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The fossil record shows that, during the Cambrian period, there 

was a great elaboration in the diversity of animal body plans. This 

included the emergence of a species with several characteristics 

shared with modern vertebrates, such as a cartilaginous skeleton 

that encases the central nervous system (cranium and vertebral 

column) and provides a support structure for the branchial arches 

and median fins. The cartilaginous cranium of this species housed 

a tripartite brain, with a forebrain for regulating neuroendocrine 

signaling via the pituitary gland, a midbrain (including an optic 

tectum) for processing sensory information from paired sensory 

organs and a segmented hindbrain for controlling unconscious func-

tions, such as respiration and heart rate. These features in adults 

suggest that the corresponding embryos must have already possessed 

uniquely vertebrate cell types such as the skeletogenic neural crest 

and ectodermal placodes, both defining characters of modern-day 

vertebrates. Subsequent diversification of this lineage gave rise to the 

jawed vertebrates (gnathostomes), hagfish (for which genome-scale 

sequence data are currently limited), lamprey and several extinct 

lineages (Fig. 1 and Supplementary Note).

Recent advances in developmental genetics methods for the lamprey 

and hagfish have advanced the reconstruction of several aspects of ver-

tebrate evolution, although the interpretation of many of these findings 

is contingent on an understanding of genome structure, gene content 

and the history of gene and genome duplication events, areas that remain 

largely unresolved1. Given the critical phylogenetic position of the lam-

prey as an outgroup to the gnathostomes (Fig. 1), comparing the lam-

prey genome to gnathostome genomes holds the promise of providing 

insights into the structure and gene content of the ancestral vertebrate 

genome. Questions remain about the timing and subsequent elabora-

tion of ancient genome duplication events and the elucidation of genetic 

innovations that may have contributed to the evolution and development 

of modern vertebrate features, including jaws, myelinated nerve sheaths, 

an adaptive immune system and paired appendages or limbs.

RESULTS
Sequencing, assembly and annotation
Approximately 19 million sequence reads were generated from genomic 

DNA derived from the liver of a single wild-captured adult female sea 
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lamprey (P. marinus) (Supplementary Note). The lamprey genome 

project was initiated well before the discovery that the lamprey under-

goes programmed genome rearrangements during early embryogenesis, 

which result in the deletion of ~20% of germline DNA from somatic tis-

sues2,3, with the effects of rearrangement on the genic component of the 

genome not fully understood. We used raw sequence reads to examine 

large-scale sequence content and the repetitive structure of the lamprey 

genome. These analyses indicated that the lamprey genome is highly 

repetitive, rich in GC bases and highly heterozygous (Supplementary 

Figs. 1–3 and Supplementary Note). Although these features tend 

to encumber the assembly of long contiguous sequences, analyses of 

broad-scale structure enabled the optimization of the parameters used 

in assembly algorithms (Supplementary Note).

The current assembly was generated using Arachne4 and con-

sisted of 0.816 Gb of sequence distributed across 25,073 contigs. 

Half of the assembly was in 1,219 contigs of 174 kb or longer, and 

the longest contig was 2.4 Mb. This assembly resolved multikilo-

base- to megabase-scale structure over a majority of single-copy 

genomic regions (Supplementary Tables 1,2 and Supplementary 

Note), permitting the annotation of repetitive elements, genes and 

conserved intergenic features (Supplementary Note). Detection 

of extensive conserved synteny with gnathostome genomes indi-

cates that the lamprey scaffolds accurately reflect the chromosomal 

organization of the lamprey genome. This assembly therefore  

provides unparalleled resolution of the gene content and structure 

of this evolutionarily informative genome.

Ab initio searches for repetitive DNA sequences showed that the 

lamprey genome contained abundant repetitive elements with high 

sequence identity. We identified 7,752 distinct families of repetitive 

elements, accounting for 34.7% of the assembly (Supplementary 

Fig. 4, Supplementary Tables 3,4 and Supplementary Note). Notably, 

this proportion is expected to be a significant underestimate, owing 

to the collapsing of repetitive elements during genome assembly. The 

large diversity of lamprey repetitive elements and the abundance 

of high-identity (presumably young) repeats represent a poten-

tially rich resource for studies of the evolution and transposition of  

repetitive sequences.

