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Introduction

Domestic cats and their wild relatives of the Family Felidae (37 species) have fascinated humankind for

nearly a hundred centuries, appearing continually in archeological remains, art, and literature. Cat

domestication, originally a defense against rodent infestation of a rapidly expanding agrarian society, led to the

worship and deification of cats in Egyptian culture, vilification and subjugation by Christian superstition during

the Dark Ages, followed by recent artificial selection of fancy breeds as house pets (18). Our personal adulation

for cats and dogs has produced a veterinary medical surveillance unchallenged by any mammalian species

except humans. The baseline of hereditary and infectious disease descriptions in cats offers a fertile platform for

modeling homologous diseases in man. This bio-medical relevance combined with several biological advantages

make a strong case for assessing the whole genome sequence (WGS) of this species.

In the following White Paper we propose the development of a 6X assembled whole genome sequence

for the domestic cat, as is currently determined for mouse and rat, and has been nominated recently for

chimpanzee, cattle and dog. The domestic cat has served as a powerful laboratory model for neuroscience,

reproduction, comparative anatomy and development, monogenic plus complex hereditary human disease

homologues, and for numerous fatal infectious disease agents related to human pathogens (86, 90). Nonetheless,

advances in each of these areas has lingered behind rat and mouse during the genomics era, but would be surely

invigorated by an imperative for assessing an unabridged genome sequence. The cat has played a leading role in

the field of comparative genomics having already yielded moderately dense gene maps (1800 markers, 1.8cM

average marker density), PAC, BAC, flow-sorted autosome and Y-chromosome libraries, and a bio-resource

repository of nearly 10,000 tissue specimens including 300 established cell lines (10, 75, 76, 86, 87). The

conservative retention of ancestral genome organization and syntenic parallels between the feline and human

genomes (in contrast to markedly reshuffled genomes of mouse, rat, and dog) has placed the cat-human genomic

similarities as baseline for discerning the whole genome organization of all placental mammals. (75, 87).

The case for a WGS of the feline genome is predicated on biomedical relevance and application to

human health (including enzymatic, transplantation and gene therapy), on basic science potential in a number of

biological disciplines, on the available genomic resources, and on the established informativeness of feline

comparative biology. In Section I, we highlight examples and potential of feline models for hereditary and

infectious disease, for comparative inference on human/mouse gene annotation, and for basic evolutionary

perception. In Section II we address the strategic issues around sequencing the cat genome. These include the

status of available feline genomic resources, the breadth of the research community, the experimental potential,

rationales and empirical strategies for WGS, and other funding organizations that have pledged their support for

aspects of the feline genome project. Finally, we include letters of endorsement from the feline and comparative

genomics communities and from representatives of the public’s enthusiastic support for this project.
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I. BIOLOGICAL AND BIOMEDICAL RATIONALE FOR THE CAT WGS

A. The Cat and Infectious Diseases

Perhaps the strongest argument for a WGS of the cat is its potential for informing the interplay of host

genes and infectious agents.  Numerous feline viruses and other microbes have been described in detail leading

to fruitful biomedical discoveries.  When one considers that the implication of susceptibility-resistance genes in

man is in its infancy (for viral diseases like AIDS and hepatitis), while infectious agents are considered to be

one of the primary agents of mortality and natural selection (2, 46, 85), the development of a WGS for a species

rich with natural history experimental opportunities like the domestic cat seems critical to reveal the details of

host-pathogen interaction and adaptation.

Consider that feline leukemia virus, FeLV, originally discovered in 1964, led to the revelation of

downstream promotional neoplastic transformation and the characterization of over one hundred genomic

“oncogenes” which have informed our understanding of human cancers (47). Further, chronic FeLV carriers (5-

30% of FeLV infections) succumb to various cancers and immunodeficiency mediated sequelae that are poorly

understood from an immunogenetic perspective.  A feline WGS would allow genomic identification of

immunological, receptor, and host defenses against these chronic diseases.
Feline immunodeficiency virus (FIV) provides the single naturally occurring animal model for HIV-

AIDS pathogenesis. (African monkeys endemic with SIV are resistant to disease, while native Asian macaques

succumb)(98, 123).  FIV is the genetic cousin to HIV; the cause of AIDS, a disease for which there is no

vaccine and no curative therapy.  The FIV model has been under utilized – largely due to lack of two things:

precise immunological reagents and advanced high resolution genomic tools (123). Although more and more

reagents have been developed, the pace of this development would be greatly accelerated by achieving a WGS

of the cat.

There are three areas where the FIV model could be of immense help in our understanding of HIV-1

disease:  1) to determine why lentivirus (the HIV/FIV family) immunity is so weak compared to immunity to

other types of retroviruses and other cell associated viruses, which is prerequisite for effective vaccines; 2) to

resolve the pathogenic process for immunodeficiency disease, so that we will be better able to design adjunctive

therapies for either retarding the collapse of immune system or actually reconstituting it once effective antiviral

therapy has been applied; and 3) to help resolve the role of cellular genetic factors in collaborating or

facilitating HIV/FIV mediated AIDS progression.  Curiously, over twenty wild cat species (including lions,

cheetahs, ocelots, pumas, leopards and others) are endemic with their own monophyletic strain of FIV (16, 23).

