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Abstract

Background: Whilst much sequencing effort has focused on key mammalian model organisms such as mouse and human,
little is known about the relationship between genome sequencing techniques for non-model mammals and genome
assembly quality. This is especially relevant to non-model mammals, where the samples to be sequenced are often
degraded and of low quality. A key aspect when planning a genome project is the choice of sequencing data to generate.
This decision is driven by several factors, including the biological questions being asked, the quality of DNA available, and
the availability of funds. Cutting-edge sequencing technologies now make it possible to achieve highly contiguous,
chromosome-level genome assemblies, but rely on high-quality high molecular weight DNA. However, funding is often
insuf�cient for many independent research groups to use these techniques. Here we use a range of different genomic
technologies generated from a roadkill European polecat (Mustela putorius) to assess various assembly techniques on this
low-quality sample. We evaluated different approaches for de novo assemblies and discuss their value in relation to
biological analyses. Results: Generally, assemblies containing more data types achieved better scores in our ranking system.
However, when accounting for misassemblies, this was not always the case for Bionano and low-coverage 10x Genomics
(for scaffolding only). We also �nd that the extra cost associated with combining multiple data types is not necessarily
associated with better genome assemblies. Conclusions: The high degree of variability between each de novo assembly
method (assessed from the 7 key metrics) highlights the importance of carefully devising the sequencing strategy to be able
to carry out the desired analysis. Adding more data to genome assemblies does not always result in better assemblies, so it
is important to understand the nuances of genomic data integration explained here, in order to obtain cost-effective value
for money when sequencing genomes.
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Introduction

Starting in 1990, the Human Genome Project used low-

throughput, high-cost Sanger sequencing platforms to create

the �rst draft human genome at a cost of US $300 million.

Fast-forward 20 years and the cost of sequencing a human

genome has decreased to roughly US $1,000. Short-read tech-

nologies producing high-throughput, low per-base cost next-

generation sequencing (NGS) means that genomics is no longer

restricted to large sequencing consortiums and has opened

up the �eld to even the smallest of research groups. The re-

cently formed Vertebrate Genomes Project aims to produce

near-gapless, chromosome-scale phased genome assemblies for
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2 Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal

∼66,000 extant vertebrate species [1]. The assembly pipeline

consists of 60× coverage Paci�c Biosciences (PacBio) long-read

sequencing, followed by 10x Genomics linked reads, Bionano op-

tical mapping, and Arima Genomics’ Hi-C pro�les. These long-

read technologies provide highly contiguous genome assem-

blies. Similar consortiums and sequencing initiatives have been

formed to sequence a range of target organisms such as Bat1K,

Bird10K, Oz Mammals Genomics, and Earth BioGenome Project

(includingDarwinUKTree of Life, Colombia EBP, and so forth) [2].

Although such effortsmake it possible to achieve highly contigu-

ous, chromosome-level genome assemblies, the cost of generat-

ing this amount of data and assembling them is considerable

and often only within reach of a few of these consortiums. It

is important for smaller independent research groups or initia-

tives to consider value for money against biological questions as

a key factor when planning the generation of genomic sequenc-

ing data.

Non-model organisms have the potential to provide new

knowledge related to phenotypic and genotypic variation.

Through comparative genomics, it is possible to identify how

different organisms are related to each other, how they adapt to

novel environments, or the genetic basis underlying novel phe-

notypes. These new �ndings can be applied to further research,

such as in the biomedical and food industries through breed-

ing programswith the development ofmarker-assisted selection

and in conservation biology [3–12].

De novo assembly of endangered species, followed by low-

coverage population-level sequencing, provides unprecedented

information about the amount of genetic diversity within pop-

ulations, past and ongoing gene �ow between different popula-

tions, and the level of inbreeding in small populations [13–17].

However, there are a number of dif�culties when working

with non-model mammals. First, the genome size is not always

known, hampering the assessment of the completeness of the

“assembled” genome and of the sequencing depth. Additionally,

the availability and quality of the samples used for sequencing

non-model organisms are often substandard. Tissue and blood

samples are often obtained fromwild populations andmay need

to be acquired from remote locations, delaying the time between

collection andDNA extraction. Another common issue relates to

samples that may have been stored in collections such as mu-

seums, zoos, and tissue collections and subjected to a number

of different preservation methods such as freezing, storage in

ethanol, or formalin-�xed paraf�n-embedded. Many current se-

quencing technologies rely on high molecular weight DNA with

varying optimum molecule lengths (e.g., PacBio HiFi reads 15–

20 kb, Bionano >150 kb, and 10x Genomics >50 kb). Degraded

DNA, as is commonly observed in samples from wild popula-

tions, is usually sub-optimal for use inmany advanced sequenc-

ingmethods. It is therefore dif�cult, or sometimes impossible, to

leverage the full application of these technologies.

Many samples from non-model organisms originate from

wild populations that are highly heterozygous, leading to nu-

merous challenges during the assembly step. Allelic differences

in a diploid genome generate branches and bubbles in the as-

sembly graph [18]. Even though most graph-based assemblers

have functions to search for and remove these structures, high

density variation can still make assembly of heterozygous or-

ganisms challenging. Conversely, high levels of homozygos-

ity, characteristic of endangered (and typically inbred) species,

hamper the efforts of creating phased genome assemblies be-

cause the ability to phase haplotypes is dependent on linked se-

quences spanning polymorphisms. Additionally, non-model or-

ganisms vary in their ploidy, chromosome number, repeat con-

tent, sequence composition, and GC content, adding further

confounding factors to genome assembly.

The European polecat (Mustela putorius, NCBI:txid9668) is a

medium-sized carnivore found across Europe and the Middle

East. It is purported to be the ancestral species of the domes-

tic ferret (M. putorius furo) [19]. Across most of mainland Europe

the polecat is in widespread decline [20]. In the United Kingdom,

the European polecat has a chequered history. Persecuted to the

verge of extinction in the early 1900s, when it was con�ned to

unmanaged forests in central Wales, it has since seen a popu-

lation increase and is now found throughout Wales and across

much of central, south-western, and eastern England [21].

Here, a roadkill sample of European polecat from the Vin-

cent Wildlife Trust collection (VWT 693) was used to assess

short-read and long-range de novo sequencing strategies for

non-model mammals. Comparisons between combinations of

PCR-free Illumina libraries, Nextera long mate pair (LMP) li-

braries, 10x Genomics Chromium libraries, and Bionano optical

maps are made to assess optimum sequencing and assembly

strategies.