The location of genes was determined by combining RNA sequenc-

ing (RNA-seq) mapping and exon linkage data with gene homologies 

and the prediction of coding sequences, splicing signals and repeti-

tive elements using the MAKER pipeline5 (Supplementary Table 5 

and Supplementary Note). The final set of annotated protein-coding 

genes contained a total of 26,046 genes. This number is similar to the 

numbers of predicted protein-coding genes in the other vertebrate 

genomes reported so far. Conserved noncoding elements (CNEs) were 

identified by homology to published sequences6,7. Searches identi-

fied a limited number of homologous CNEs in lamprey, 337 (5.0% of 

6,670; ref. 6) and 287 (6.0% of 4,782; ref. 5), in close agreement with 

previous analyses8. For those lamprey CNEs that were linked to con-

served homologous regions in the lamprey and gnathostome genomes, 

sequence identity typically extended over approximately half the 

length (53%) of the homologous gnathostome CNE (Supplementary 

Table 6 and Supplementary Note). Thus, either the lamprey line-

age diverged from jawed vertebrates before most gnathostome CNE 

sequences became highly constrained or these CNEs have evolved 

much more rapidly in the lamprey genome than in jawed vertebrate 

genomes. Future work on additional lamprey and hagfish genomes 

should ultimately distinguish between these possibilities.

Variation in nucleotide content and substitution can strongly influ-

ence intragenomic functionality and intergenomic comparative analy-

ses. Analysis of the lamprey genome showed that the GC content of 

the lamprey genome assembly was higher than that of most other 

vertebrate genome sequences that have been reported. Overall, 46% 

of the assembly was composed of GC bases, similar to the GC con-

tent of raw whole-genome sequencing reads (Supplementary Fig. 5 

and Supplementary Note). Genome-wide analyses also showed pat-

terns of intragenomic heterogeneity in GC content, similar to those 

of amniote species that possess isochore structures, but less vari-

able. Moreover, the GC content of protein-coding regions (61%) was 

markedly higher than that of noncoding and repetitive regions. As 

expected, this content was highest in the third position of codons 

(75%) (Supplementary Fig. 6). Patterns of GC bias strongly affect 

codon usage and the amino-acid composition of lamprey proteins, 

imparting an underlying structure to lamprey coding sequences that 

differs substantially from those of all other sequenced vertebrate and 

invertebrate genomes (Fig. 2). Notably, we did not detect a significant 
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Figure 1 An abridged phylogeny of the vertebrates. Shown is the timing of 

major radiation events within the vertebrate lineage. Extinct lineages and 

some extant lineages (for example, coelacanths, lungfish and hagfish) have 

been omitted for simplicity. Here, reptile is synonymous with sauropsid, 

ray-finned fish is synonymous with actinopterygian, and osteichthyan is 

synonymous with euteleostome. CZ, Cenozoic; MYA, million years ago.
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lamprey coding sequence properties from 

patterns observed in other vertebrate and 

invertebrate genomes. (a) Codon usage bias. 
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correlation between the GC content of the third position of codons 

and the GC content of adjacent noncoding regions (Supplementary 

Fig. 7). Thus, it seems that the processes that lead to the patterns of 

intragenomic heterogeneity in lamprey GC content differ fundamen-

tally from those in species that possess isochore structures. This raises 

a question regarding the adaptive value or other biological role of the 

observed variation of GC content within and among genomes.

To further explore the biological basis of high GC content and its 

intragenomic heterogeneity, we examined the relationship between 

the GC content of protein-coding regions and codon usage bias, 

amino-acid composition and the levels of gene expression. The results 

showed that genomic GC content strongly correlated with codon 

usage bias and amino-acid composition but not with the levels of gene 

expression (Supplementary Figs. 8–11, Supplementary Table 7 and 

Supplementary Note). These observations are consistent with a sce-

nario in which high GC content results from broad-scale substitution 

bias rather than selection for specific GC-rich codons. As the lamprey 

is clearly an outlier among vertebrates, further dissection of coding 

GC content in the sea lamprey and other lamprey and hagfish species 

will help to identify the causes and consequences of the intragenomic 

heterogeneity of GC content in vertebrate genomes.

Duplication structure of the genome
It is generally accepted that two rounds of whole-genome duplication 

occurred early in the history of vertebrate evolution9. However, the 

timing of these defining duplication events has not been well sup-

ported by genome-wide sequence data thus far10. As the proximate 

outgroup to jawed vertebrates, the lamprey genome is uniquely suited 

for addressing several questions regarding the occurrence, timing 

and outcome of whole-genome duplication events. To identify gene 

and genome duplication events in the ancestral vertebrate lineage, we 

analyzed patterns of duplication within conserved syntenic regions of 

the lamprey and gnathostome genomes and compared these patterns 

to the entire lamprey genome assembly.

