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The notion of species as reproductively isolated units related 
through a bifurcating tree implies that gene trees should 
generally agree with the species tree and that sister taxa 
should not share polymorphisms unless they diverged recently 
and should be equally closely related to outgroups. It is now 
possible to evaluate this model systematically. We sequenced 
multiple individuals from 27 described taxa representing the 
entire Arabidopsis genus. Cluster analysis identified seven 
groups, corresponding to described species that capture the 
structure of the genus. However, at the level of gene trees, 
only the separation of Arabidopsis thaliana from the remaining 
species was universally supported, and, overall, the amount of 
shared polymorphism demonstrated that reproductive isolation 
was considerably more recent than the estimated divergence 
times. We uncovered multiple cases of past gene flow that 
contradict a bifurcating species tree. Finally, we showed that 
the pattern of divergence differs between gene ontologies, 
suggesting a role for selection.

The genus Arabidopsis has been proposed to consist of as many as  

26 taxa in addition to the model plant A. thaliana1. To clarify rela-

tionships within this important genus, we resequenced 94 individu-

als, covering all taxa, sampled throughout their geographic range  

(Table 1, Supplementary Data Set 1 and Supplementary Fig. 1). 

Because A. thaliana was known to be most distantly related to the 

other taxa and should thus be equally related to all of them under a 

bifurcating speciation model, the reads were mapped to the A. thaliana  

reference genome. On average, 43% were mapped, covering about 

66% of the genome (Supplementary Data Set 1). To produce a high-

quality data set for between-species comparisons across the genus, we 

focused on genic regions, requiring that at least half of all exons be 

covered in each individual, and excluded genes that showed evidence 

of duplication. The resulting data are thus biased toward conserved 

exons, as well as with respect to A. thaliana. In total, 9,119 genes 

fulfilled our criteria across the entire sample, comprising genus-wide 

alignments for 25 Mb of the genome. The data were analyzed together 

with published SNPs from 337 A. thaliana lines2–4. In total the align-

ment contains 7.5 million SNPs, 6.6 million of which are biallelic.

Clustering on the basis of genome-wide polymorphism revealed 

four major groups, corresponding to the widely distributed species  

A. thaliana, A. halleri, A. lyrata and A. arenosa, and three minor 

groups, corresponding to the geographically limited A. croatica,  

A. cebennensis and A. pedemontana (Fig. 1 and Supplementary  

Fig. 2). This is in broad agreement with previous results1. In addition, 

there are the two well-known allotetraploid species, A. suecica and  

A. kamchatica, hybrids between A. arenosa and A. thaliana and 

between A. lyrata and A. halleri, respectively5–7, and there is also clear 

evidence for the previously described admixture between tetraploid 

A. lyrata ssp. petraea and A. arenosa ssp. borbasii8.

The divergence among these species is highly variable. At the level 

of individual gene trees (Supplementary Fig. 3), 100% supported 

the monophyly of A. thaliana—as expected, given that this species is 

estimated to have diverged from the rest of the genus at least 6 million  

years ago (Myr)9 (Supplementary Fig. 4) and is reproductively iso-

lated as a consequence of a chromosome number of 5 rather than 8 

(Table 1). The separation of A. cebennensis and A. pedemontana from 
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the remaining diploids is also strong (63% of gene trees supported this 

split), whereas the remaining species, at least some of which can be 

crossed experimentally10,11, are much more closely related.

To gain further insight into the relationships among the species, we 

searched for identical-by-descent (IBD) haplotypes using BEAGLE12 

(Fig. 2). Only 49 such haplotypes were detected in comparisons 

between species, compared to 14,600 within the outcrossing species 

(haplotype sharing in the selfing A. thaliana is much more extensive, 

as expected)13. The haplotypes shared between species were very 

short (median = 2.0 kb, maximum = 3.4 kb), suggesting gene flow 

occurring on the order of 20,000 generations ago rather than more 

recently (Online Methods). Much longer shared haplotypes were 

found within the outcrossing species (median = 2.3 kb, maximum = 

16.3 kb), although most haplotypes shared within these species were 

also short (Supplementary Fig. 5), probably owing to the patchiness 

of data that result from cross-species alignments.