Sequencing Technologies

Short-read sequencing

The market leader in short-read high-throughput NGS is Illu-

mina [22]. Machines produce read lengths of 100 bp and above,

and a single Illumina Novaseq run is currently capable of gener-

ating 3,000 Gb of read data. An advantage to Illumina sequencing

is the generation of paired-end (PE) reads, inwhich the sequence

from both ends of each DNA molecule is synthesized. As the in-

put molecules are of an approximate known length, the acqui-

sition of PE data provides a greater amount of information. Ad-

ditionally, using a PCR-free library preparation removes bias in

genomic coverage previously incorporated by a PCR ampli�ca-

tion step in older library preparation procedures [23]. Although

requiring input DNA of a degree of magnitude greater than PCR-

ampli�ed libraries, PCR-free libraries are expected to capture un-

biased coverage of the genome, usually re�ected by an increased

size of the assembly and less duplication in single-copy regions

of the genome compared with PCR-ampli�ed libraries [24]. They

also provide superior coverage in GC-rich regions of the genome,

enabling access to regions that were previously dif�cult to se-

quence [25]. PCR-free Illumina sequencing requires a minimum

of 2 µg of genomic DNA (gDNA) at a minimum concentration of

35 ng/µL in 60 µL.

Long mate pair sequencing

Long DNA fragments up to ∼40 kb can be sequenced to provide

PE reads that bridge long repeats, thus producing longer con-

tiguous genome assemblies as well as characterizing structural

variants. Under the Nextera LMP protocol [26], a transposase en-

zyme attaches 19-bp biotinylated adaptors to both ends of each

long DNA fragment. The DNA is then circularized, where the

biotinylated ends become joined. The circularized DNA is then

fragmented and biotin enrichment is used to process the frag-

ments containing the adaptors that mark the junction. During

sequencing, reads are produced from both ends of a fragment,

resulting in inward-facing reads that read toward and through

the adaptors. Twelve libraries covering a wide range of jump

sizes can be constructed using this protocol, thus ensuring pro-

duction of the best LMP libraries from a given DNA sample. For

Illumina Nextera LMP sequencing the Nextclip tool can then be
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Etherington et al. 3

used to trim adaptors and de-duplicate reads [27]. Nextera LMP

sequencing requires a minimum of 4 µg of gDNA for the 12 li-

braries, at a minimum concentration of 30 ng/µL in 300 µL.

10x Genomics

The Chromium system from 10x Genomics uses oil emulsion

and multiple displacement ampli�cation to ligate short molec-

ular barcodes to reads from each fragment of DNA, followed

by PE Illumina sequencing [28]. Each fragment receives its own

unique barcode, and hence reads with the same barcodes rep-

resent clusters of reads from the same region in the genome.

These “linked reads” provide the long-range information miss-

ing from standard Illumina sequencing and are then used to as-

semble phased assemblies de novo. 10x Chromium libraries re-

quire a minimum of 1.25 ng of high molecular weight gDNA at a

concentration of 1 ng/µL. In order to take full advantage of the

technology, gDNA should >50 kb in length.

Optical mapping (Bionano)

Bionano technology produces optical maps of nick-

ing/restriction enzyme sites across kilobase-long stretches

of DNA molecules, providing a high-throughput tool for order-

ing and orienting contigs of physical maps and validation of

genome assemblies [29]. Bionano optical maps can be compared

to in silico restriction maps produced from an NGS genome as-

sembly for validation purposes, to improve contiguity by

assigning the shorter NGS scaffolds to the longer optical maps,

and identifying structural variants. A total of 600 ng of raw

gDNA at a concentration of 35–200 ng/µL is typically enough

DNA to generate ∼120 µL of labelled molecules—enough to pro-

vide adequate coverage for analysis of a human-sized genome

(3 Gb).

Genome contiguity has an effect on what analyses can be

achieved (Table 1), so it is important to appreciate the power and

limitations of each sequencing strategy and technology.

Materials and Methods

Sequencing

Using the same sample of a roadkill European polecat stored in

100% ethanol, 2 lanes of PCR-free Illumina HiSeq2500 250-bp PE

reads (77× coverage), 2 Illumina LMP libraries of size 5 kb (27×

coverage) and 7 kb (9× coverage), and 4 lanes of 150-bp PE 10x

Genomics Chromium (totalling 85× coverage) using an Illumina

HiSeq2500 were generated (Illumina HiSeq 2500 System, RRID:

SCR 016383).

We extracted DNA from 4 European polecat samples (all from

the VWT collection) and analysed the molecule distribution

using an Agilent TapeStation (Supplementary Fig. S3). Sample

VWT 693 had the highest concentration of the longestmolecules

where the distribution of molecule lengths peaked at just under

60 kb and was used for all further sequencing. For this sample

50% of the molecules were >51 kb. The mean molecule length

of the remaining 50% of molecules (i.e., those <51 kb) was 15 kb.

This was not of good enough quality to generate Bionano data

(recommended >150 kb). Because the domestic ferret and its

polecat ancestor diverged only ∼2,000 years ago and they fully

interbreed, we do not expect substantial divergence and struc-

tural differences between the 2 species [19, 30–34]. Therefore,

the original sample used for the domestic ferret genome assem-

bly [35] was obtained and 1 chip of Bionano Genomics optical

genome maps was generated (Saphyr, RRID:SCR 017992). This

was used to create Bionano hybrid-scaffold assemblies for the

European polecat genomes assembled with the previously men-

tioned short-read data, using the Bionano Solve software [36].

We generated 664 Gb of Bionano data, with an N50 size of 185 kb

and a contig coverage of 261×. Of this, 40% of the molecules

aligned back to the Bionano de novo assembly, leaving an effec-

tive coverage of 110×. A more detailed description of the library

preparation methods can be found in the Supplementary Meth-

ods, and the protocols are also available in protocols.io [37].

Assemblies

Ten different genome assemblies were generated as summa-

rized in Fig. 1 (with additional information in Supplementary

Table S1), and detailed as follows:

Assembly A1 (w2rap)

The PCR-free Illumina reads from polecat were assembled us-

ing the w2rap-contigger [38]. The w2rap-contigger (w2rap) orig-

inated from a fork of the popular DISCOVAR de novo program

(Discovar, RRID:SCR 016755) [39], and then a number of im-

provements were made to reduce memory usage and process-

ing time, enhance parameterization, improve repeat resolution,

and increase accuracy and contiguity. It also bene�ts from re-

quiring less computational resources than other popular assem-

blers such as ALLPATHS-LG (ALLPATHS-LG, RRID:SCR 010742)

[40]. w2rap is predominantly a contig assembler—reads are used

to construct an assembly graph, which is then traversed to cre-

ate a contig assembly. A �nal step involves using the PE infor-

mation to scaffold contigs not joined during the initial assembly

process. Using w2rap, 4 different assemblies were created using

a range of k-mers (k = 180, 200, 224, and 240), and simple assem-

bly stats were run to examine contiguity across the assemblies

(for all contigs and �ltering for contigs > 1 kb). From these statis-

tics, the assembly constructed with k = 224 was selected as the

�nal assembly.