We estimated duplication frequencies by aligning all predicted lam-

prey protein-coding genes from the MAKER5 data set to the human 

(GRCh37, GCA_000001405.1) and chicken (Gallus_gallus-2.1,  GCA_

000002315.1) whole-genome assemblies. To account for the possibil-

ity that paralogs have been retained on one or both genomes, in a 

way that bypasses many confounding aspects of phylogenetic recon-

struction (Supplementary Figs. 12–17, Supplementary Table 8 and 

Supplementary Note), regions were considered putative orthologs if 

they yielded the highest-scoring alignment between the two genomes 

or an alignment score (bit score) within 90% of the top-scoring align-

ment (Supplementary Note). Strong patterns of conserved synteny 

were observed between the lamprey and both the human and chicken 

genomes (Supplementary Figs. 18–21, Supplementary Tables 9–13 

and Supplementary Note). For simplicity, we present comparisons 

to the chicken genome, as this genome is known to have undergone 

substantially fewer interchromosomal rearrangements than have 

mammalian genomes11,12.

Our analyses indicate that most lamprey and gnathostome genes 

currently do not possess two copies in their respective genomes 

resulting from the two rounds of whole-genome duplication 

(Supplementary Note), presumably owing to the frequent loss of 

one paralog after duplication. Accordingly, we used the lamprey 

genome to search for a signature of large-scale duplication that does 

not rely on the retention of duplicated genes but can be informed 

by their presence. Specifically, we searched for cases in which a sin-

gle lamprey scaffold contained interdigitated homologies from two 

distinct regions of a gnathostome genome (Fig. 3). Such patterns 

are consistent with large-scale duplication followed by random loss 

of either paralogous copy. Nearly all lamprey scaffolds showed pat-

terns of interdigitated conserved synteny of gnathostome orthologs 

(Supplementary Tables 9 and 10). Moreover, homologs from indi-

vidual pairs of gnathostome chromosomes were recurrently observed 

in interdigitated syntenic blocks on several lamprey scaffolds. Notably, 

some of the individual homologous markers that contributed to these 

conserved syntenic blocks were mapped to duplicate positions within 

gnathostome genomes, being present on the two homologous gnath-

ostome chromosomes. Although these duplicates constituted a rela-

tively modest fraction of the conserved syntenic homologs (14.5%, 

Fig. 3a; 18.2%, Fig. 3b; not counting redundant copies), we interpret 

these as strong evidence that large-scale (whole-genome) duplication 

has had a major role in shaping gnathostome genome architecture.

Similar duplication patterns on lamprey scaffolds also seem to 

support the notion that large-scale (whole-genome) duplication  

has had a major role in shaping lamprey genome architecture. 

GG27

a

b d

c

GG2

GG3

GG7

GG5

GG7

PM2226 PM90

PM468

*
*
*

*

*

Lamprey

scaffolds

Lamprey

scaffolds

PM229

GG20

PM9

Figure 3 Conserved synteny and duplication in the lamprey and 

gnathostome (chicken) genomes. (a–d) The locations of presumptive 

lamprey-chicken orthologs (including duplicates) are plotted relative 

to their physical positions on chromosomes and scaffolds and are 

connected by colored lines. (a,b) Pairs of chicken chromosomes that 

correspond to a series of lamprey scaffolds. (a) Ten lamprey loci are 

present as duplicate copies in the chicken genome, and 59 are present 

as single copies. (b) Twelve lamprey loci are present as duplicate  

copies in the chicken genome, and 54 are present as single copies.  

(c,d) Pairs of lamprey scaffolds that correspond to individual chicken 

chromosomes. (c) Three chicken loci are present as duplicate copies on 

syntenic lamprey scaffolds. (d) Two chicken loci are present as duplicate 

copies on syntenic lamprey scaffolds. Asterisks indicate duplicates.
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Although lamprey scaffolds do not yet provide chromosome-scale 

resolution, several cases were identified in which two large lamprey 

scaffolds contained predicted paralogs and patterns of interdigitated 

conserved synteny (two defining signatures of large-scale duplication; 

Fig. 3c,d and Supplementary Note). To further assay for patterns 

indicative of ancient whole-genome duplication events (for example, 

two rounds) within the lamprey genome, we manually examined all 

lamprey scaffolds that possessed ten or more gnathostome homologs. 