Although the IBD analysis did not reveal conclusive evidence for 

gene flow, we used the results to guide further analyses. Specifically, 

we used the presence of between-species IBD blocks (Fig. 2) to iden-

tify probable cases of gene flow and then further examined these using 

the ABBA-BABA test14,15. This test uses the distribution of derived 

alleles to determine whether one of two sister taxa is closer to an  

outgroup than the other (thus violating a bifurcating species tree).  

We found several such cases. For example, subarctic A. lyrata was 

more closely related to A. halleri from East Asia than to A. halleri 

from continental Europe (Fig. 3a,b and Supplementary Fig. 6a–d), 

suggesting ancient admixture in East Asia between A. lyrata and 

A. halleri. Gene flow between these species was also supported by 

the incongruence between the chloroplast tree and the species tree 

(Fig. 1 and Supplementary Figs. 3 and 4), and the allopolyploid  

A. kamchatica originated in East Asia through hybridization 

between A. lyrata and A. halleri7. Similarly, the common ancestor of  

A. pedemontana and A. cebennensis was more closely related to  

A. halleri than to A. lyrata or A. arenosa (Supplementary Fig. 7a). 

Consistent with hybridization between these species, we observed 

shared haplotypes between only the geographically closest samples of 

A. pedemontana and A. halleri (Fig. 2 and Supplementary Fig. 7b).

We did not detect any shared IBD blocks between A. thaliana and 

other species in the genus. However, the ABBA-BABA test shows 

that A. thaliana is closer to A. lyrata than to A. arenosa (Fig. 3c and 

Supplementary Fig. 6e–j). This contradicts a species tree in which the 

rest of the genus would be monophyletic with respect to A. thaliana 

and is notable given that the average sequence divergence between 

the common outcrossing species is less than half of that between these 

species and A. thaliana (Supplementary Table 1). Thus the highly 

diverged model plant A. thaliana appears to have become reproduc-

tively isolated from the outcrossing species considerably more recently 

than the estimated divergence time of 6 Myr9 (Supplementary  

Fig. 3). This has important implications for within-species polymor-

phism data. For example, the well-established pattern of local deep 

sequence divergence within A. thaliana16 may well reflect ancient 

admixture, and the dramatic changes in genome structure that  

distinguish this species from the rest of the genus may have occurred 

even more rapidly than previously believed17, perhaps in conjunction 

with the transition to selfing18,19.

Significant ABBA-BABA results may reflect population subdivi-

sion in the ancestral species as well as gene flow14,20. Thus the fact 

that fossil Neanderthals share more alleles with modern non-Africans 

than with modern Africans may not necessarily reflect admixture 

between Neanderthals and anatomically modern humans outside 

Africa but could also indicate that both Neanderthals and the modern 

humans that left Africa came from the same African subpopulation or  

isolated region15. However, for this to have occurred, the ancient 

African subdivision would have had to persist for a very long time 

while still allowing sufficient gene flow for modern humans to be 

most closely related at most loci (and evolve into anatomically modern  

humans). Admixture thus seems a more likely explanation.

Analogously, the greater number of shared alleles between A. thal-

iana and A. lyrata than between A. thaliana and A. halleri or A. arenosa 

could be due to ancient population subdivision, with the same sub-

population or region giving rise to A. thaliana and A. lyrata. However, 

the argument against the likelihood of ancient subdivision in humans is 

even stronger in Arabidopsis, because the species are so highly diverged. 

Whereas average coalescence times in modern humans are greater than 

the supposed split from Neanderthals, the average coalescence times 

between the common outcrossing Arabidopsis species is less than half 

the divergence between these species and A. thaliana.