Assembly A2 (w2rap + lmp)

We analysed the distribution and coverage from the 12 Nextera

LMP libraries and selected the 5- and 7-kb libraries owing to their

tight distribution and higher coverage, when compared to the

other 10 libraries. Using SSPACE (SSPACE, RRID:SCR 005056) [41],

the 5- and 7-kb Nextera LMPs were used to scaffold the w2rap

assembly from assembly A1. For all SSPACE LMP assemblies the

reads were used only for scaffolding and not for contig exten-

sion.

Assembly A3 (10x)

The 10x Genomics Chromium library was assembled using the

10x Genomics Supernova software [28], using default parame-

ters. Default parameters automatically cap the number of reads

to 1,200 M, which, after trimming and �ltering, resulted in an

effective coverage of 52.18× with a mean molecule length of

38.42 kb. Similar to w2rap, Supernova creates an initial contig

assembly but then scaffolds using themolecule-speci�c barcode

information in the reads to join contigs known to be from the

same molecule [28]. The output style of the resulting assembly

was “pseudohap,” which creates 1 haplotype per scaffold at ran-

dom.

Assembly A4 (10x + lmp)

SSPACE was used with the 5- and 7-kb Nextera LMPs to scaffold

the 10x assembly generated in assembly A3. As in assembly A2,
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Table 1: Information regarding the possible resolution for various de novo genome sequencing technologies

Assembly resolution Paired-end
Paired-end + long

mate pair Bionano 10x Genomics

Gene content Yes Yes No Yes

Gene order Yes Yes No Yes

Repeat spanning No Yes Yes Yes

Structural variants No Yes Yes Yes

Haplotype resolution (phased

genomes)

No No No Yes

When planning a genome assembly project, it is important to understand the strengths and limits of the various sequencing

strategies available.

Figure 1: Ten different assembly strategies using a variety of different data types: PCR-free Illumina short-read (“PCR-free”), long mate pair (“LMP”), 10x Genomics

Chromium library (“10x”), and Bionano Genomics optical maps (“Bionano”). The blue-boxed assemblies all originate from the same PCR-free w2rap assembly (A1), and

the black-boxed assemblies all originate from the same 10x Genomics Supernova assembly (A3). Information in paretheses refers to assembly software pipeline, and

assembly numbers are annotated below each assembly.

the LMP reads were used only for scaffolding and not for contig

extension.

The Bionano data were assembled de novo and then were

used to position and orient scaffolds from previous assemblies,

creating a Bionano hybrid-scaffold as follows:

Assembly A5 (w2rap + bionano). Bionano hybrid-scaffolding

with w2rap assembly (Assembly A1).

Assembly A6 (w2rap + lmp + bionano). Bionano hybrid-

scaffolding with the w2rap + lmp assembly (Assembly A2).

Assembly A7 (10x + bionano). Bionano hybrid-scaffolding with

the 10x assembly (Assembly A3).

Assembly A8 (10x+ lmp+ bionano). Bionano hybrid-scaffolding

with the 10x + lmp assembly (Assembly A4).

Finally, the 30× coverage of 10x Genomics data (from the

same data generated for assembly A3, henceforth referred to

“10x-scaffolding”) was used to scaffold 2 assemblies using the

scaff10x program from Phusion2 [42], as follows:

Assembly A9 (w2rap + 10x). The w2rap-only assembly (Assem-

bly A1) with 10x-scaffolding.

Assembly A10 (w2rap + lmp + bionano + 10x).Thew2rap+ lmp

+ bionano assembly (Assembly A6), with 10x-scaffolding.

Analyses

Genome contiguity

For each genome assembly, a number of assembly statistics,

such as contig N50, scaffold N50, the number of scaffolds greater

than given lengths, and scaffolded genome size were calculated.

To calculate contig N50, any scaffolded contigs that were joined

by≥25Nswere broken. The percentage of the genome contained

in scaffolds >25 kb (the average length of a vertebrate gene [43])

and the number of scaffolds >39 Mb (the length of the small-

est chromosome in a recent chromosome-scale assembly of a

closely related mustelid [44]) were also calculated.

k-mer analysis

The K-mer Analysis Toolkit (KAT) version 2.3.4 [45] was used to

examine k-mers across reads and assemblies. KAT enables users
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Etherington et al. 5

to assess levels of errors, bias, and contamination at various

stages of the assembly process. Using the KAT “comp” program

with a k-mer size of 31, k-mers in the PCR-free Illumina reads

were compared with those in the resulting assemblies (omitting

the Bionano assemblies because this technology adds negligi-

ble sequence content), and for each assembly, the k-mer spectra

were plotted.

Gene content

BUSCO (v3.0.2) was used to search for single-copy orthologs in

each assembly (BUSCO, RRID:SCR 015008) [46]. BUSCO reports

the number of single-copy orthologs discovered in the input

assembly and categorizes them as “complete,” “single-copy,”

“multi-copy,” or “fragmented.” Mammalia odb9was used for the

“lineage” parameter in BUSCO and “human” for the Augustus

species parameter.

Repeat content

To examine repeat content and compare how repeats were re-

solved in each genome assembly, RepeatMasker v 4.0.7 with li-

brary dc20170127-rb20170127 (RepeatMasker, RRID:SCR 012954)

[47] was used (with default values) to identify repeat families

in each assembly, using all Carnivora-speci�c repeats. As well

as identifying repeat sequences, the mean deletion, insertion,

and divergence for each family were also calculated, as well

as the mean values overall. Mean divergence is calculated as

“mismatches/(matches + mismatches)” between queries and

matches for all repeats.

Assembly errors and misassemblies

REAPR (REAPR, RRID:SCR 017625) [48] was used to evaluate the

accuracy of each genome assembly by separately mapping PCR-

free PE and LMP reads back to each assembly. The fragment cov-

erage distribution (FCD) error for each assembly was calculated.