These 83 scaffolds accounted for 10% of the comparative map (10% of 

homology-informative genes) and possessed a duplication frequency 

(0.463, including redundant copies of duplicates) that was similar to 

that of the genome at large (0.448). Among these scaffolds, we identi-

fied 29 gene pairs that were present as duplicates on two large scaffolds 

and one trio that was present on three large scaffolds. For a majority of 

duplicates, scaffolds contained at least one additional ortholog on the 

chicken chromosome that harbored an ortholog of the duplicate (spe-

cifically, both scaffolds (59.3%), one scaffold (29.6%) and no scaffold 

(11.1%) contained an additional syntenic ortholog). On average, these 

scaffolds contained 2.98 additional conserved syntenic genes for each 

individual lamprey duplicate (including the 11.1% with no syntenic 

markers). These patterns are consistent with the existence of patterns 

of interdigitated synteny in the lamprey genome that are highly simi-

lar to those in gnathostome genomes, indicating that the most recent 

(two-round) whole-genome duplication event likely occurred in the 

common ancestral lineage of lampreys and gnathostomes.

Additional genome-wide analyses showed that (i) the number of 

ancestral loci with retained duplicates in gnathostome genomes was 

not significantly different from the number with retained duplicates 

in lamprey (lamprey = 0.271, chicken = 0.262; χ2 = 2.94, P = 0.08; 

Supplementary Note); (ii) the frequency of shared duplications 

was higher than would be expected by chance (observed = 0.150,  

expected = 0.022; χ2 = 6179, P(χ2) < 1 × 10−100, P(Fisher’s exact test) 

< 1 × 10−100; Supplementary Note); (iii) a model invoking recurrent 

selection against small-scale duplicates across a majority of the genome 

was not sufficient to explain genome-wide patterns of shared dupli-

cation (Supplementary Figs. 18–21 and Supplementary Note); and 

(iv) inclusion of the lamprey in phylogenetic analyses resolved gene 

families consistent with two rounds of whole-genome duplication 

(Supplementary Figs. 12–17 and Supplementary Note). Moreover, 

targeted analyses of Hox clusters and gonadotropin-releasing hormone 

(GnRH) syntenic regions showed that the loss of paralogs after duplica-

tion occurred largely independently in the lamprey and gnathostome 

genomes, consistent with the divergence of the two lineages shortly 

after the last whole-genome duplication event (Fig. 4, Supplementary 

Figs. 22–24, Supplementary Table 14 and Supplementary Note). 

Although the less parsimonious scenario involving one or two inde-

pendent and ancient whole-genome duplication events in gnathos-

tome and lamprey lineages cannot be completely ruled out, neither 

a gnathostome-specific genome duplication nor persistent selection 

to retain a subset of independent duplicates is likely to explain the 

subtle differences in the duplication structures of the lamprey and gna-

thostome genomes. It seems exceedingly unlikely that such genomic 

arrangements and distributions of synteny blocks would arise by 

chance or mechanisms other than an ancient shared whole-genome 

duplication event. We therefore propose that genome-wide patterns of 

duplication are indicative of a shared history of two rounds of genome-

wide duplication before lamprey-gnathostome divergence.

Ancestral vertebrate biology
It has been suggested that many of the morphological and physi-

ological features that characterize vertebrates evolved through the 

modification of preexisting regulatory regions and gene networks13. 

However, we reasoned that the lamprey genome might enable us to 

identify genes that evolved within the ancestral vertebrate lineage 

and infer how these new genes might have contributed to specific 

innovations in ancestral vertebrates that contributed to their arguably 

successful evolutionary trajectory. Toward this end, we searched for 

lamprey genes that (i) had homologs in at least one sequenced gnath-

ostome genome and (ii) had no identifiable invertebrate homolog in 

annotated sequence databases and genome project–based resources 

(including but not limited to invertebrate deuterostomes: sea urchin, 

sea limpet, acorn worm, lancelet and sea squirt). In total, this search 

identified 224 gene families that presumably trace their evolutionary 

origin to the ancestral vertebrate lineage (Supplementary Table 15 

and Supplementary Note). Notably, these included many gene fami-

lies whose taxonomic distribution was previously thought to be more 

restricted (for example, APOBEC4 was previously reported to be a tetra-

pod-specific gene)14. Thus, roughly 1.2–1.5% of the protein-coding  
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Figure 4 The effect of genome duplication and independent paralog 

loss on the evolution of lamprey-gnathostome conserved syntenic 

regions. (a) Conserved synteny among the GnRH2, GnRH3 and 

(previously proposed) GnRH4 genes in lamprey, chicken and humans, 

including the medaka region for GnRH3, which is absent in tetrapods. 

The orientation of each chromosome (chr.) and scaffold (scf.) is 

indicated with line arrows. A pointed box represents the orientation of 

each gene. Open rectangles with red X’s indicate lost GnRH loci. The 

presumptive ancestral state of the gene region is shown at the bottom. 