Yet, in contrast to domestic cats, the circulating FIV strains do not appear to cause acute immunodeficiency in

the wild cats, likely a consequence of host genomic adaptation toward genetic resistance to pathogenic FIV.

Resolution of the acquired genetic resistance mechanisms would be greatly accelerated by a cat WGS, and

would lead to new cellular avenues for development of HIV/FIV therapy.

There are a number of other feline infectious agents that have been intensely studied.  A coronavirus,

feline infectious peritonitis virus (FIPV), causes a fatal immune-mediated peritonitis in domestic cats and in the

1980s led to annihilation of several captive cheetah colonies as a consequence of historic genetic

homogenization of their immune systems (89, 97). In the mid-1970s feline panleucopenia (distemper) virus

cultivated in a cat vaccine factory abruptly jumped from cats to become a hyper-virulent strain in the world’s

dogs (93). That virus transfer fostered a global epidemic of neurological distemper disease that went on to kill

millions of puppies before a canine vaccine was developed. In 1994, a virulent strain of canine distemper virus,

a relative of human measles, emerged from a domestic dog reservoir to kill a third of the large lion population

in Tanzania’s Serengeti ecosystem (107). Add to the list verified cat-specific agents ranging from alpha

herpesvirus, a relative of human herpes-simplex, toxoplasmosis, cryptococcus, plague, Q-fever, chlamydiosis



3

and rotavirus infections, ehrlichiosis, calicivirus infection, poxvirus infection, and mycobacteriosis (4). Cats are

also highly resistant to anthrax, which has obvious implications.  All of these infections, and more, could prove

valuable to biomedical research, providing we have a better working knowledge of the innate and adaptive

immune system of the cat.  Such knowledge will be greatly facilitated by the cat WGS.

B. The Cat as a Model for Human Hereditary Disease Pathology, Diagnostics, and Therapy.

There are approximately 70 million cats in the United States and several times that number worldwide.

Actually overpopulation of feral cats is considered a serious nuisance in many countries (5, 7, 12, 94). The

reasons for the large population of cats include mankind’s fascination and domestication of the species plus a

relatively high fecundity, features that increase the cat’s potential as a genomic model for medical and

biological application. The world’s veterinary schools produce thousands of practitioners each year, most of

whom carefully document genetic and chronic diseases analogous or homologous to human maladies. The

result is a comprehensive veterinary literature which has described some 258 feline genetic diseases

(http://www.angis.org.au/ Databases/BIRX/omia/).

Fifty presently recognized breeds of cat descend from moderate degrees of inbreeding and artificial

selection that has contributed to numerous hereditary pathologies. Reported disorders reflect spontaneous

mutations that cause congenital abnormalities, inborn errors of metabolism, susceptibility to immune disorders

and infectious disease, many bearing strong phenotypic and/or genotypic homology to human hereditary

pathologies. Physiological study of these feline hereditary diseases provides a strong comparative medicine

opportunity for prevention, diagnostic and treatment studies in a laboratory setting. Most physiological studies

are not possible in children, while large numbers of affected cats allow extensive insights into pathogenic

mechanisms and gene background influence, a key requirement for disease understanding and therapy

evaluation.

Specific mutations have been characterized in ten feline genes that lead to genetic disease: GM1- and

GM2-gangliosidosis, glycogen storage disease type IV, hyperlipoproteinemia alpha-mannosidosis,

muccopolysaccharidosis-I, -VI, -VII, muscular dystrophy and Niemann-Pick disease (6, 11, 31, 39, 40, 43, 51,

71, 124, 131). As many disorders have been well characterized on a phenotypic or biochemical level, including

several high frequency human diseases: spinal muscular atrophy (38), progressive retinal atrophy (77-79),

hypertrophic cardiomyopathy (61), polycystic kidney disease (13), and mucolipidosis (14).

Debilitating neurological abnormalities caused by mutations in genes for lysosomal storage enzymes

have numerous homologues in cats. The mucopolysaccharidoses types I, VI, and VII- and a-mannosidosis

disorders in cats result from deficient activities of the enzymes alpha-L-iduronidase (IDUA), arylsulfatase B

(ARSB), glucuronidase (GUSB) and a-mannosidase, respectively (28, 49, 50, 57, 81, 115). Enzyme

deficiencies for these genes lead to analogous phenotypic abnormalities in human and cat, including mental

retardation, growth abnormalities and shortened life span (28, 49, 50, 57, 81, 115). Effective therapies tested in

cats have played important roles in evaluating correctional strategies for human health, including enzyme

replacement, bone marrow transplantation and gene therapy (42, 48, 64, 112, 117, 126).

The cat MPSI model has provided an ideal system to study mechanisms of brain neurodegeneration and

neural-directed strategies, especially given the large body of pre-existing literature on cat neurology (1, 22, 60,

127). Affected MPS VI cats (Maroteaux-Lamy disease) respond to allogenic bone marrow transplantation from

normal cats (41). In vitro studies have demonstrated retroviral-mediated correction of MPS VI fibroblasts,

chondrocytes and bone marrow cells in both humans and cat (36). In MPS VII cats, enzymatic activity has been

restored in fibroblasts by retroviral gene transfer of rat beta-glucuronidase cDNA (40). As GUSB is an essential

housekeeping enzyme, this feline model is important to examine exogenous genes and gene product delivery to
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a variety of tissue types, and could prove especially valuable due to extensive research conducted on the

anatomy and physiology of the cat central nervous and visual systems.