FCD is the fragment depth from only the reads that are mapped

to a given base of a fragment. The FCD error is the difference be-

tween the theoretical and observed FCD and is used to identify

assembly errors in the regions containing a run of high FCD er-

rors. Mapping information such as the FCD and insert size distri-

bution is analysed to locate misassemblies as well as more local

per-base accuracies. The “smaltmap” option in REAPRwas used,

which uses SMALT (SMALT, RRID:SCR 005498) [49] to align the

PCR-free PE and LMP reads back to each assembly, utilizing the

option to map PE reads independently. This ensures that read

pairs are not arti�cially forced to map as proper pairs within

a given insert size. REAPR was then used to identify perfectly

and uniquely mapped reads in the PE PCR-free alignment, to ac-

curately call error-free bases in the assembly, and further used

the LMP reads to identify features consistent with misassem-

blies. Error-free bases have ≥5× perfect and unique coverage of

PE reads. REAPR summary scores were calculated for each as-

sembly by multiplying the number of error-free bases by the

square of the REAPR broken scaffold N50 length, and then di-

viding by the original scaffold N50, i.e., “No. error-free bases ∗

(broken N502/assembly N50).” This test was �rst used to eval-

uate genome assemblies in the Assemblathon series [43] and

rewards local accuracy, overall contiguity, and correct scaffold-

ing of an assembly. To independently assess the performance

of each data type for scaffolding, the numbers of REAPR breaks

were compared between the w2rap-only assembly (A1) and that

assembly scaffoldedwith 1 data type, namely, LMP (A2), Bionano

(A5), and 10x (A9). The same analyses were also performed using

the 10x-only assembly (A3).

Value for money

Cost is a huge factor in research and ultimately affects decisions

made regarding the technologies used. A metric was created to

re�ect “value for money” by estimating the cost of each assem-

bly and the N50 achieved. This metric is provided as N50/$1,000

and calculated for contig N50, scaffold N50, and the REAPR bro-

ken scaffold N50.

Ranking assemblies

Each assemblywas given a rank score according to its position in

each of the 7 metrics. The top-placed assembly that performed

best in a given metric was given a rank score of 10, the second-

placed assembly was given a rank score of 9, and so on, down to

the bottom-placed assembly, which was given a rank score of 1.

Assemblies were ranked for the following metrics:

1. Scaffold N50

2. REAPR broken scaffold N50

3. Contig N50

4. Percentage of genome represented by scaffolds >25 kb

5. Single-copy BUSCO orthologs

6. REAPR summary score

7. REAPR broken scaffold N50/$1,000

z-scores

z-scores were used to combine scores from datasets with differ-

ent means, ranges, and standard deviations and have the bene-

�t of rewarding/penalizing those assemblies with exceptionally

high/low scores in any 1 metric. The in�uence of each of the 7

metrics was tested by removing eachmetric in turn and recalcu-

lating the z-score for each assembly. These recalculations were

then used to produce error bars for the �nal z-score �gure, by

providing the minimum and maximum z-score that might have

occurred if any combination of 6 metrics was used.

Results

Assembly contiguity and connectivity

Assembly statistics

After assembling the 10 genomes as described in Fig. 1, a number

of metrics were calculated for each assembly to examine conti-

guity and connectivity,measured by the lengths and distribution

of the scaffolds within each assembly (Table 2). The mean as-

sembly size for all genomes was 2.52 Gb, slightly larger than the

2.41-Gb assembly of the domestic ferret [35]. The 10x-based as-

semblies erred on having smaller genome assembly sizes (2.46–

2.50 Gb), with the larger assemblies (2.47–2.66 Gb) being from the

PCR-free Illumina-based assemblies.

Contig N50 for the assemblies varied between 183 and 271 kb.

Scaffold N50 for the assemblies varied between 300 kb and 21

Mb. The increase from contig N50 to scaffold N50 varied greatly

(Fig. 2). The addition of LMP data to an initial short-read assem-

bly had a varying effect. On the relatively fragmented w2rap as-

sembly (A1), the addition of LMP reads led to an almost 9-fold in-

crease of the scaffold N50, but adding LMPs to themore contigu-

ous 10x assembly (A3) resulted in a 2-fold increase. This is not

unexpected because the N90 value for the 10x assembly (800 kb)

is 20 times greater than that of the w2rap assembly (40 kb);

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/9
/5

/g
ia

a
0
4
5
/5

8
3
6
1
3
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_012954
https://scicrunch.org/resolver/RRID:SCR_017625
https://scicrunch.org/resolver/RRID:SCR_005498
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Table 2: Genome assembly statistics (for sequences >1 kb) for all assemblies

No. Assembly

No. scaffolds (%) % genome
≥25 kb

Longest
scaffold (Mb)

Contig N50
(kb)

Scaffold N50
(Mb)

Assembly
size (Gb)>100 kb >1 Mb >39 Mb

A1 w2rap 6,290 (10.7) 176 (0.3) 0 94.9 2.52 182.93 0.30 2.47

A2 w2rap + lmp 1,680 (4.9) 682 (2.0) 0 94.8 15.65 271.16 2.62 2.60

A3 10x 1,023 (3.9) 501 (1.9) 0 93.3 32.15 207.98 5.26 2.46

A4 10x + lmp 669 (4.2) 346 (2.2) 3 94.7 58.16 210.72 10.33 2.50

A5 w2rap + bionano 4,361 (7.7) 626 (1.1) 0 93.8 6.89 182.93 0.85 2.66

A6 w2rap + lmp +

bionano

990 (3.0) 468 (1.4) 0 94.8 34.30 271.16 5.73 2.60

A7 10x + bionano 604 (2.3) 336 (1.3) 3 97.5 46.79 207.98 10.84 2.48

A8 10x + lmp + bionano 409 (2.6) 218 (1.4) 9 97.6 104.38 210.72 21.01 2.50

A9 w2rap + 10x 1,097 (2.4) 467 (1.0) 0 97.6 35.44 182.93 5.58 2.47

A10 w2rap + lmp +

bionano + 10x

447 (1.4) 235 (0.7) 6 97.5 65.13 271.16 14.05 2.60

Percentage scores refer to percentage of scaffolds greater than a given threshold. The quantity 39 Mb is the size of the smallest chromosome in a recent chromosome-

scale assembly of a closely related mustelid and hence an indication of the number of chromosome-sized scaffolds. A more thorough list of genome statistics can be

found in Supplementary Table S2.

Figure 2: Log-scale lengths of contig N50 (blue) and scaffold N50 (red) of all 10 assemblies, sorted (left to right) by scaffold N50.

hence, the chance of mate pairs spanning the same contig and

not adding to the contiguity of the assembly is much higher in

the already contiguous 10x assembly. The addition of Bionano

data to assemblies leads to a similar scaffold N50 increase across

all assemblies, namely, between a 2.0- and 2.8-fold increase. Fi-

nally, 10x-scaffolding data were added to scaffold assembly A1

(w2rap) and assembly A6 (w2rap + lmp + bionano). As might be

expected, the effect of 10x scaffolding data on less contiguous

genomes was greater than that on more contiguous genomes.

There was an 18.6-fold increase in N50 between assembly A1

(w2rap) and assembly A9 (w2rap + 10x), whereas the increase in

N50 between assembly A6 (w2rap + lmp + bionano) and assem-

bly A10 (w2rap + lmp + bionano + 10x) was less contrasting at

2.5-fold.

Generally speaking, assemblies created with 1 or 2 data

types, where 1 of the data types was Illumina short reads,

showed the smallest increase from contig N50 to scaffold N50

(Fig. 2).