(b) Assembled lamprey Hox scaffolds and patterns of conserved synteny 

relative to human Hox clusters (human Hox clusters rather than chicken 

are used because all four human Hox syntenic regions are integrated 

into the human genome assembly). Three additional conserved syntenic 

genes, located adjacent to the PM2Hox cluster, are omitted owing 

to space limitations (retinoic acid receptor (RAR), heterogeneous 
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(THR)). Symbols indicate representative family members of lamprey-
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landscape in the human genome (263 genes from 224 families out 

of ~20,000 genes) originated from new genes that emerged at the 

base of vertebrate evolution. Phylogenetic analyses also showed 

expansions and reductions of gene families within vertebrate line-

ages (Supplementary Table 8 and Supplementary Note). These 

included the specific loss of clotting-related genes in the lamprey 

lineage and the differential contraction and expansion of gene families 

related to neural function and inflammation in the lamprey versus 

gnathostome lineages, which reflect broad parallels in the evolution 

of lamprey and gnathostome immunity (Supplementary Figs. 25–30, 

Supplementary Tables 16–22 and Supplementary Note).

To better understand how new genes might have contributed to 

the evolution of the vertebrate ancestor, we collected gene ontology 

(functional) information for the 224 vertebrate-specific gene fami-

lies (Supplementary Fig. 31 and Supplementary Note). Comparing 

these gene ontologies to the genome-wide distribution of lamprey 

ontologies showed that these vertebrate-specific gene families were 

significantly enriched in functions related to myelination and neuro-

peptide and neurohormone signaling (Fig. 5). These findings suggest 

that the elaboration of signaling in the vertebrate central nervous 

system might have been facilitated by the advent of new vertebrate 

genes. Ontology analyses were also consistent with the broadly held 

view that most genes involved in the regulation of morphogenesis are 

of ancient origin and are common throughout animals.

In all extant gnathostomes, myelinating oligodendrocytes wrap 

axons in a layer of proteins and lipids, increasing the efficiency and 

speed of neuronal conduction. In humans, disorders of myelination 

have many manifestations that range from cognitive to movement 

disorders. Notably, analysis of the lamprey genome identified the 

specific enrichment of genes associated with myelin formation in 

the central and peripheral nervous systems of jawed vertebrates 

(Fig. 5, Supplementary Fig. 32, Supplementary Tables 15,23,24 and 

Supplementary Note), despite the fact that extant jawless vertebrates 

are thought to completely lack myelinating oligodendrocytes15. These 

genes include Pmp22 (encoding peripheral myelin protein 22) and 

Mpz (encoding myelin protein zero), as well as Plp (encoding myelin 

proteolipid protein), Mal (encoding myelin and lymphocyte protein) 

and Myt1l (encoding myelin transcription factor 1-like). Homologs 

of Mal and Pmp22 were reported to be present in Ciona intestinalis, 

an invertebrate chordate16, and putative Ciona homologs of Myt1l 

and Plp1 are identifiable in Ensembl17. Unexpectedly, analysis of  

the lamprey genome identified three myelination-related genes that 

might have evolved specifically within the ancestral vertebrate line-

age (Mbp (encoding myelin basic protein), Mpz and CNP (encoding  

2′,3′-cyclic nucleotide 3-phosphodiesterase); Supplementary 

Tables 15,23 and Supplementary Note). This suggests that the 

molecular components of myelin already existed in the vertebrate 

ancestor and were later recruited in the evolution of myelinating 

oligodendrocytes in the gnathostome lineage, perhaps through the 

evolution of regulatory systems18. Alternatively, oligodendrocyte-like 

cells might have been present in the vertebrate ancestor but were 

secondarily lost in the lamprey lineage, although it retained genes 

encoding myelin proteins. Dissecting the function of myelination-

related genes in lamprey and hagfish should continue to shed light 

on the origin of gnathostome myelin.

By virtue of its basal phylogenetic position, the lamprey also serves 

as a key comparative model for understanding the evolution of the 

vertebrate immune system. Lamprey possess two major immune cell 

types that are similar to the T and B lymphocytes of gnathostomes 

but possess adaptive immune receptors that are unrelated to gnath-

ostome immunoglobulins, perhaps instead reflecting the receptor of 

the ancestral vertebrate19,20. The lamprey genome harbors several 

genes that impart unique functionality to gnathostome T and B lym-

phocytes. Annotation of other components of the immune system 

showed that the reduced complexity in vertebrate innate immune 

receptors might have coincided with the evolution of adaptive immune 

receptors (Supplementary Figs. 25–30, Supplementary Tables 16–22 

and Supplementary Note). Analysis of the lamprey genome assembly 

and end-mapped BAC clones showed that each rearranging lamprey 

immune receptor locus (encoding variable lymphocyte receptors, 

VLRs) extends for several hundred contiguous kilobases. For example, 

the VLRB locus extends for at least 717 kb, with components of the 
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Figure 5 Enrichment of gene ontologies among vertebrate-specific gene 

families. Horizontal bars show the frequencies of ontology classes among 

vertebrate-specific gene families and in the entire set of lamprey gene 

models. Data are shown for all ontologies that are over-represented with  

P < 0.005 (Fisher’s exact test). Most over-represented ontologies are 

related to neural development and neurohormone signaling.
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receptor face being drawn from regions distributed across practically 

the entire length of the current scaffold (Supplementary Fig. 25).