The feline a-mannosidase deficiency syndrome has served as a powerful model for bone marrow

transplantation (BMT) of lysosomal storage diseases, showing appreciable restoration of a-mannosidase

activity in brain tissue of affected Persian cats (48, 117). These results have provided direct evidence of the

efficacy of BMT as corrective strategy for neuronal storage diseases of the CNS and the potential of using

haematopoietic stem cells as corrective strategy for lysosomal storage disorders.

Cats with lysosomal neurodegenerative GM1 and GM2 gangliosidoses have been invaluable in

characterizing the pathobiology, molecular biology and therapeutic strategies for these diseases. Whereas acid

beta-galactosidase deficiency in GM1 has been corrected in human fibroblasts by retroviral mediated gene

transfer (108) and limited success has been reported in felines reducing GM2 neuronal storage following feline

bone marrow therapy (117), gene therapy of the CNS presents a challenging front as corrective retroviral

constructs require mitotically dividing cells for integration and expression (24).

Lipoprotein lipase (LPL) is a crucial enzyme involved in the regulation of lipoprotein and lipid

metabolism (17). LPL-deficient cats share a nearly identical phenotype to the human mutational deficiency

involving severe pancreatitis, chylomicronenia, and failure to thrive (43). Of the numerous animal models for

LPL deficiency examined including mouse, the cat most closely resembles the lipoprotein pattern and lipid

transport system of humans (43). Liver directed adenovirus mediated gene therapy in LPL deficient cats has

demonstrated the efficacy of this strategy to significantly improve lipoprotein metabolism and marks an

important advance in the development of LPL directed gene therapy (64). Additionally this feline model offers

great potential as an in vivo system to examine increased triglyceride levels associated with LPL deficiency on

atherosclerosis (43).

Thus, cats have proved invaluable mode for three treatment regiments: 1) direct enzyme replacement

which has been tested in MPS I (59) and VI (15, 20, 21, 29, 30) prior to the recent initiation of clinical trials in

children, 2) bone marrow transplantation (MPS-VI, a-mannosidosis, GM1 gangliosidocis) (32, 42, 48, 117);

and 3) gene therapy (MPS-VI, MPSVII, GM1 gangliosidocis (36, 40, 108, 129, 130, 132), and in vivo testing

for lipoprotein lipase deficiency and MPS VI (53, 110).  Since most feline genetic disease models were

identified by a candidate gene approach, genome scans are presently underway for hereditary syndromes for

which the candidate approach has failed: spinal muscular atrophy (Laboratory of Genomic Diversity, NCI),

retinal atrophy (University of Missouri) and a host of hereditary anomalies for which veterinary pedigrees have

been assembled. These genomic searches would benefit enormously from a whole genome sequence of the cat.

There are certain practical advantages to a domestic cat model as well. Cats breed well in a captive

setting, and domestication dating back to 6-8000 years ago has produced nearly 50 recognized breeds which

have experienced moderate levels of inbreeding and artificial selection across their recent ancestry (18, 37, 52).

The breeds provide recent phylogenetic lineages that capture different combinations of coat color, coat length,

patterning, appearance, and behavior traits suitable for genetic analysis.  Modern breeds reflect different

combinations at around twelve monogenic coat color trait loci, most with homologous counterparts in coat color

genes of mouse and other domestic species (105). Gene homologues of pigmentation loci in other mammalian

species have been implicated in anemia, sterility, neurological, and metabolic disorders (8, 9, 56). The history

of modest inbreeding in cat breeds supplies important populations ideal for linkage disequilibrium mapping of

complex quantitative characters as have also been recognized in dog breeds (92). A 6X WGS combined with

existing cat pedigrees offer a rare opportunity to interpret a large body of hereditary trait inference.
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C. The Cat as a Model for Human Reproduction

Detailed studies of reproductive physiology, endocrinology, and behavior of cats have been undertaken

for over 25 years (120). Description of sperm capacitation, oocyte and embryo metabolism, oocyte harvest, and

gamete interactions has led to applications in artificial insemination, in vitro fertilization, embryo maturation,

and embryo transfer (3, 33, 34, 44, 54, 111). The cat has proved an extraordinary model for in vitro maturation

(IVM) of oocytes, (45, 114). Human fertility clinics are turning to IVM to bypass or reduce invasive hormonal

treatments required for aspirating mature oocytes (116, 118). These procedures have been extended to non-

domestic Felidae species allowing successful assisted reproduction in cheetahs, tigers, lions, ocelots and several

other wild cat species (54, 120).  More recently, the fruits of decades of extensive empirical reproductive studies

led to the birth of the first cloned domestic cat kitten via nuclear transfer (109).  This landmark advance, based

on accumulated cat reproduction research, nearly ensures the likelihood of stem cell gene-knockout and gene

transfer technology for this species. These powerful methodologies are under development in several

laboratories including those of present authors (Stephen J. O’Brien and David E. Wildt).
Particularly fascinating has been the high prevalence of teratospermia that occurs among male domestic

cats and for entire species (cheetahs and clouded leopards) or subspecies (Asian lions and Florida Panthers)

