.71 70.03 0.99 

NQ-M20 64.05 4,803 47.25 16.55 875.91 25.68 96.39 66.44 1.3 

NQ-M21 46.41 3,481 18.97 5.47 268.1 7.86 87.6 61.04 2.15 

NQ-M26 41.56 3,117 28.48 10.24 524.59 15.38 96.27 64.15 1.58 

NQ-M31 39.38 1,457 17.59 7.51 362.24 10.62 96.66 59.19 0.98 

NQ-M32 62.55 4,691 49.82 19.97 1043.05 30.58 97.75 65.45 1.59 

NQ-M33 58.68 4,401 47.42 15.04 788.25 23.11 97.08 65.29 1.41 

NQ-M35 55.80 4,185 47.4 17.67 978.92 28.7 97.06 70.58 0.87 

NQ-M5 59.33 4,450 46.85 17.76 925.37 27.13 97.87 64.84 1.61 

NQ-M7 59.36 4,452 47.69 15.65 816.22 23.93 96.62 65.26 1.44 

NQ-M9 63.90 3,578 43.68 10.55 551.2 16.16 96.73 65.39 1.25 

 

 



Table S2.  Variation detection from Tibetan exomes 

 

SNP discovery for functional classes of sites 

 

Known Novel Total Genomic features 

# of SNPs # of SNPs # of SNPs 

 synonymous   14,439  12,312 26,751 

 nonsynonymous  11,421 26,634 38,055 

CDS 

 nonsense  73 541 614 

Intron 14,547 23,623 38,170 

5'UTR 848 1,129 1,977 

3'UTR 895 1,100 1,995 

Intergenic 15 16 31 

 

 



Table S3.  Additional statistics for the 30 genes with highest Tibetan PBS values. 
 

 

Gene refseq ID 

 S  

Tibetan     

 !  

Tibetan 

 S  

Han     

  !   

Han     TTH           TTD           THD          

EPAS1 NM_001430 12.64 0.10 8.86 0.17 0.57 0.70 0.24 

C1orf124 NM_032018 3.37 0.16 4.15 0.27 0.14 0.53 0.12 

DISC1 NM_018662 18.31 0.13 11.99 0.16 0.16 0.49 0.15 

ATP6V1E2 NM_080653 1.02 0.24 3.00 0.19 0.12 0.50 0.12 

SPP1 NM_001040060 6.15 0.18 4.17 0.28 0.13 0.59 0.25 

PKLR NM_000298 8.91 0.10 5.04 0.20 0.06 0.85 0.45 

C4orf7 NM_152997 3.43 0.24 2.11 0.10 0.20 0.27 0.01 

PSME2 NM_002818 4.15 0.12 3.79 0.17 0.09 0.56 0.21 

OR10X1 NM_001004477 5.11 0.21 5.04 0.37 0.10 0.49 0.15 

FAM9C NM_174901 4.00 0.07 2.22 0.21 0.14 0.36 0.07 

LRRC3B NM_052953 3.81 0.14 1.08 0.23 0.19 0.25 0.00 

KRTAP21-2 NM_181617 3.00 0.45 3.11 0.22 0.26 0.23 0.07 

HIST1H2BE NM_003523 2.39 0.09 2.41 0.20 0.09 0.62 0.29 

TTLL3 NM_001025930 7.84 0.08 6.38 0.19 0.09 0.56 0.24 

HIST1H4B NM_003544 3.71 0.15 5.02 0.13 0.12 0.43 0.14 

ACVR1B NM_004302 4.09 0.19 3.81 0.19 0.13 0.29 0.03 

FXYD6 NM_022003 2.07 0.20 2.01 0.07 0.18 0.24 0.04 

NAGLU NM_000263 5.11 0.13 3.60 0.10 0.16 0.23 0.02 

MDH1B NM_001039845 6.23 0.19 6.36 0.20 0.07 0.61 0.31 

OR6Y1 NM_001005189 3.10 0.32 2.08 0.46 0.10 0.34 0.08 

HBB NM_000518 2.32 0.39 2.14 0.47 0.08 0.46 0.17 

OTX1 NM_014562 3.57 0.18 2.38 0.18 0.12 0.30 0.05 

MBNL1 NM_207292 6.96 0.17 3.75 0.08 0.18 0.18 0.01 

IFI27L1 NM_206949 3.14 0.25 2.55 0.11 0.18 0.18 0.01 

C18orf55 NM_014177 7.95 0.17 4.68 0.11 0.15 0.24 0.03 

RFX3 NM_134428 6.24 0.16 4.47 0.07 0.20 0.16 0.00 

HBG2 NM_000184 2.47 0.17 1.46 0.06 0.17 0.17 0.00 

FANCA NM_000135 40.40 0.08 33.13 0.23 0.11 0.62 0.39 

HIST1H3C NM_003531 2.47 0.23 2.05 0.35 0.05 0.72 0.43 

TMEM206 NM_018252 2.22 0.16 0.68 0.04 0.17 0.16 0.00 



Table S4:  Population frequencies and mean phenotypes at the focal EPAS1 SNP 

 

 

Allele/genotype 

Tibetan 

frequency Han frequency 

Danish 

frequency 

mean 

hemoglobin 

concentration 

mean 

erythrocyte 

count 

mean oxygen 

saturation 

C 0.13 0.9125 1 n/a n/a n/a 

G 0.87 0.0875 0 n/a n/a n/a 

CC 10 n/a n/a 178 5.3 87.5 

CG 84 n/a n/a 178.9 5.6 86.68 

GG 272 n/a n/a 167.5 5.2 86.42 

 

 



Table S5.  Association testing P values for the focal EPAS1 SNP, for the full sample and for each village separately (Dingri and 

Naqu).  For phenotypes with significant P values, regression coefficients (ß1), standard errors, and sample sizes (n) for the linear 

regressions are also given. 

 

 Sample SaO2 P Erythrocyte P Erythrocyte ß1 Erythrocyte SE Erythrocyte n Hemoglobin P Hemoglobin ß1 Hemoglobin SE Hemoglobin n 

All Tibetans 0.726 0.00145 -0.236 0.0734 314 0.00127 -9.23 2.84 358 

Dingri only 0.805 0.00188 -0.284 0.0901 198 0.00458 -9.14 3.19 240 

Naqu only 0.467 0.0609 -0.214 0.113 116 0.00166 -13.6 4.21 118 



Table S6.  Population genetic statistics for selected a priori candidate genes for altitude adaptation in the Tibetan sample. 

 

Gene   refseq ID        Description 

 S 

Tibetan     

 !  

Tibetan  S Han      !  Han    TTH      TTD      THD     

PBS 

Tibetan 

NOS3 NM_000603 
nitric oxide synthase 3 (endothelial 

cell) 
26.07 3.37 17.76 3.22 0.01 0.09 0.06 0.02 

HIF1A NM_181054 
hypoxia-inducible factor 1, alpha 

subunit 
13.65 0.73 6.13 0.25 0.02 0.01 0.02 0.01 

MB NM_203377 myoglobin 6.44 2.94 6.27 2.61 0.02 0.04 0.09 -0.02 

ACE NM_000789 
angiotensin I converting enzyme 

isoform 1 
23.00 3.94 18.15 3.06 0.02 0.08 0.18 -0.04 

CYP11B2 NM_000498 
cytochrome P450, subfamily XIB 

polypeptide 2 
13.43 2.83 12.44 2.47 0.03 0.14 0.31 -0.07 
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