Despite the evidence for ancient gene flow, the modern species are 

clearly distinct. Allele frequencies for shared polymorphisms were 

uncorrelated (Fig. 4), and Fst was very high (given the high levels of 

within-species polymorphism21), ranging from 0.71 to 0.78 for com-

parisons involving A. thaliana, ranging 0.2–0.4 for comparisons among 

the other three common species (Supplementary Table 1). However, 

even the highly diverged A. thaliana shares polymorphisms with the 

other species (for example, more than 20,000 synonymous SNPs with 

A. lyrata). Many of these must be due to mutation independently  

Table 1 List of analyzed Arabidopsis individuals and taxa1. See 

Supplementary Data Set 1 for further details, and Supplementary 

Fig. 1 for sampling locations

Taxon Ploidy Samples

A. thaliana 2n = 10 337

A. halleri 11

A. halleri ssp. dacica 2n = 16 1

A. halleri ssp. gemmifera 2n = 16 2

A. halleri ssp. halleri 2n = 16 3

A. halleri ssp. ovirensis 2n = 16 2

A. halleri ssp. tatrica 2n = 16 2

A. umezawana 2n = 16 1

A. arenosa 39

A. arenosa ssp. arenosa 2n = 16/32 9

A. arenosa ssp. borbasii 2n = 32 6

A. arenosa ssp. intermedia 2n = 32 1

A. carpatica 2n = 16 8

A. neglecta ssp. neglecta 2n = 16 4

A. neglecta ssp. robusta 2n = 32 2

A. nitida 2n = 16 4

A. petrogena ssp. exoleta 2n = 32 2

A. petrogena ssp. petrogena 2n = 16 3

A. lyrata 30

A. arenicola 2n = 16 3

A. lyrata ssp. lyrata 2n = 16 2

A. lyrata ssp. petraea 2n = 16/32 21

A. petraea ssp. septentrionalis 2n = 16 2

A. petraea ssp. umbrosa 2n = 16 2

Individual distinct lineages

A. cebennensis 2n = 16 3

A. pedemontana 2n = 16 2

A. croatica 2n = 16 2

Allotetraploid species

A. suecica 2n = 26 3

A. kamchatica ssp. kamchatica 2n = 32 3

A. kamchatica ssp. kawasakiana 2n = 32 1
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generating the same polymorphism in both 

species, but they could also be ancestral poly-

morphisms, maintained either by balancing  

selection22,23 or by chance (the latter is  

possible only if divergence times were more 

recent than estimated; see Online Methods).

To investigate this further, we focused  

on SNPs that segregate in all four common 

species. Using conservative filtering to avoid 

paralogous SNPs caused by cryptic duplica-

tions, we observed 3,818 SNPs in 2,365 genes. 

These genes show substantially higher values of Tajima’s D statis-

tic24 than random genes (Supplementary Fig. 8), as expected for 

ancestral polymorphisms, regardless of whether they are maintained  

by selection.

To eliminate any shared polymorphism due to repeated mutations, 

we refined this set further by considering only shared haplotypes 

with at least two shared SNPs. Such haplotypes are unlikely to have 

arisen independently25. Specifically, we selected genes with shared 

haplotypes such that a pair of SNPs shared across species was in 

linkage disequilibrium (r2 > 0.3) in A. thaliana and in at least two of 

the three other common species. Moreover, we required that at least 

one of the shared SNPs was nonsynonymous. Using these criteria, we 

ended up with 129 genes containing 340 shared sites (Supplementary  

Data Set 2). These genes showed an even stronger increase in Tajima’s 

D value relative to background (Supplementary Fig. 8) and were 

significantly (FDR-corrected P = 0.006; Online Methods) enriched 

for genes involved in response to virus, suggesting that selection 

may indeed have contributed to maintaining some of the ances-

tral polymorphisms. We identified a total of four virus-response  

genes with haplotypes shared across all four species: CYCT1;4 (TAIR 

locus AT4G19600), which is involved in transcriptional activa-

tion of viral genes; GRIK1 (TAIR locus AT3G45240), which has 

a role in the metabolic regulation of virus-infected cells26,27; NIG  

(TAIR locus AT4G13350), which is involved in nucleocyto-

plasmic trafficking of viral proteins28; and WAK1 (TAIR locus  

AT1G21250), which activates an immunity response to damaged 

cell walls29.

If selection had a role in determining which genes share polymor-

phism across species, it may also have influenced which genes do not. 

Although our data are heavily biased toward genes that are conserved 

across the genus, we searched for genes that may have contributed to 

the adaptive divergence between species, primarily relying on high Fst 

values in combination with low polymorphism and Tajima’s D values. 

We focused on identifying gene categories that appeared to be over-

represented among divergent genes in particular species. Several such 

categories were found (Supplementary Table 2). For example, genes 

divergent in A. halleri were overrepresented in the ‘heavy metal–asso-

ciated domain’ category, consistent with metal hyperaccumulation in 

A. halleri30,31. Less obviously, genes divergent in A. lyrata were over-

represented in the ‘circadian rhythm’ category, perhaps reflecting the 

wide latitudinal distribution of this species and adaptation to different 

day lengths. Indeed, a recent selective sweep in phytochromes has 

been described in A. lyrata populations32. Finally, genes identified in 

the morphologically highly divergent A. pedemontana and A. ceben-

nensis were overrepresented in the ‘organ morphogenesis’ and ‘tissue 

development’ categories.