(101, 106, 120-122). Teratospermia, the production of high proportions of pleiomorphic (or malformed)

spermatozoa, is a primary cause of infertility in humans (25, 128).  The cat research has identified novel

mechanisms associated with failed fertility (55, 100-103, 120) pointing to high priority areas of study and

therapy for human counterparts. Finally, there are remarkable distinctions in reproductive-behavioral traits

among each of the Felidae species highlighting the rapid co-evolution of genes that specify reproductive

compatibility and isolation mechanisms among species.

D. Informing the Human Sequence: Gene Annotation and Comparative Genomics

An important argument for comparative genome sequence information is annotation of the human

genome.  Distant evolutionary comparisons of the human sequence with pufferfish, zebrafish and chicken will

reveal highly conserved coding regions missed by gene annotation software, in addition to conserved non-

coding regulatory regions. Representative mammalian WGS will be even more informative for detecting rapidly

evolving non-coding regulatory regions invisible to more distant species alignments. Murid genomes (mouse

and rat) clearly have significantly higher rates of nucleotide substitution than most other mammalian species

(63, 72); this factor alone will hamper the ability of the mouse and rat genomes to identify the majority of

conserved regulatory elements in mammalian genomes.  On the basis of nucleotide homology alone the cat is

more similar to the majority of human homologues than either is to mouse or rat, owing to its overall slower

than average nucleotide substitution rate.  Therefore the cat WGS will provide an additional and potentially

more powerful source for human, and mammalian-wide, gene and non-coding regulatory element annotation

than either of the murid species.

The cat genome (along with dog and cow) represents a phylogenetic outgroup species to both human

and mouse genomes, as documented by exhaustive independent mammalian phylogenetic analysis (66, 72, 73).

The cat has evolved from the mammal superorder Laurasiatheria, one of four super-ordinal clades that predated

the radiation of modern placental mammals (73, 84).  The three mammalian species already scheduled for

finished WGS, human, rat, and mouse, are all members of a single different clade, Euarchontoglires.  Thus, the

cat genome would represent a significant extension of the genomic diversity present among mammals.

Considering preliminary human-mouse sequence comparisons, the rate of lineage specific gene-birth and gene-

death might be rapid:  on the order of one every 200,000 years in mammals (27).  Thus, multiple whole genome
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sequences from different mammalian orders provide the opportunity for discovering not only the minimal set of

common mammalian genes, but also novel genes with unique functions specific to either lineage.

A provocative glimpse of multi-species genome sequence comparisons has been achieved with the

recent full sequence comparison of the major histocompatibility complex (MHC) class II sequence of human

HLA, mouse H-2, and domestic cat FLA (133).  The human HLA region consists of 224 genes of which 128 are

expressed while 96 are pseudogenes.  Nearly half of the HLA genes play a role in immune defenses and about

50% of the HLA sequences consist of repetitive elements (LINES, SINES, LTRs and STRs).  Sequence

alignment of human, mouse and cat MHC class II region homologues revealed several fascinating evolutionary

features including 50% differences in MHC segment size (mouse – 500kbp, cat – 750kbp, human – 1000kbp),

pseudogene accumulation (humans have 27, cats 7, and mice 5 pseudogenes) gene loss (cats lose DP and DQ),

gene gain (7 DR genes in cats) and repeat disposition (133).  The extinction of DP and DQ gene function in the

cat is a likely explanation for the rather inefficient humoral response to embryonic antigens in pregnant females

(99) or to graft rejection in domestic cats (125).  The prospect of a cat WGS would allow similar full genome

analysis of the complete human, mouse, rat and other genomes for both the non-coding and coding comparisons

unavailable using EST based genomic approaches.

The cat possesses distinct advantages from a comparative genomics perspective.  The feline genome,

composed of 19 chromosome pairs, is extensively conserved in gene order/content (conserved synteny based on

comparative mapping and ZOO-FISH) among other Felidae species, among other carnivore species, and indeed

across many placental mammals (70, 80, 83, 87, 104, 119).  Ordered RH gene map comparisons reveal that the

extent of chromosome segment conservation between the cat and human genomes is among the highest

observed between mammalian orders (87) (76, 104, 119).  For example, the feline genome assembly is 2-3

times less rearranged relative to the human genome than are the genomes of murid rodent species (mouse and

rats) (76, 87).  In mammals, there seems to have been an extremely slow or default rate of chromosome

translocation exchange as seen between cats and humans, but punctuated occasionally by rare lineage specific

global chromosome reshufflings as found in gibbons, bears, dogs, and murid rodents.  The remarkable co-linear

parallel of the cat and human genomes provides an opportunity to inspect rather long stretches of conserved

synteny between the two species, as well as the patterns and details of global genome reorganizations that are

apparent in lineages of the WGS candidates such as the dog, rat, and mouse.