Assembly errors and misassemblies

REAPR was used to assess the accuracy of the polecat genome

assemblies by looking at low-quality regions, breakpoints (Ta-

ble 3), and summary scores (Fig. 3). The percentage of error-free

bases for each assembly varied between 76.05 and 85.9%. All

the w2rap-based assemblies were on the low end of the scale

(76.05–81.09%), whilst 10x-based assemblies were on the high

end (84.65–85.9%). Conversely, therewas a trend forw2rap-based

assemblies to be less affected bymisassemblies (excluding those

with 10x scaffolding). Their REAPR broken N50 size reduced be-

tween 2 and 64%, whilst 10x-based assemblies reduced in N50

size between 68 and 91%. A similar pattern is seenwith the num-

ber of FCD errors, where all w2rap-based assemblies (bar A10,

with 10x scaffolding) have <8,214 FCD errors and all 10x-based

assemblies have ≥9,095 errors.

Finally, the performance of each technology was indepen-

dently assessed for scaffolding by comparing the number of

REAPR breaks between the w2rap assembly (A1) and those scaf-

folded with only 1 data type (LMP, Bionano, and 10x scaffold-

ing) (Table 4). After accounting for the 2,756 breaks introduced

by REAPR in thew2rap-only assembly (A1), it was found that Bio-

nano (assembly A5) clearly performed best, containing only 729

more breaks than the original assembly (A1). Conversely, LMP

(6,843 more breaks) and 10x scaffolding (7,353 more breaks) data

types had ≥9 times more breaks introduced by REAPR than Bio-
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Etherington et al. 7

Table 3: REAPR statistics showing the percentage of error-free bases in the assembly, N50s before and after breaking at breakpoints, the per-
centage decrease in scaffold N50 after breaking, and the fragment coverage distribution (FCD) errors including errors across gaps

No. Assembly name % error-free Original N50 (Mb)
REAPR broken

N50 (Mb) % reduction FCD errors

A1 w2rap 80.83 0.3 0.29 2 6,065

A2 w2rap + lmp 79.10 2.61 1.13 57 8,213

A3 10x 85.90 5.26 1.69 68 11,379

A4 10x + lmp 85.35 10.33 1.86 82 9,095

A5 w2rap + bionano 76.05 0.85 0.52 38 4,523

A6 w2rap + lmp + bionano 78.38 5.73 2.06 64 7,392

A7 10x + bionano 84.65 10.84 2.00 82 13,068

A8 10x + lmp + bionano 84.75 21.00 1.86 91 11,531

A9 w2rap + 10x 81.09 5.58 0.57 90 7,601

A10 w2rap + lmp + bionano +

10x

77.80 14.05 1.75 88 9,488

Figure 3: REAPR summary scores for each polecat assembly. REAPR summary scores were calculated for each assembly by multiplying the number of error-free bases

by the square of the REAPR broken scaffold N50 length and then dividing by the original scaffold N50.

Table 4: Comparison of the number of breaks introduced by REAPR
for each of the technologies used to scaffold thew2rap-only assembly
(A1)

No. Assembly name
Assembled
sequences

No. sequences
after breaking REAPR breaks

A1 w2rap 929,245 932,001 2,756

A2 w2rap + lmp 887,887 897,486 9,599 (6,843)

A5 w2rap + bionano 927,316 930,801 3,485 (729)

A9 w2rap + 10x 916,014 926,123 10,109 (7,353)

The number of breaks in parentheses represents the number of breaks after ac-

counting for the 2,756 breaks introduced into the comparison assembly (A1).

nano. A comparison was made between the number of breaks

(5,252) in the 10x assembly (A3) to the 10x + lmp assembly (A4)

and the 10x + bionano assembly (A7) (Table 5). A similar pattern

as above was found, with the LMP assembly having 2,785 more

breaks than the 10x assembly but with the Bionano assembly

having only 61 more breaks, again demonstrating the accuracy

of Bionano for scaffolding.

Table 5: Comparison of the number of breaks introduced by REAPR
for each of the technologies used to scaffold the 10x assembly (A3)

No. Assembly name
Assembled
sequences

No. sequences
after breaking REAPR breaks

A3 10x 26,253 31,505 5,252

A4 10x + lmp 16,018 24,055 8,037 (2,785)

A7 10x + bionano 25,834 31,147 5,313 (61)

The number of breaks in brackets represent the number of breaks after account-

ing for the 5,252 breaks introduced into the comparison assembly (A3).

Assembly completeness

k-mer content

“KAT comp” [44] was used to compare k-mers in the Illumina

PCR-free reads with k-mers in the non-Bionano assemblies (A1–

A4 and A9). “KAT plot” was then used to visualize the output

(Fig. 4 and Supplementary Fig. S1). The plots all show a similar

distribution of k-mers. The black distribution at the start of the

x-axis represents sequencing errors in reads, and its increased

width represents an increased number of errors in the reads. The
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8 Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal

k-mers in these reads have not been incorporated into the �nal

assembly. The extension of the black line along the x-axis (up

to a k-mer multiplicity of 40 on the x-axis) represents collapsed

haplotypes, where k-mers from 1 side of a bubble in the assem-

bly graph have been removed to construct a linear path through

the graph. Any extension of the black line along the x-axis into

the main red distribution (>40 k-mer multiplicity) represents a

small number of high-copy k-mers in the readsmissing from the

assembly. The red area in all graphs represents a normal distri-

bution of k-mers found in the reads and occurring once in the

assembly. The absence of any additional colours, representing

k-mers appearing once in the reads but multiple times in the

assembly, re�ects the presence of only unique content through-

out the assembly, with k-mers in the reads occurring no more

than once in the assembly.

Despite all of the assemblies being compared to the PCR-free

Illumina short reads, virtually the same distribution of k-mers

between the reads and assemblies was observed, showing an al-

most identical distribution of k-mers from all the different read

sequences and their resulting assemblies. The KAT-plots involv-

ing 10x assemblies (Supplementary Fig. S1C andD) are also char-

acterized by some high-copy read k-mers missing from the as-

semblies. This suggests that the minimum size of contigs in-

cluded in the �nal assembly (1 kb) may be too high. This may

also explain the slightly smaller assembly sizes obtained from

the 10x-based assemblies when compared to the w2rap-based

assemblies (Table 2).

Gene content

BUSCO was used to look at single-copy orthologs in the as-

semblies (Fig. 5) and examine the number of single-copy, du-

plicated, fragmented, and missing orthologs. The number of

complete and single-copy orthologs reconstructed varied from

3,748 (91%) in Assembly A1 and 3,885 (95%) in Assembly A10.

Of the 4,104 mammalian orthologs examined 3,603 (88%) were

found in single copies across every assembly, 65 were missing,

30 were fragmented, and 21 duplicated across all assemblies.