In conclusion, the current species of the genus Arabidopsis, which 

are clearly identifiable with either morphological or polymorphism 

data (Fig. 1), do not have a tree-like relationship. Gene trees and 

species trees may disagree because of ‘incomplete lineage sorting’, 

but this discrepancy is simply a consequence of random coalescence 

events between closely related species; it may make species trees 

difficult to infer, but it does not contradict their existence33. The 

results we present here do, and the apparent pervasiveness of gene 

flow suggests that it is not just a case of introgression leading to 

minor inconsistencies. Rather, we would argue that speciation in 

this genus is a protracted process involving selection and long peri-

ods of partial isolation between multiple incipient species, perhaps 

as a consequence of the multiple glaciations that have characterized 

the Quaternary Period. A bifurcating species tree describes neither 
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Figure 1 Clustering of sequenced individuals 

on the basis of polymorphism data. The genus 

Arabidopsis can be grouped into four common 

species (A. thaliana, A. halleri, A. lyrata and  

A. arenosa), three species with limited 

geographic distribution (A. croatica,  

A. cebennensis and A. pedemontana) and  

two allotetraploid species (A. suecica and  

A. kamchatica). Center, neighbor-joining tree 

based on genetic distance between all analyzed 

individuals including ten A. thaliana accessions 

and using Capsella rubella as an outgroup. 

Allotetraploid individuals were each treated as 

two independent individuals based on previous 

mapping to parental genomes (Online Methods). 

Colored bars show the results of clustering using 

ADMIXTURE47 (inner circle K = 5; outer circle, 

K = 8; see Supplementary Fig. 2 for cross-

validation results). Tetraploid individuals from 

the A. lyrata and A. arenosa clades that were 

previously shown to be the product of admixture8 

are marked with black lines outside the circles.
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the data nor the process that gave rise to the data. Evidence for 

genome-wide contradictions between gene trees and species trees 

is rapidly accumulating in a wide range of species15,34–44, raising 

the question of whether this should lead to a reevaluation of the 

utility of the tree as model for speciation45,46. We think it should, 

but time will tell.
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Figure 3 ABBA-BABA tests provide evidence of  

ancient gene flow. (a) Geographic distribution of  

the A. halleri (small charts) and A. lyrata (large  

charts) samples used. The colors of the charts  

correspond to the ADMIXTURE results with K = 8  

in Figure 1. We divided A. halleri into eastern  

(orange area) and western lineages and A. lyrata  

into northern (blue area) and southern lineages.  

(b) Northern A. lyrata (lN) are closer to eastern  

A. halleri (hE) than to western A. halleri (hW).  

Plots show the distribution of D statistics resulting  

from testing different individuals from each region;  

the significance of the D statistics for each test can  

be assessed using previously published methods14,48  

(Supplementary Fig. 6a–d and Online Methods).  

All between-population comparisons discussed are significant, i.e., hE was closer to A. lyrata than was hW (two-sided Wilcoxon test; P = 9.5 × 10−190,  

blue vs. green plot), and lN was closer to hE than was southern A. lyrata (lS) (P = 8.2 × 10−11, light green vs. dark green plot). **P < 0.01. (c) A. thaliana is 

closest to A. lyrata and most distant from A. arenosa. The Z-scores corresponding to the D statistics for each test are shown in Supplementary Figure 6e–j.
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Figure 2 Estimated haplotype sharing in the Arabidopsis genus. Because the BEAGLE algorithm requires phased data, only diploid individuals were 

used. Heatmap colors represent the total length of IBD blocks for each pairwise comparison (Online Methods).
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METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes are listed in Supplementary Data Set 1.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
DNA extraction, library preparation and sequencing. Whole genomic DNA 

was extracted from fresh, silica dried or herbarium voucher leaf material either 

with the CTAB protocol49 or Invisorb Spin Plant Mini Kit or Qiagen DNeasy 

plant kit (Supplementary Data Set 1). The CTAB protocol was used with the 

following modifications: DNA pellets were washed with 70% ethanol twice 

and dissolved in 100 µl TE buffer supplemented with 2 units RNase A. Total 

genomic DNA libraries were prepared using either NEXTflex DNA Sequencing 

Kit or NEBNext DNA Library Prep Kit or TruSeq DNA Sample Prep Kit. 