The lamprey genome also sheds light on the evolutionary events that 

occurred early in the evolution of the gnathostome lineage, after the 

lamprey-gnathostome split. Paired appendages (pelvic and pectoral 

fins in fish, hind- and forelimbs in tetrapods) are a major evolutionary 

innovation of gnathostome vertebrates, as they permitted additional 

forms of locomotion and behavior. The lamprey has well-developed 

dorsal and caudal fins but lacks paired fins. Despite different embry-

onic origins, the signaling pathways involved in the development and 

positioning of median fins were reused for paired fin development21, 

raising the question of whether these pathways were already present 

in the limbless ancestral vertebrate (Supplementary Note). During fin 

and limb development, Shh is required to pattern the anteroposterior 

axis of appendages. It has been shown that the limb-specific expression 

of Shh is coordinated by a long-range cis-acting enhancer. This Shh 

appendage-specific regulatory element (ShARE) is found in homolo-

gous positions in tetrapods, teleosts and chondrichthyans22–24. In all 

vertebrate species analyzed so far, this element is found in intron 5 of 

the Lmbr1 gene (encoding limb region 1) that lies up to 1 Mb away 

from the transcription start site of Shh. Notably, the presence of ShARE 

is correlated with the presence of paired appendages, at least within 

the tetrapod lineage, as snakes and caecilians seem to have lost this 

element secondarily25. Because of the conserved genomic position of 

the element in other vertebrates, we focused our analysis on the lam-

prey orthologs of the Lmbr1 gene. Directed analysis of intron 5 in the 

Lmbr1 orthologs showed that these introns were much shorter and had 

no similarity to ShAREs (Fig. 6 and Supplementary Fig. 33). Searches 

of the entire genome assembly and raw sequence reads also did not 

detect any regions similar to ShARE, suggesting that this regulatory 

region evolved within the gnathostome lineage.

DISCUSSION
The lamprey genome provides unique insight into the origin and 

evolution of the vertebrate lineage. Here, we present a few exam-

ples of its use in dissecting the evolution of vertebrate genomes and 

aspects of ancestral vertebrate biology. As examples, we (i) provide 

genome-wide evidence for two whole-genome duplication events 

in the common ancestral lineage of lampreys and gnathostomes,  

(ii) identify new genes that evolved within this ancestral lineage,  

(iii) link vertebrate neural signaling features to the advent of new 

genes, (iv) uncover parallels in immune receptor evolution and  

(v) provide evidence that a key regulatory element in limb develop-

ment evolved within the gnathostome lineage. This genomic resource 

holds the promise of providing insights into many other aspects of ver-

tebrate biology, especially with continued refinements in the assembly 

and the capacity for direct functional analysis in lamprey26,27.

URLs. CodonW, http://codonw.sourceforge.net/; RECON, http://

www.repeatmasker.org/; Repbase, http://www.girinst.org/repbase; 

Rebuilder, http://www.broadinstitute.org/crd/wiki/index.php/

Improving_Assemblies.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. The lamprey genome assembly has been depos-

ited under GenBank accession AEFG01. Improved assemblies 

for Hox clusters have been deposited under GenBank accessions  

JQ706314–JQ706327. Transcript sequencing data have been deposited 

under GenBank Short Read Archive accessions SRX109761.3, 

SRX109762.3, SRX109764.3, SRX109765.3, SRX109766.3, 

SRX109767.3, SRX109768.3, SRX109769.3, SRX109770.3, SRX110023.2, 

SRX110024.2, SRX110025.2, SRX110026.2, SRX110027.2, SRX110028.2, 

SRX110029.2, SRX110030.2, SRX110031.2, SRX110032.2, SRX110033.2, 

SRX110034.2 and SRX110035.2. Additional information is provided in 

Supplementary Table 5.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Genome sequencing. Sea lamprey DNA for whole-genome shotgun sequenc-

ing and fosmid and BAC libraries was derived from a liver dissected from a 

single female lamprey captured from the Great Lakes. Production of BAC 

library CHORI-303 was described previously28. Other libraries were cloned 

into bacterial vectors, arrayed individually into the wells of growth trays and 

sequenced as previously described11,29–31.