The w2rap assembly (A1) had the highest number of missing or-

thologs (117) and fragmented orthologs (198), probably owing to

the fragmented nature of the assembly. Adding scaffold datasets

improved ortholog reconstruction in all but 1 case, where we

found that adding only Bionano (A7) or only LMP (A4) data to

the 10x assembly (A3) fragmented a few orthologs (6 and 7, re-

spectively) although adding Bionano data to the 10x + lmp as-

sembly (A4, resulting in assembly A8) increased the number of

single-copy orthologs by connecting 13 fragmented ones. Gen-

erally, the addition of LMP data had the least bene�cial effect

on ortholog reconstruction, followed by Bionano, and then 10x

scaffolding. Indeed, the lowest-ranking assembly (A1) jumped to

the second-highest-ranking assembly merely by the addition of

10x scaffolding data, which reduced the number of fragmented

orthologs from 198 to 94.

Repeats

RepeatMasker was used to look at Carnivora-speci�c repeat

content in the assemblies. Long interspersed nuclear elements

(LINEs) and short interspersed nuclear elements (SINEs) were

by far the most common classes of repeats, and these are con-

centrated on here. A very similar picture was found among all

datasets. The percentage of the genome assemblies that was

masked for repeats varied between 35.82 and 39.49%, with SINEs

varying between 8.40 and 9.81%. The w2rap-based assemblies

were on the lower end of both of these scales, with the 10x-based

assemblies on the higher end.

A slightly different pattern was found when examining

LINEs, the composition of which varied between 19.20 and

20.73%. In these repeats the w2rap-based assemblies clustered

at the lower end of the scale, with the exception of assembly A1

(w2rap) and assembly A9 (w2rap + 10x), which grouped with the

10x assemblies at the higher end of the scale.

Mean divergence between each assembly and all repeat fam-

ilies was also calculated. It was found that the divergence

between assemblies was small (24.52–24.60), with no de�ned

grouping of the assemblies by data type. This suggests an overall

similar ability of each data type to accurately reconstruct repeat

sequences (Table 6).

Value for money

The N50/$1,000 metric (see Methods) was calculated in order

to provide a metric for value for money when considering the

choice of technology and the return on money spent (Fig. 6). For

contig N50/$1,000, the w2rap-based assemblies provide by far

the best value for money, with the exception of those with 10x

scaffolding. Value for money decreases as more data are added

to the w2rap assemblies. So, for contig assemblies a basic PCR-

free Illumina short-read assembly provides the best value for

money.

However, when looking at scaffold N50/$1,000, the trend

changes. Five of the 6 lowest-scoring assemblies constitute

w2rap-based assemblies, generated with between 1 and 3 data

types. The 10x-based assemblies showbetter performancewhen

looking at scaffold N50/$1,000, with 3 of the 4 highest-scoring

assemblies being 10x-based. The difference in scaffold N50 be-

tween the w2rap-based and 10x-based assemblies might be ex-

pected because the short-read Illumina data do not contain the

additional molecule-speci�c linked-read information present in

10x data. Another trend is that addingmore scaffolding data to a

“base” assembly (A1 and A3) increased the scaffold N50/$1,000.

Hence, addingmore data to increase scaffold contiguity provides

value for money, although one must judge whether the amount

of increase justi�es the extra cost.

Ranking assemblies

Assemblies were ranked on a number of key metrics (see Meth-

ods), allocated a �nal rank score (Supplementary Fig. S2), and

z-scores were calculated for each assembly (Fig. 7). The order

of ranking in the rank-scoring method is similar to the z-score

ranking, although when the z-scores are calculated the 10x as-

sembly (A3) and w2rap + lmp + bionano + 10x assembly (A10)

both rank 2 places higher, with the 10x + lmp + bionano as-

sembly (A8) ranking a place lower. The z-scores provide a bet-

ter assessment of the performance of each assembly across all

the metrics and not just their position in the �nal ranking. The

general trend was that the more data included, the higher the

assembly ranked, although this was not always the case. For ex-

ample, the second-highest-ranked assembly was A10, the only

assembly with 4 different data types (w2rap + lmp + bionano

+ 10x), but the highest-placed assembly was assembly A6 (as-

sembly A10, but without the �nal 10x scaffolding data). Also, the

10x-only assembly (A3) ranked 1 place higher than the 10x+ lmp

assembly (A4).

Discussion

Although chromosome-scale assemblies are now achievable, it

is often not possible or necessary to assemble the genomes of

non-model organisms to such precision. A number of dif�culties

are faced when sequencing and assembling non-model organ-
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Etherington et al. 9

Figure 4: KAT k-mer plots comparing k-mer content of Illumina PCR-free reads with w2rap assembly (A1). The black area of the graph represents the distribution of

k-mers present in the reads but not in the assembly, and the red area represents the distribution of k-mers present in the reads and once in the assembly.

Figure 5: Number of single-copy (blue), duplicated (orange), fragmented (grey), and missing (yellow) orthologs from BUSCO. To visualize the number of duplicated,

fragmented, and missing orthologs, the �rst 3,500 single-copy orthologs present in each assembly are truncated.

isms. Genome size (and as a consequence, sequencing depth),

chromosome number, sequence composition, and GC content

are often unknown or inaccurate, the species can be highly het-

erozygous, and samples are often degraded. We address some

of these factors and identify which sequencing and assembly

strategies are required to answer various biological questions.

PCR-free Illumina short-read, 10x Genomics linked-read, long

mate paired read, and Bionano optical maps were generated

from a roadkill European polecat to create 10 different genome

assemblies, using different combinations of the data. The as-

semblies were assessed using a range of tools and ranked using

7 key metrics. We �nd that although some genomes assemble

to high contiguity, this is often at the expense of accuracy and it

is often not necessary to spend additional funds on increasing

contiguity to answer biological questions.

Assembly contiguity and connectivity

As a general rule, adding more data to an assembly increases

the contiguity (scaffold N50). This was observed in the assem-

blies here, with each assembly having a higher scaffold N50

than any “parent” assembly before it. The linked reads from 10x
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10 Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal

Table 6: Repeat content of assemblies

No. Assembly name % Masked % SINEs % LINEs
Mean

divergence

A1 w2rap 38.31 8.99 20.53 24.52

A2 w2rap-lmp 37.24 8.75 19.95 24.56

A3 10x 39.49 9.81 20.73 24.53

A4 10x-lmp 39.10 9.71 20.52 24.54

A5 w2rap-bionano 35.82 8.40 19.20 24.52

A6 w2rap-lmp-bionano 36.79 8.64 19.71 24.52

A7 10x-bionano 39.11 9.72 20.53 24.60

A8 10x-lmp-bionano 38.89 9.66 20.41 24.58

A9 w2rap 10x 38.32 8.99 20.54 24.55

A10

w2rap lmp bionano 10x

36.79 8.64 19.70 24.53

% Masked refers to the amount of the genome masked for all repeats, % SINEs and % LINEs re�ect the percentage of the

genome found to contain each of these classes, andmean divergence is calculated as “mismatches/(matches + mismatches)”

between queries and matches for all repeats.