E. The Cat as a Model of Comparative Anatomy and Physiology

The cat has served the scientific community as a powerful animal model of classical research in

anatomy, physiology, and neurology. A vast literature detailing intricate aspects of the feline central nervous

and visual systems, anatomy and physiology provide a powerful comparative database to humans (1, 22, 60, 67,

95, 127).  In the field of vision research detailed knowledge has been gained through elaborate investigations

including physiological and morphological aspects of the cat retina, and the cat is a preferred model for

opthamological research, based on eyes that approximate the size of humans, and tolerance for intra-ocular

surgery (as opposed to the dog) (78). In spite of the extensive physiological, morphological and neurological

research advances, these studies await genetic integration, a proposed consequence of the WGS assembly of the

cat.

F. Why WGS for cat in the wake of dog and cow?

In September 2002 the dog and cow were added to the list of high priority species for whole genome

sequencing by NHGRI. We applaud this decision and support the initiatives, while recognizing that the question

arises – why develop a cat WGS in the same context? Many of the same advantages of the dog are shared with
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the cat: lots of animals, human affinity, extensive medical surveillance, high public enthusiasm, breeds as

partial inbred strains, well developed linkage and physical gene maps, representative of distinct super-ordinal

clade, several hundred described genetic diseases homologous to human disorders (437 for dog, 261 for cat),

and proven opportunities for gene therapy development. Nonetheless, as for the arguments to support an

additional murid rodent (e.g., rat) or an additional fruit fly (e.g. Drosophila pseudoobscura), both the

differences between cat and dog plus their similarities lend support to the case for a cat WGS. Specific strengths

for the cat model consideration follow:

1. The infectious disease background, literature, and research on cats are extensive

including successful vaccines for distemper, FeLV, and promising FIV vaccines.

2. Of the 258 naturally occurring human hereditary models, nearly one-third do not exist in

mouse or dog.

3. Reproductive baseline research in cats is more advanced than dogs, which translates to

the promise of cloning, embryonic stem cells, germline transgenesis, gene therapy and

gene knockout technologies.

4. The feline genome organization, like humans, is primitive, reflecting ancestral gene order

association; mouse, rat, and dog descend from global genome reorganization.  Feline

genome organization is also much more conserved relative to human than the moderately

reshuffled cattle genome (75,76).

5. The 37 species of Felidae, less than 12 million years old, have a vast network of

behavior-ecological surveillance which can be assessed from a genomic perspective with

assembly of a cat WGS. Genomic resources (map, PCR primers, STR loci) transfer

readily among Felidae species for an expanding evolutionary perspective.

6. Bioresources for domestic cat and other Felidae species are extensive. The NIH-NCI

Laboratory of Genomic Diversity repository (available to the public domain) lists 31,327

Felidae tissue specimens including 2,564 viable cell lines, of which 346 are from the

domestic cat.

Cats, dogs and cattle each have enormous biological, biomedical and basic science potential and their

nomination by NHGRI as high priority would assure their expansive development in many arenas of biomedical

and biological inquiry.

II. STRATEGIC ISSUES: CURRENT RESEARCH IN FELINE MODELS

A. Size and Current Funding Status of Feline Genomics

The research efforts ongoing in feline models are considerable. The CRISP database of US Federal

grants utilizing cats number 467, compared to 248 for chicken, 244 for cow, and 592 for dogs. A search of

PubMed for papers using cats yielded 115,658 hits while ‘cat and genetics’ produced 11,654 citations. Ongoing

support for feline genomics has been achieved from the Cat Fanciers’ Association, The Winn Feline

Foundation, Morris Animal Foundation, Nestle-Purina and several conservation and pet agencies. We anticipate

continuing support and enhanced enthusiasm with the nomination of domestic cat for whole genome

sequencing.  A recent conference in May 2002 entitled “Recent Advances in Feline and Canine Genomics” in

St. Louis, MO brought together over one hundred cat and dog researchers to discuss the latest advances in this

rapidly advancing area. The list of papers presented at this symposium is presented in the Appendix of this

White Paper.
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B. Status of Feline Genomic Resources. Progress in Assembling the Feline Gene Map

The domestic cat carries 18 autosomal pairs, X and Y chromosomes, in a genome containing around 3 x

10
9
 nucleotides, comparable to the human genome.  First and second generation linkage and radiation hybrid

physical maps have been developed (68, 69, 76, 113) to produce a feline genetic map integrating 1) comparative

anchor – Type I coding genes for alignment with human and mouse genomes, 2.) Type II microsatellite loci

placed on average 5 cM apart and 3.) selected genes with important phenotypes (68, 69, 76). The genomic

resources assembled by the feline genomic community are listed in Table 1 and discussed below.