Sequencing was performed on Illumina HiSeq 2000 in 100 bp paired-end 

mode with a library insert size of 200–400 bp (Supplementary Data Set 1).

We performed correction of raw reads for the A. halleri ssp. halleri  

3 sample (Supplementary Data Set 1). The ErrorCorrectReads.pl module 

of ALLPATHS-LG version 44837 was used for correction of raw reads (34.0  

million reads). PHRED_ENCODING was set to 64, and the other param-

eters were set to default according to the ALLPATHS-LG manual. In total,  

24.9 million corrected reads were used in downstream data analyses.

Raw reads were uploaded to NCBI SRA (numbers of BioProjects and 

BioSamples are available in Supplementary Data Set 1). Chloroplast  

assemblies were uploaded to ENA (Supplementary Data Set 1).

Read mapping and variants discovery. We mapped reads to A. thaliana 

(TAIR10) reference genome using the BWA-MEM algorithm from BWA50 

(version 0.7.4) with an increased penalty for unpaired read pairs to 15, then 

we removed duplicated reads with Samtools51 (version 0.1.18) rmdup function 

and performed local realignment with Genome Analysis Toolkit52,53 (GATK, 

version 2.5.2) IndelRealigner. After filtering for uniquely and primary aligned 

reads, we calculated coverage distribution using GATK Pileup and chose  

intervals with coverage between the third and ninety-seventh percen-

tiles for further analysis. SNPs and short indels were called with GATK 

UnifiedGenotyper with default quality thresholds. Diploid samples were 

phased using GATK ReadBackedPhasing. Called SNPs were annotated with 

SnpEff software54. We also included 337 A. thaliana accessions from already 

published data sets2–4 and used mapping and SNP calling for these samples 

from the 1001 Genomes Project55.

We first separated allopolyploid samples raw data according to the parental 

genomes and then included them into the main pipeline for diploid and tetra-

ploid individuals described above. A. suecica reads were mapped to A. thaliana 

(TAIR10) and A. lyrata17 (version 1.0) references simultaneously using the 

same parameters and software. After the realignment step, reads were filtered 

for primary and uniquely aligned reads in proper pairs (samtools flags −F 256 

−f 3 −q 10) and then split according to the scaffolds. Reads mapped to Chr1–5 

of A. thaliana and scaffolds 1–8 of A. lyrata reference parts were then mapped 

separately to the A. thaliana reference. A. kamchatica reads were mapped to 

two parental species genome (A. halleri56 and A. lyrata) and separated into 

two groups using the read classification method HomeoRoq56, and we treated 

each A. kamchatica sample as two different diploid individuals.

The structure of the genus Arabidopsis. Population structure analysis was 

performed using all the samples of A. thaliana relatives, 10 A. thaliana acces-

sions from different geographical locations and C. rubella as an outgroup.  

We focused on genic regions where at least half of the total exon length was 

covered in each individual analyzed. Then we calculated copy number for those 

genes in each individual on the basis of total exon coverage depth normalized 

by mean coverage depth and filtered for genes with copy number between  

0.4 and 1.6 in all individuals. 9,119 genes satisfied these criteria.

A neighbor-joining tree was built with R package APE57 from the genetic 

distance matrix generated from the 281,305 biallelic SNP calls that had no 

missing data. Genealogies of individual genes were generated using the same 

approach. Support values for tree splits were calculated by SumTrees program 

from DendroPy package58 using the percentage of the trees in which a particu-

lar split is found as a degree of support. Maximum likelihoods of individual 

ancestries were estimated with ADMIXTURE47 for the same genes, allowing 

for missing data. In order to include autotetraploid samples in ancestry assign-

ment, we randomly chose two alleles for each site. We chose two local minima 

of cross-validation errors of ancestral populations assignment (K = 5 and  

K = 8) for subsequent analysis (Supplementary Fig. 2).

We performed identity-by-descent (IBD) blocks analysis for diploid 

Arabidopsis lineages using the algorithm from BEAGLE12 (version 4.0) with 

the following parameters: window = 100,000; overlap = 10,000; ibdtrim = 100;  

ibdlod = 10. The number of markers per window, overlap between windows, 

and number of trimmed markers were roughly doubled compared to the 

default parameters, which were optimized for human SNP array data; input 

data in our case are more dense in number of SNPs per cM. We expect no 

IBD blocks between C. rubella and Arabidopsis, and this was satisfied using a 

minimum LOD score of 10.