Preassembly analyses. Several analyses were performed before initiating the 

assembly. These provided insight as to the selection of the assembler. Initial 

characterization of the repetitive content of the genome was performed by 

selecting a subset of 10,000 high-quality shotgun sequence reads (>500 bp 

at Q20) and aligning these to the complete data set of 18.5 million whole-

genome shotgun sequence reads (Q20 trimmed). A complementary analy-

sis was also performed by aligning 10,000 trimmed whole-genome shotgun 

sequence reads from a single human genome32 to a complete data set of  

12.1 million whole-genome shotgun sequence reads (Q20 trimmed). All reads 

were downloaded from the NCBI Trace Archives in .scf format and processed 

with phred33,34 to generate base calls and quality scores. Alignments to human 

and lamprey whole-genome shotgun sequence data sets were performed  

using Megablast35.

To gain insight into the potential influence of allelic polymorphism, we 

estimated the depth of coverage by processing Megablast35 alignments between 

a subset of reads and the entire whole-genome shotgun sequencing effort, as 

described above, but with varying thresholds for percent nucleotide identity 

between aligning sequences. Distributions of coverage depth were estimated 

using sequence identity thresholds of 90%, 95%, 97% and 99%.

Genome assembly. Assembly of the lamprey genome was performed using a 

total of ~19 million sequence reads with Arachne36 parameterized for the assem-

bly of an outbred diploid genome (Supplementary Note). After assembly by the 

Assemblez module, contigs corresponding to divergent haplotypes were assem-

bled together using the Rebuilder module, parameterized with liberal settings 

that permitted the merger of divergent haplotypes (see URLs), and haplotypes 

were then joined using linkage information from end-read mapping informa-

tion. End-mapping information was incorporated via the ExtendHaploSupers 

module in a series of steps that prioritized the number of end reads supporting 

linkages between contigs and the source of end-mapping information (shotgun 

reads versus large-insert clones). Specifically, paired-end mapping informa-

tion was incorporated in the following steps, where subsequent linkages might 

not supplant linkages that had been previously identified at a more stringent 

threshold: at least four paired-end linkages from large-insert clones, at least four 

paired-end linkages from large-insert clones or whole-genome shotgun sequence 

clones, three paired-end linkages from large-insert clones, three paired-end 

linkages from large-insert clones or whole-genome shotgun sequence clones, 

two paired-end linkages from large-insert clones, two paired-end linkages from 

large-insert clones or whole-genome shotgun sequence clones, a single paired-

end linkage from a large-insert clone and, finally, a single paired-end linkage 

from a whole-genome shotgun sequence clone.

Characterization of repetitive sequences. Repetitive sequences were collected 

with RECON (v1.06; see URLs)37, with a cutoff of ten copies, and sequences 

were further curated to verify their identity, individuality and 5′ and 3′ bound-

aries. Each sequence was searched against the sea lamprey genomic sequences, 

and at least ten hits (BLASTN38 E < 1 × 10−10) plus 100 bp of 3′ and 5′ flanking 

sequence were recovered. If a particular lamprey sequence was found to be 

similar to a known transposon at the nucleotide or protein level (BLASTN or 

BLASTX, respectively; E < 1 × 10−5; RepBase14.12), it was assigned to that repeat 

class. Recovered sequences were then aligned using dialign 2 (ref. 39), with the 

resulting output examined for the presence of possible boundaries between 

putative elements and the possible presence of target site duplications. Repeats 

were additionally searched for homology to known repeat classes in Repbase 

14.12 (see URLs)40, using RepeatMasker and BLAST (BLASTX E < 1 × 10−5)  

to identify elements similar to other known transposable elements.

Gene annotation. Annotations for the lamprey genome assembly were gener-

ated using the automated genome annotation pipeline MAKER5, which aligns 

and filters EST and protein homology evidence, identifies repeats, produces 

ab initio gene predictions, infers 5′ and 3′ UTRs and integrates these data to 

produce final downstream gene models along with quality control statistics. 

Inputs for MAKER included the P. marinus genome assembly, P. marinus ESTs, 

a species-specific repeat library and protein databases containing all annotated 

proteins for 14 metazoans (Supplementary Note) combined with the Uniprot/

Swiss-Prot41 protein database and all sequences for Chondrichthyes (carti-

laginous fishes) and Myxinidae (hagfishes) in the NCBI protein database42,43. 