Table 1.  Developed Feline Genome Project Resources (May 2002)

Resource Citation

I. Somatic cell hybrid panel, and framework physical map (82, 88)

II. Interspecies backcross (ISB) genetic linkage map (69)

III. Nestle-Purina intraspecies reference pedigree (35)

IV. 5000-rad radiation hybrid panel and map, 1.8cM density,

1881 loci

(74, 76)

V. Arrayed BAC and PAC libraries (10, 133)

VI. Domestic cat Y-chromosome cosmid library Unpublished

VII. Flow sorted feline chromosome libraries: comparative chromosome paint

map

(90, 104, 119)

VIII. Tissue/cell line DNA repository of 31,327 exotic and domestic feline

specimens

(58, 96)

IX. Domestic cat breed forensic database 40 breeds, 11 multiplexed,

optimized STRs, 1 Y chromosome STS

(19)

X Complete sequence

a. mtDNA genome

b. MHC-FLA

c. FIV

(62, 65, 91, 133)

1.  Radiation Hybrid Map. The current feline 5000 rad RH map contains 784 Type I coding gene markers

(density = 4.3 cM/Type I marker) and 1086 Type II microsatellite markers (density = 3.5 cM/marker).  The

current integrated RH-linkage map contains a total of 1881 markers with an average interval of 1.8 cM. The

integrated gene map provides a powerful tool for both tracking cat phenotypes and comparing the processes that

mould genome organizations that determined the evolution of mammals (75, 87, 90).

2.  Linkage Map.  An interspecies backcross pedigree (ISB) between the domestic cat and Asian leopard

cat (Prionailurus bengalensis) was constructed to maximize the chance of obtaining genetic variants between

Type I loci, as was demonstrated in building the mouse gene map (26, 68, 69). To date, 248 microsatellites and

81 Type I markers are mapped on the linkage map. The sex-averaged length of the feline genome was estimated

from the ISB at 3,300 cM, with an average density of 8 cM (69). An intra-specific pedigree, developed in

collaboration with Nestlé-Purina utilizes 256 cats with 483 meiosis.  A total of 705 microsatellite loci are

currently being mapped on this pedigree, which will provide an average density of one marker per 4.7 cM.
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3.  Genomic libraries.  Three large insert libraries have been constructed for the domestic cat.  1) A 2X

genome equivalent PAC library was constructed from a normal male domestic cat, composed of 91,900 P1

clones with an average insert size of 80 kb (10).  2) An improved BAC library was constructed, consisting of

234,349 BACs with an average insert size of 137 kb and 10.6 fold redundancy, derived from a male domestic

cat (10).  These resources have been applied successfully to a number of projects, including creation of 3 Mb

BAC/PAC contig of the entire feline MHC and complete sequencing of class II and class I regions, and

isolation of clones for genomic regions surrounding the PKD1and PKD2, ASIP and MC1R loci (35, 133).  3) A

domestic cat Y chromosome cosmid library has been constructed, with 4.3X coverage and arrayed in 3648

clones. Current efforts are towards developing a contig map of the euchromatic portion of the Y chromosome in

collaboration with the NCI-Frederick Molecular Technology Laboratory.

C. The Cat’s Role in Therapy for Genetic Disease (see also Section I-A)

The development of therapeutic strategies for genetic diseases, and enzyme deficiency disorders in

particular, requires testing in animals. Cats have several advantages for this purpose: a) the background genetic

heterogeneity between relative non-inbred cats is similar to the genetic diversity of affected human populations,

b) selective breeding produces adequate numbers of affected individuals homozygous for the mutant allele as

well as normal siblings for matched treatment and control groups, c) relatively large numbers of affected

animals can be produced, allowing individual variability to be documented, against which changes during

therapy can be evaluated, d) cats are long-lived (>5 years) and are large enough to allow magnetic resonance

imaging and repeated sampling, f) cats require individual clinical care similar to human patients, g) having

models with multisystem pathology, including CNS disease, allows evaluation of therapy on a variety of tissues

and organs.

D. Sequencing Strategy

The feline genome has a haploid content approximately equivalent to the human 3 x 109 bp of DNA

distributed over 18 autosomes plus the X and Y sex chromosomes.  The Whitehead Center for Genome

Research has expressed a strong interest in supporting the sequencing of the feline genome.  The proposal

outlined by the Whitehead Institute will involve a whole genome shotgun sequencing (WGS) approach

designed to yield a long-range, high-quality assembly covering >95% of the cat genome. The approach for the

feline genome will be analogous to that employed for the mouse genome, which resulted in an assembly

consisting of 89 ultracontigs placed on the 20 mouse chromosomes and covering ~96% of the genome.

Similarly, for cat we propose collecting a total of 40 million paired-end reads generated from different vectors

and insert sizes (2, 4, 6 & 10kb plasmid libraries, 40kb fosmid library, and 200 kb BAC library).  The use of

different library sizes should hopefully minimize cloning bias and to allow a hierarchical linking approach in

the assembly process. Genomic libraries will be created by random shear, with the possible exception of the

BAC library.  In the latter case two libraries will be generated using different enzymes.  Paired-end sequencing

will be undertaken followed by whole genome assembly using the ARACHNE software, in addition to other

existing WGS assembly programs.  Using the described breakdown of insert sizes would result in an

approximate 6-fold sequence coverage (Phred-20) and a 50-fold physical coverage of the cat genome allowing

for a sequencing pass rate of approximately 80%. This procedure should result in an assembly with >95%

coverage of the genome, with long-range continuity achieved by linkage and orientation of the WGS

supercontigs to existing feline genetic and radiation hybrid maps.
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E. A Moderate Resolution SNP Map Resource