Very roughly, the expected length of a shared haplotype is 1/(rt), where 

r is the recombination rate per base pair, and t is the time of separation59.  

Thus, assuming r = 10−8, we would expect to see shared haplotypes of length 

2 kb if t = 20,000 generations.

ABBA-BABA analysis was performed with the ANGSD toolbox60 (analysis 

of next-generation sequencing, version 0.579) using C. rubella as an outgroup 

in all comparisons and genotype information only at coding regions from 

the 9,119 genes that passed copy number filtering. A. halleri lineages were 

split into eastern (A. halleri E) and western (A. halleri W) groups accord-

ing to their geographical origin; A. lyrata lineages were split into northern  

(A. lyrata N) and southern (A. lyrata S) groups according to their geographi-

cal origin and ADMIXTURE assignment at K = 8 (Fig. 4a). We ran ABBA-

BABA analysis and calculated D statistics for all combinations of A. halleri and  

A. lyrata lineages (Fig. 4b). D statistics for analysis including A. thaliana were 

calculated as (ABBA – BABA) / (ABBA + BABA) for biallelic sites between 

the reference (TAIR10, Col-0 accession) and diploid A. thaliana relatives  

(Fig. 4c). To determine the significance of the D statistics we calculated Z 

scores for 1-Mb blocks using jackKnife.R script from the ANGSD toolbox60. 

Note that all the species were mapped to A. thaliana reference genome, which 

can be considered an outgroup for the other Arabidopsis species. This approach 

makes mapping bias unlikely when considering admixture between A. thaliana 

and the remaining species (whereas mapping to A. lyrata would greatly favor 

A. lyrata samples over those from A. arenosa and A. halleri).

Arabidopsis genus structure based on chloroplast DNA. Complete chloro-

plast genomes were assembled in CLC Genomics Workbench version 6.0.4 

(CLC bio). Reads were trimmed for adapters as well as a minimum quality 

of 0.001 (Phred score 30) and a minimum length of 50 bp. Paired reads were 

assembled using the legacy version of the CLC de novo algorithm with length 

fraction 0.9, similarity 0.9 and appropriate distance settings. Contigs belong-

ing to the chloroplast were identified using blastn and aligned manually to 

the closest related published complete chloroplast sequence (A. thaliana for 

Arabidopsis species, Capsella bursa-pastoris for C. rubella and Camelina sativa) 

using PhyDE version 0.9971. A preliminary pseudo-reference was created 

by filling gaps between nonoverlapping contigs from the reference sequence.  

The complete chloroplast genome was obtained by repeated cycles of map-

ping back to the pseudo-reference and variant detection in CLC (minimum 

coverage 1, variant probability 0.1) as well as manually. Misalignments and 

mismatches were adjusted at every step.

Complete chloroplast sequences were aligned using MAFFT61 version 7.017 

implemented in Geneious version 7.1.7 (Biomatters Ltd.). The FFT-NS-ix1000 

algorithm was used, with the 200PAM / k = 2 scoring matrix, a gap open pen-

alty of 1.53 and an offset value of 0.123. The second copy of the inverted repeat 

was excluded. Using the annotation of the A. thaliana chloroplast genome, the 

complete alignment was divided into 263 parts, corresponding to exons, introns 

and intergenic regions. Indels and nonalignable regions were excluded from the 

alignments using Gblocks62 version 0.91b, with minimum block length of 2 bp.

PartitionFinder63,64 version 1.1.1 was used to partition the data set into 

subsets of genes evolving with a similar rate and under the same nucleotide 

substitution model, thus accounting for rate heterogeneity among genes.  

Only models implemented in BEAST were tested, with BIC used for  

model selection in a ‘greedy’ search and unlinked branch lengths. The best 

partitioning scheme comprised two subsets, one (55,892 bp) evolving under 

the generalized time-reversible model of evolution with gamma model of  

rate heterogeneity and invariant sites (GTR+I+Γ) and the other (62,184 bp) 

under the GTR+I model.