Ab initio gene predictions were produced inside of MAKER by the programs 

SNAP44 and Augustus45. MAKER was also passed P. marinus RNA-seq data 

processed by the programs tophat and cufflinks (Supplementary Note)46.

Identification of CNEs. The lamprey assembly was searched for sequences 

homologous to conserved noncoding sequences previously identified in com-

parisons between human and Fugu47 and human and Callorhinchus milii6 

genomes. BLASTN (2.2.25+) was used with the word size set to 5 and with 

gap existence and extension penalties of 1.

Codon usage. Genome-wide assessment of codon usage bias and amino-

acid composition in lamprey genes was performed using predicted coding 

sequences after discarding all but the longest transcript variant for each gene. 

To avoid any bias imparted by small sequences, sequences shorter than 300 bp 

were excluded from analyses of GC content, leaving a total of 18,444 coding 

sequences. Overall GC content and GC content at third codon positions were 

calculated for each protein-coding gene, and the GC content was calculated for 

the 10-kb fragment harboring the gene(s). To investigate the possible influence 

of gene expression levels on codon usage bias and amino-acid composition, 

we compared the GC content of 50 highly expressed and 50 lowly expressed 

genes on the basis of RNA-seq reads. To analyze codon usage bias and amino-

acid composition, we performed correspondence analysis (COA) on RSCU 

values48 and on amino-acid composition values using the software CodonW49 

(see URLs).

To assess the possible deviation of the sequence properties of lamprey 

 protein-coding regions relative to other species, we downloaded genome-

wide protein-coding sequences for diverse vertebrates and invertebrates  

from Ensembl17 and the archives for individual genome projects. Using  

species-by-species concatenated protein-coding sequences, we calculated 

RSCU values and performed a correspondence analysis.

Phylogenetic analysis of lamprey genes. A genome-wide phylogenetic analysis 

including 50 vertebrate genomes, 2 additional chordates and 3 outgroups was 

performed using the Ensembl tree reconstruction pipeline and the Ensembl 

compara database, Build 64 (ref. 50). All genes were clustered with hcluster_sg51 

according to their sequence similarity52. A multiple-sequence alignment was 

built for each cluster using MCoffee53, and TreeBeST51 was then used to recon-

struct a consensus tree for each family using two maximum-likelihood and 

three neighbor-joining trees. The software package CAFE54 was used to study 

the evolution of gene families in the lamprey and the gnathostomes.

Comparative genomics. Regions were considered putative orthologs if they 

yielded the highest-scoring alignment between the two genomes or an align-

ment score (bit score) within 90% of the top-scoring alignment (TBLASTN38; 

comparison of lamprey gene models to the human or chicken genomes). This 

convention permits some variation in the divergence rate and can be applied 

uniformly to the genome but may not identify some duplicates that have 

undergone exceedingly rapid diversification after duplication. Second, analyses 

were limited to single-copy genes and duplicates that were broadly distributed 

throughout the genome and present at relatively low copy number by removing 

redundant copies of tandemly duplicated genes (lineage-specific gene amplifi-

cations) and homology groups that contained more than six homologs in either 

of the two species being compared in any pairwise analysis.

Hox genes. To supplement the assembly of Hox gene–containing regions, we 

selected a series of BACs via hybridization to a Hox2 probe designed from a 

known lamprey transcript (GenBank accession AY497314). Another series of 

BACs were selected by hybridization to Hox4 or Hox9 homeodomain probes 

and were pooled and sequenced by 454 sequencing.
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Identification of vertebrate-specific genes. All P. marinus predicted pep-

tides were aligned to peptides of all gnathostome species (Ensembl version 

58; ref. 55) using BLASTP38. All gnathostome peptide sequences that showed 

a maximal bit score of no less than 50 were used as query in a BLASTP search 

against invertebrate peptide sequences. This invertebrate database included 

all sequences available in GenBank and Ensembl for invertebrates, as well as 

all peptides predicted in the genomes of Schistosoma japonicum56, Schistosoma 

mansoni57 and Lottia gigantea42. All gnathostome query sequences with iden-

tifiable homologs in lamprey but not in any invertebrate were considered can-

didate vertebrate-specific genes. Candidates with bit scores between 50 and 

60 were regarded as valid if the best hit from a reciprocal BLASTP search 

was the starting query sequence itself or its homolog with a bit score of no 

less than 50.

Immunity-related gene families. To understand the relationships among 

members of individual gene families, neighbor-joining trees were constructed 

in MEGA5 (ref. 58) using complete gap deletion.

The Shh enhancer ShARE. The genomic sequences of jawed vertebrates and 

the lamprey were compared with mVISTA59 using the mouse as a reference.
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