The wave of new high throughput genotyping technologies under development for human genetics assures

that single nucleotide polymorphic (SNP) mapping and population assessment will be powerful genetic

currency for developed model species. To anticipate their many applications and to complement the genome

sequence, including coding genes, repeats and STRs, we propose to generate a moderate coverage SNP map

resource of the cat by sequencing six distinct breeds:  American Shorthair, Norwegian Forest Cat, Oriental

Shorthair, Manx, Japanese Bobtail, and Scottish Fold.  The six breeds have been selected for maximum

heterozygosity based on STR assessment (available for 25 breeds in a related forensic based assessment (see

Appendix 3)).  Specifically, we propose generating 100,000 reads from each breed, resulting in approximately

25,000 novel SNPs for each breed given an average SNP rate of 1/1,000 bp and that approximately 50% of

reads can be placed uniquely in the genome. This methodology has proven successfully for defining SNPs in

three inbred mouse strains and we expect it to work well for the cat.  The SNP screen would generate

approximately 250,000 SNPs with an average spacing of ~10 kb across the genome.

F. Decision Making Process to Select Breed/Animal to Sequence

Of the approximate 50 cat breeds, most are moderately inbred based upon genome heterozygosity

estimates of 52-81% estimated recently for 22 microsatellite loci (see Appendix 3). As an approach to

diminishing variation, a member of an Abyssinian pedigree inbred for 15 generations, with fewer than ten

founders (77) will be selected as a sequencing subject.

CONCLUSIONS

The feline genome project, now entering its third decade and armed with a broad array of advanced

genomic resources, has positioned the domestic cat and its charismatic wild relatives to make substantive

contributions to a number of biomedical and basic biological disciplines. Over 258 hereditary pathologies have

been reported in the domestic cat largely due to intensive medical surveillance of cats by the veterinary

profession (84, 86).  These feline models have been important in elucidating molecular pathogenesis and are

playing a critical role in evaluating and optimizing therapeutic strategies prior to clinical trials in humans. With

continued development of a 6X WGS, characterization of many hereditary pathologies in the domestic cat could

be anticipated in the future.  The feline model shows continued promise for resolution, diagnostics, vaccine

development and treatment of human infectious disease.  The identification of FIV in domestic cats offers a

viable model for HIV pathogenesis as it provides the only known naturally occurring model for human AIDS.

As the Human Genomic Sequencing Consortium winds down with the drafts of the human, mouse and rat

genomes, other species are lining up to reap the benefits of WGS comparisons (84).  We believe the discussions

laid forth here present a compelling case for the domestic cat as one of the next mammalian species for whole

genome sequencing.
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Thursday May 16, 2002 

   

 5:00pm – 8:00pm Opening Reception/Registration 

   

Friday May 17, 2002 
  

7:30am-8:30am Registration/Breakfast 

  

8:30am Welcome – Stephen O’Brien 

   National Cancer Institute at Frederick, MD 

  

ADVANCES 

IN CANINE 

AND  

FELINE 

GENOMICS 

 
Comparative 

Genome Anatomy 

and  

Genetic Disease 

8:45am Nestlé Purina Welcome - Steve Hannah 

  Nestlé Purina PetCare Company 

    

8:55am 

 

 

May 16-19, 2002 

Millennium Hotel 

St, Louis, MO 
 

Keynote Speaker:  

An Overview of Comparative Genomics from the Corral Fence 

James Womack 

Texas A&M University 

   

 Session 1: Genomic Maps and Markers in Cats and Dogs   

   Moderator: Stephen O’Brien 

   

 9:40am High Resolution RH Mapping of the Dog Genome and its Application 

to the Positional Cloning of Cancer Genes 

Elaine Ostrander  

Fred Hutchinson Cancer Research Center 

   

 10:00am Cat Genomics Overview and the Status of the Genetic Linkage  

Map in the Domestic Cat 

Marilyn Menotti-Raymond 

National Cancer Institute at Frederick, MD 

   

 10:20am Comparison of the Efficiency of the Multimap and TSP/CONCORDE 

programs in the Construction of an RH map of the Canine Genome 

Francis Galibert 

Centre National de la Recherche Scientifique 

   

 10:40am Break 

   

 11:10 A second generation radiation hybrid map of the feline genome 

William Murphy 

National Cancer Institute at Frederick, MD 

   

 

 

11:30 The Frequency and Usefulness of Single Nucleotide Polymorphisms 

(SNPs) in the Dog Genome 

Patrick Venta  

Michigan State University 

  12:00pm Lunch 
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Friday May 17, 2002 

  

 Session 2: Large Scale Genomic Analysis    

   Moderator: William Murphy 

 

 1:00pm Large Scale Sequencing of Feline Major Histocompatibility 

Complex 

Naoya Yuhki 

National Cancer Institute at Frederick, MD 

   

 1:20pm Canine MHC 

John L. Wagner 

Thomas Johnson University 

   

 1:40pm Sequencing and Analysis of Canine ESTs 

Richard McCombie 

 

   

 Session 3: Animal Models of Hereditary Disease   

   Moderator: Don Patterson 

   

ADVANCES 

IN CANINE 

AND 

FELINE 

GENOMICS 

 
Comparative 

Genome Anatomy 

and Genetic 

Disease 

 