Figure 6: N50/$1,000, providing an estimate to the cost of scaffold (blue), contig (orange), and REAPR broken scaffold (yellow) contiguity for each genome assembly.

Assemblies are ranked in order of scaffold N50/$1,000.

Figure 7: Cumulative z-scores of assemblies (solid black circles). Error bars represent the minimum and maximum cumulative z-score after removing each metric

in turn and recalculating the z-score for each assembly. Wide error bars show assemblies that are strongly affected by a given metric. For example, the 10x + lmp +

bionano assembly (A8) has a long lower-boundary error bar because it has an exceptionally high scaffold N50 z-score (double that of the next nearest ranking assembly)

and hence omitting this metric results in the assembly scoring much lower.
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Etherington et al. 11

Genomics data constantly outperform the equivalent PCR-free

short-read–based assemblies, with the barcoded linked reads

acting as an additional scaffolding dataset. The assemblies with

the best contig N50 were those based on w2rap + lmp (namely,

A2, A6, and A10). For scaffold N50 and percentage of the genome

represented by scaffolds >25 kb, 10x + lmp + bionano (A8) pro-

vided by far the best contiguity. When REAPR breaks are taken

into consideration, the w2rap + lmp + bionano assembly (A6)

provides the best scaffold N50, although assembly A8, with the

best initial contig N50, is still ranked third. It should be noted

that Bionano and 10x (for scaffolding) added no sequence data

to the assemblies and hence do not extend the contig lengths

or have not connected contigs together without the need to add

N’s. Those assemblies scaffoldedwith LMPs however do increase

in contig N50, re�ecting previously unconnected contigs being

joined without N’s.

An increase in REAPR summary scores was seen when LMP

and Bionano data are added to PCR-free short-read assemblies,

but a decrease in summary scores when 10x scaffolding reads

are included. For 10x-based assemblies, the addition of extra

data leads to a reduction in summary scores. Additionally, 10x-

based assemblies tended to have more FCD errors, and the

breaking of assemblies at these errors affected 10x-based as-

semblies to a greater degree than w2rap-based assemblies. Fi-

nally, the number of breaks created by REAPR for each scaffold-

ing technology showed that Bionano-scaffolded genomes had

signi�cantly fewer breaks than both LMPs and 10x scaffolding.

The addition of 10x-scaffolding data led to an overall reduction

in summary scores, suggesting that although 10x-scaffolded as-

semblies provide a good increase in scaffold N50, much of this

increase is through misassemblies.

The increase inmisassemblieswith the addition of extra data

is understandable. An initial, 1-technology de novo assembly will

have all the “easy joins” put together, and most of those will be

correct. When a new data type is added, it will have the “dif�-

cult joins” to put together, making it very likely that a signi�cant

number of these will be incorrect. Bionano performs best at con-

necting these dif�cult joins.

Assembly completeness

Gene content usually increased after adding scaffolding data,

with the exception of the 10x assembly. Here, adding only LMP

data or only Bionano data fragmented a few orthologs, but in-

corporating both technologies led to an increase in ortholog re-

construction. Other than this it is clear that 10x data perform

exceptionally well in the gene space, both for de novo sequenc-

ing and for scaffolding. Bionano also performs well, with LMP

data having the smallest impact.

There was a small amount of difference in repeat content

between assemblies. The tendency of 10x assemblies to have a

slightly higher percentage of the genome assembled as repeats

probably re�ects the ability of this technology to better resolve

repeats than the standard short-read assemblies, which collapse

a large proportion of the repeats. Those repeats that were re-

solved in assemblies all showed a very similar divergence, re-

gardless of the data types used.

Value for money

For contig assembly, a basic PCR-free short-read assembly pro-

vides the best value for money (A1). Adding more data does not

increase the contig N50 enough to warrant the extra expense.

For scaffold assembly, the story is very different. The 10x + lmp

+ bionano (A8) offers the best value for money. The more data

added to an initial assembly, the higher the scaffold N50/$1,000.

When REAPR broken assemblies are taken into consideration,

the 10x-based and LMP-scaffolded assemblies provide the best

value, with the w2rap + lmp + bionano assembly (A6) being

ranked top (Fig. 6). Another feature when considering REAPR

broken assemblies is the poor performance of 10x scaffolding

(A9 and A10). Compared to an Illumina PCR-free library, 10x

Chromium libraries are expensive to produce owing to higher

cost of the library preparation and the additional hands-on time

required associatedwith the protocol. This increased cost for the

10x Genomics scaffolding data and the high misassembly rate

when used as a scaffolding technology means that it scores low

in this metric. Nextera LMP libraries are even more expensive to

produce than 10x libraries and take a similar amount of prepa-

ration time but are less susceptible to misassembly and score

higher in this metric.

In summary, when looking at genome contiguity, if contigs

are all that are required from a genome assembly, then PCR-

free short-read assemblieswith no additional data types provide

the best value for money. If accurate scaffolds are more impor-

tant, 10x data, often augmented with LMPs or Bionano, provide

good value formoney, with Bionanomisassembling signi�cantly

fewer scaffolds than LMPs.

Ranking assemblies

As expected, the general trend was that the more data in-

cluded, the higher the assembly ranked, with the addition of

Bionano or 10x data providing the most powerful scaffolding

technique.

Application to non-model mammals

Although the sample quality used for non-model organisms is

often sub-standard, sequencing technologies and software are

still successful in assembling these samples into highly contigu-

ous genomes. As a general rule, adding more data to an assem-

bly increases the contiguity (scaffold N50), but the additional ex-

pense of incorporating additional data to increase contiguity is

not always necessary.

For population genetics approaches, SNP calling, and large

multi-species comparisons, basic short-read assemblies such as

w2rap (A1) or 10x (A3) provide enough accuracy and contiguity

to achieve interpretable results. The 10x assemblies also have

the added advantage of haplotype resolution (phased genomes).