Phylogenetic trees were reconstructed with maximum likelihood (ML) using 

RAxML65 version 8.1.16 based on the two partitioned sequence alignments 
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described above. A rapid bootstrap analysis and search for the best-scoring ML 

tree was conducted with 1,000 bootstrap replicates. The partitioned data set with 

per-partition estimation of branch lengths was used with GTR+I+Γ as substitu-

tion model and the clade of C. rubella, C. bursa-pastoris and Camelina sativa was 

set as an outgroup. The ML tree was used as a starting tree for divergence time 

estimation after it was made ultrametric with node ages to fit constraints using 

the R package APE57 version 3.1–4. Divergence time was estimated using the 

software BEAST66 version 1.7. The same partitioned alignments as for ML anal-

ysis were used, with their respective best models as substitution models. Site and 

clock models were set to unlinked, but a linked partition tree was used with tree 

prior birth–death incomplete sampling67. An uncorrelated lognormal relaxed 

clock with estimated rates was used to account for rate heterogeneity between 

sites68. Owing to the lack of fossils from the genus Arabidopsis or the Brassicaceae 

family we used secondary calibration for divergence time estimation. Three 

calibration points were extracted from Hohmann et al.9: The age of the out-

group (split between the genera Camelina and Capsella) was set to 7.3572 Myr;  

the crown age of the genus Arabidopsis was set to 5.9685 Myr, and the root 

height (split between outgroup and genus Arabidopsis) was set to 8.1627 Myr.  

Normal distributions with a s.d. = 1.0 fit the 95% confidence intervals from 

Hohmann et al.9 and were thus used for all three calibration points. An addi-

tional constraint was set on the root height by truncation to 4–12 Myr.

We ran two independent MCMC runs with 5 × 108 generations each and 

sampling parameters every 5 × 104 generations. LogCombiner66 version 1.7.5 

was used to combine trees from the two runs and the first 5 × 107 generations 

of each run were discarded as burn-in. The resulting 18,000 trees were com-

bined to a maximum clade credibility tree in TreeAnnotator66 version 1.7.5 

and visualized in FigTree66 version 1.4.1.

Neutral expectations for allele sharing. Consider the number of shared poly-

morphism expected under the standard coalescent model. A necessary condi-

tion for trans-specific polymorphism is that two lineages survive back to the 

species split in both sister species. The probability of this is exp[–tsplit/(2Ne)] 

independently in each species, where tsplit is the number of generations ago 

the two species became isolated, and Ne is the effective population size, which 

may differ between the two species69. The expected pairwise coalescence time 

is E(T2) = 2Ne generations within each species, and E(T2) = 2Ne + tsplit genera-

tions between species, where Ne in the latter equation is that of the ancestral 

species. In what follows, we will assume that Ne of the ancestral species equaled 

the larger of the Ne of the descendant species. Simple moments estimators for 

all relevant parameters can be obtained by noting that the expectation of the 

pairwise sequence divergence d is proportional to E(T2). We can thus obtain 

an upper bound for the probability of a trans-specific polymorphism as 

exp[ ( max[ , ]/ )] exp[ ( max[ , ]/ )]− − − −d d d d d d d dAB A B A AB A B B×

where dA is the estimated pairwise sequence divergence (nucleotide diversity) 

within species A, dB the same for species B, and dAB is the estimated pairwise 

sequence divergence between species.

For example, the per-site probability of a trans-specific polymorphism under 

neutrality between A. thaliana and A. lyrata is less than e−(11.57–3.04)/0.69 ×  

e−(11.6–3.04)/3.04 = 2.5 × 10−7. This is conservative, because it ignores the prob-

ability of the right order of coalescences in the ancestral species. The pairwise 

sequence divergence at aligned fourfold degenerate sites was used for the cal-

culation. Thus, if we were to choose two alleles at random from each these 

two species, we would expect <1 out of the 2,909,657 fourfold degenerate sites 

to be trans-specific by chance. In the actual data we observed 599, and we 

conclude that either there was gene flow more recently than what is implied 

by the high divergence under the simple model of splitting or polymorphisms 

were maintained by selection.

Shared polymorphisms between common Arabidopsis species. We applied 

the same criteria to choose genes for the analysis of shared variation between 

major Arabidopsis clades, restricting it to 80 A. thaliana relatives analyzed 

and excluding A. thaliana from filtering genes pipeline, which gave us 15,454 

genes that passed copy number filtering. Joint allele frequency spectra were 

calculated for biallelic sites in two clades, unfolded using C. rubella as an 

outgroup and plotted with dadi70.