May 16-19, 2002 

Millennium Hotel 

St, Louis, MO 

 2:00pm Overview of Genetic Disease Testing 

Urs Giger 

University of Pennsylvania 

    

 2:20pm The Dog as a Model for Identifying the Gene Defects 

Underlying Diseases That Are Genetically Complex: 

Lesion-Specific Genetic Defects in  

Cardiovascular Development 

Don Patterson 

University of Pennsylvania 

   

 

 2:40pm Whole Genome Linkage Studies of Conotruncal Defects in 

the CTD Line of Keeshond Dogs 

Petra Werner 

University of Pennsylvania 

    

  3:00pm Break 

    

  3:30pm Retinal Disease in Cats: An Update on the  

Abyssinian Mutant 

Kristina Narfström 

University of Missouri-Columbia 

    

  3:50 Inherited Motor Neuron Disease in Domestic Cats 

Similar to Spinal Muscular Atrophy Type III 

John C. Fyfe 

Michigan State University 
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Friday May 17, 2002 

  

 Session 3: Continued 

 

 4:10pm Genetics of Cancer in Dogs  

Elaine Ostrander 

Fred Hutchinson Cancer Research Center 

   

 4:30pm Familial Canine Dilated Cardiomyopathy 

Kathyrn Meurs 

Ohio State University 

   

 4:50pm Heterogeneity in Cystinuria 

Paula Henthorn 

University of Pennsylvania 
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Anatomy and 

Genetic Disease 
 

May 16-19, 2002 

Millennium Hotel 

St, Louis, MO 
   

    

 6:30pm – 9:00pm Welcome Reception – Nestlé Purina PetCare 

Company  
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Saturday May 18, 2002 

 7:30am-8:30am Breakfast 

 Morning Session:  

   Moderator: Urs Giger 

   

 8:30am AKC/CHF Welcome 

Erika Werne 

American Kennel Club Canine Health Foundation 

   

 8:40am Winn Feline Foundation Welcome 

Janet Wolf 

Winn Feline Foundation 

   

 8:55am Keynote Speaker: 
Promise of Comparative Genomics in Mammals 

Stephen O’Brien 

National Cancer Institute at Frederick, MD 

   

 Session 4: Evolutionary History of Cats and Dogs I  

   Moderator: Marilyn Raymond 

 

 9:40am Genetic Diversity of Domestic Cat Breeds 

Leslie Lyons 

University of California at Davis 

   

 10:00am History of the Development of Purebred Dog Breeds 

Debra Lynch 

American Kennel Club 

   

 10:20am Break 
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AND 

FELINE 

GENOMICS 

 

Comparative 

Genome 

Anatomy and 

Genetic Disease 
 

May 16-19, 2002 

Millennium Hotel 

St, Louis, MO 

 10:50am Felidae Evolution 

Warren Johnson 

National Cancer Institute at Frederick, MD 

    

 11:10am Coat Color Genetics in the Felidae 

Eduardo Eizirik 

National Cancer Institute at Frederick, MD 

   

 

 Session 5: Comparative Carnivore Genomics  Moderator: Steve Hannah 

    

  11:30am Carnivore Chromosome Painting 

Bill Nash 

H&W Cytogenetic Services 

    

  11:50am A Genome-Scale Comparative Chromosome Map 

Between Domestic Cat and Dog Based on Reciprocal 

Chromosome Painting 

Fengtang Yang 
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University of Cambridge 

 Saturday, May 18, 2002 

  

 12:10 Canine Cytogenetics – Application to Genome Mapping 

and Cancer 

Matthew Breen 

Fred Hutchinson Cancer Research Center 

   

 12:30pm Lunch  

 

  

 Session 6: Genetic Mapping and Molecular Characterization 

   Moderator: Urs Giger 

 

 2:00pm Inheritance of Epilepsy in Dogs 

Anita Oberbauer 

University of California at Davis 

   

 2:20pm Identification of a New Copper Metabolism Gene by 

Positional Cloning in a Purebred Dog Population 

Bart van de Sluis 

University Medical Center Utrecht 

   

 2:40pm Inherited Retinal Diseases in Dogs 

Gus Aguirre 

Cornell University 
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May 16-19, 2002 

Millennium Hotel 

St, Louis, MO 

 3:00pm Progress in QTL Mapping of Canine Hip Dysplasia 

Rory Todhunter 

Cornell University 

    

  3:20pm Statistical Analyses on Addison’s Disease 

Thomas Famula 

University of California at Davis 

    

  3:40pm Compulsive Tail Chasing in Bull Terriers 

Alice Moon-Fanelli 

Tufts University 

    

  4:00pm Poster Viewing Session 

    

  6:30pm – 11:00pm Riverboat Cruise and Dinner 

    

    

Af
te

rn
oo

n 
Se

ss
io

n 

 




















































	Nova Southeastern University
	NSUWorks
	10-10-2002

	Sequencing the Genome of the Domestic Cat Felis catus
	Stephen J. O'Brien
	Eric S. Lander
	M. E. Haskins
	Urs Giger
	Niels C. Pederson
	See next page for additional authors
	NSUWorks Citation
	Authors