Where structural variation, long repeat content, gene order,

or gene clusters are of importance, an additional scaffolding

dataset is often necessary to obtain the required precision for

these analyses (A2, A4, A5, A7, and A9), with 10x scaffolding

or Bionano being the better data to incorporate if working in

the gene space. Examples where this might be important in-

clude when dealing with gene clusters of similar genes, such as

immune-related gene clusters (e.g., MHC, interleukin, toll-like

receptors). When looking at more long-range features, such as

genome synteny, Bionano provides additional contiguity. Bio-

nano, however, is dependent on high-quality high molecular

weight DNA, which might not be available for many organisms

and appears to be the �rst data type to be hindered by sample

degradation. This was apparent from our polecat sample, where

the distribution of molecule lengths peaked at <60 kb, and of

which the smallest 50% of material had ameanmolecule length

of 15 kb (Supplementary Fig. S3).
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Experimental design

Assemblies with both short contig lengths and a high num-

ber of misassemblies can sometimes be found in very het-

erozygous species. Knowing the distribution ofmolecule lengths

from a sample will provide information about the limitations

of which sequencing technologies can be successfully sup-

plied. Researchers can then design their assembly and analy-

sis pipeline to accommodate the limitations of the sample. For

example, if the molecule lengths are only in the region of 1 kb,

then PCR-free Illumina PE sequencing is the only viable option.

Longer molecules, between 10 and 40 kb, allow the preparation

of LMP libraries and between 20 and 100 kb permit the inclu-

sion of 10x Genomics data. Beyond that (≥100 kb), Bionano op-

tical maps may also be included. Low-coverage 10x Genomics

sequencing has recently been shown to produce a high-quality,

cost-effective de novo assembly in a non-model mammal [50].

Using 25× coverage, a de novo assembly of the African wild dog

produced a reference genome with contig and scaffold N50s of

50 kb and 15.3 Mb, respectively, providing another avenue of as-

sembly approach.

Recently, Hi-C sequencing has also been used to good effect

to scaffold genomes of a number of different organisms [51–54].

The technique is based on cross-linking DNA, then digesting the

DNAwith restriction enzymes. The DNA fragment ends are then

re-ligated, which will contain 2 fragments of DNA that were far

apart in the genome but still maintaining some degree of phys-

ical proximity (e.g., on the same molecule). By sequencing the

ends of these fragments, PE reads can be mapped to de novo

genome assemblies and used to scaffold and order contigs, cre-

ating chromosomes-scale assemblies [55, 56]. Although the Hi-C

protocol does not specify a minimum molecule length (the pro-

tocol is carried out in cells or tissue), it relies on fresh DNA long

enough to form distant cross-linked fragments.

Adding long-read data, such as low-coverage PacBio or

Nanopore data, will often be the only solution to overcoming

complexities such as high heterozygosity or long repeats. Un-

fortunately, long-read data rely on high molecular weight DNA

with long molecules, but as described previously, DNA samples

from non-model organisms are often of low quality and the ap-

plication of these technologies may not be suitable. The quality

of sample should re�ect the experimental design and assembly

pipeline. Development in new DNA extraction (e.g., Nanobind

Magnetic Disks [57]) and sequencing technologies may provide

access to low quantity and quality of DNA, which may be a po-

tential solution to overcome the sample extraction issues.

As mentioned, with longer molecules, using long-read tech-

nologies such as PacBio and Nanopore becomes a possibility, but

these require signi�cantly more DNA (>20 ng) to work success-

fully, as well as being associated with a much higher cost. This

overcomes some of the limitations of short-read assemblies,

such as characterizing structural variation, sequencing through

extended repetitive regions, discriminating paralogous genes,

and detecting disease-associated mutations, although with the

drawback of requiring high coverage due to the lower base accu-

racy of long-read sequencing.

Limitations of this study

In this study a combination of 4 different technologies have

been used to create 10 different genome assemblies. An ex-

haustive assessment would produce many more different as-

semblies, so a choice of what was considered a good represen-

tation of all practical combinations was used. Additionally, dif-

ferent assembly software (including versions thereof) may pro-

duce slightly different results depending on the algorithms used

within them. Finally, test metrics can bias results. For example,

the inclusion of more cost-related metrics would bias rankings

to favour cheaper assemblies, whereas more contiguity-related

tests would bias results for assemblies with higher N50s. The

choice of metrics was made to encapsulate genome contiguity,

accuracy, error, biologically meaningful content, and cost whilst

not unduly biasing the results towards any 1 feature of the as-

semblies.

Summary

We address how different sequencing and assembly strategies

are required to answer various biological questions in non-

model mammals. We �nd that although some genomes assem-

ble to high contiguity, this is often at the expense of accuracy and

it is often not necessary to spend additional funds on increasing

contiguity to answer biological questions.

Sequencing technologies and assembly software are always

progressing, with new sequencing chemistry releases providing

longer and more accurate read sequences. Also, novel assembly

algorithms promise more contiguous and accurate assemblies.

Often each algorithm is dependent on the input of speci�c data

types, with some new assembly software providing more con-

tiguous assemblies at the expense of accuracy. It is important

to fully assess the performance of an assembly by using a num-

ber of different quality assessment approaches as shown in our

study, rather than relying on simple statistics such as scaffold

N50, which itself can be biased by the exclusion of shorter se-

quences from the calculations.

Finally, given the accuracy of PCR-free assemblies and the

contiguity of the 10x linked-read technology, if a PCR-free

linked-read sequencing technology existed, it would provide ac-

curate, contiguous, and cheap assemblies.

Availability of Supporting Data and Materials

The submission of sequencing data was brokered by the COPO

platform [58], funded by the BBSRC (BB/L024055/1), and sup-

ported by CyVerse UK, part of the Earlham Institute National Ca-

pability in e-Infrastructure. All datasets supporting the results

of this article are available in the ENA repository under um-

brella project accession No. PRJEB34131. Optical maps, annota-

tions, and other results are available from theGigaScienceGigaDB

repository [59], and protocols are available from protocols.io [37].

Additional Files

Figure S1. KAT k-mer plots comparing k-mer content of Illumina

PCR-free readswith (A) w2rap assembly (A1), (B) w2rap+ lmp as-

sembly (A2), (C) 10x assembly (A3), (D) 10x + lmp assembly (A4),

and (E) w2rap + 10x assembly (A9). The black area of the graphs

represents the distribution of k-mers present in the reads but not

in the assembly, and the red area represents the distribution of

k-mers present once in the reads and once in the assembly.

Figure S2. Rank scoring for assemblies. Each assembly was

ranked over 7 key metrics. A rank score of 10 was given to the

highest-ranking assembly, down to a rank score of 1 for the as-

sembly that performed worst for the given metric.

Figure S3. Agilent TapeStation traces for DNA extractions of

VWT samples 448, 557, 639, and 693. The traces show the rel-
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ative intensity of the number of molecules against the length of

the molecules in base pairs.

Table S1. Ten different assembly strategies using a variety of dif-

ferent data types: PCR-free Illumina short-read (ISR), long mate-

pair (LMP), 10x Genomics Chromium library, and Bionano Ge-

nomics optical maps.

Table S2. Full assembly statistics for all assemblies.

Supplementary Methods
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