Fst estimates for pairwise common species (A. thaliana, A. halleri,  

A. lyrata, A. arenosa), comparisons were calculated at biallelic synonymous 

SNPs (Supplementary Table 1) as (Htotal – Hsubsp) / Htotal, where Htotal is het-

erozygosity in total population (for example, A. thaliana and A. halleri taken 

together as one population), Hsubsp is average of heterozygosities in subpopu-

lations (for example, average of A. thaliana and A. halleri heterozygosities). 

Heterozygosity is calculated as 2pq, where p and q are derived and ancestral 

allele frequencies, respectively.

We searched for SNPs segregating in all four common Arabidopsis spe-

cies. Even though we filtered out potential duplicated genes on the basis of  

coverage before calling variants, we noticed that some of the shared sites  

show: (i) only heterozygous genotypes (Aa) or (ii) heterozygous and only  

one of the homozygous genotypes (Aa and AA or Aa and aa) among diploid 

A. thaliana relatives, which can be explained by the presence of a duplicated 

region. After filtering out such sites, we ended up with 3,818 sites span-

ning 2,365 genes. Additional filtering based on linkage was applied to avoid  

potential back mutations among shared SNPs. Here, we selected genes with 

shared haplotypes such that a pair of shared SNPs were in linkage disequi-

librium (r2 > 0.3) in A. thaliana and in at least two out of the three other 

common species. Moreover, we required that at least one of the shared SNPs 

was nonsynonymous.

We used GOWINDA71 to test enrichment for Gene Ontology categories 

(GO slim) for identified genes under balancing selection. Total (private and 

shared) coding SNPs identified for the four common species (A. thaliana,  

A. halleri, A. lyrata and A. arenosa) were used as a background set, and 

shared coding SNPs segregating in all four species (3,818 SNPs in 2,365 

genes) and that passed additional LD filtering (340 SNPs in 129 genes) were 

used as the query sets. We ran GOWINDA with 100,000 simulations in ‘gene’ 

mode, assuming that only SNPs located inside a gene are associated with the  

corresponding gene (—gene–definition ‘gene’). Additionally to GO_SLIM 

terms from TAIR10 we created and tested GO term for NB-LRR gene family 

previously identified72.

Clade-specific divergence in common Arabidopsis species. To check for 

clade-specific divergence we tested for enrichment of particular A. thaliana 

GO_SLIM and INTERPRO categories in the diverged genes for the major 

clades A. halleri, A. lyrata, and A. arenosa, as well as for A. cebennensis and 

A. pedemontana as one clade. Fst, nucleotide diversity and Tajima’s D for each 

gene (including UTR regions) in each clade were calculated using msABC73 

‘observed’ mode (–obs). Several cut-off combinations were tried, and for some 

comparisons we also considered nucleotide diversity as this resulted in more 

interesting results. The reported P values do not take this implicit multiple 

testing into account and should thus be interpreted with caution. There is no 

obvious way of correcting for this kind of overfitting, and there is also no way 

of knowing a priori what parameters might be appropriate to detect selection 

in a given species.

For A. cebennensis and A. pedemontana, divergent genes were identified 

as those with Fst values in the upper eighty-fifth percentile in comparisons 

between this clade and A. halleri, A. lyrata and A. arenosa. For A. halleri, 

we used the upper eightieth percentile threshold for Fst and the additional  

criterion of nucleotide diversity in the lower fiftieth percentile in A. halleri.  

For A. lyrata and A. arenosa, divergent genes were identified as having Fst 

values in the upper eighty-fifth percentile, and we also required nucleotide 

diversity in the lower forty-fifth percentile and Tajima’s D values in the lower 

thirty-fifty percentile. Individuals that showed signs of introgression between 

A. lyrata and A. arenosa in the ADMIXTURE analysis we excluded.

We used only general A. thaliana GO_SLIM categories (TAIR10), which 

were not deeper than the third node on a GO categories graph for ‘biological 

process’ root category (136 categories in total) and also used only the first 

node categories of INTERPRO database (627 categories). We also required 

a minimum of five genes from a category to be present in a candidate set to 

perform a test. Gene categories enrichment was tested by Fisher’s exact test: 

all P values were adjusted for multiple testing (using R function ‘p.adjust’ with 

method = ‘fdr’).
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