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Abstract. In this paper we discuss sequent calculi for the propositional fragment of

the logic of HYPE. The logic of HYPE was recently suggested by Leitgeb (Journal of

Philosophical Logic 48:305–405, 2019) as a logic for hyperintensional contexts. On the one

hand we introduce a simple G1-system employing rules of contraposition. On the other

hand we present a G3-system with an admissible rule of contraposition. Both systems are

equivalent as well as sound and complete proof-system of HYPE. In order to provide a cut-

elimination procedure, we expand the calculus by connections as introduced in Kashima

and Shimura (Mathematical Logic Quarterly 40:153–172, 1994).
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1. Introduction

Leitgeb [4] proposed a logic for hyperintensional contexts that is called
HYPE.1 In his paper Leitgeb worked with an axiomatic calculus. In this
paper, we are going to develop sequent calculi for the propositional frag-
ment of HYPE.

The direct motivation for this paper is the presentation of sequent sys-
tems that have some desirable proof-theoretic features. Most prominently,
it would be desirable to have a calculus that allows for cut-elimination and
with it to be able to establish results, such as the conservativity over in-
tuitionistic logic, in a proof-theoretic way. An indirect motivation is that
these calculi are able to function as the basis for further proof-theoretic in-
vestigations of theories formulated in the logic of HYPE, such as theories of
truth.

Before going into the details of the presentation, we informally describe
the logic of HYPE. The logic of HYPE can be understood as an exten-
sion of intuitionistic logic, IL, by an additional negation or as an exten-
sion of First-Degree-Entailment, FDE, by an intuitionistic conditional. In

1 According to Odintsov and Wansing [7] the work of Moisil [5] constitutes a predecessor
of the propositional fragment of HYPE.
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both cases it is a restriction of classical logic. If we look at the first way
of characterizing HYPE the analogy to intuitionistic logic is given mainly
by the primitive conditional of HYPE that behaves very similar to the in-
tuitionistic conditional. From this perspective the innovation lies in adding
a negation that does not behave intuitionistically, but rather close to the
behaviour of an FDE negation. We have the de Morgan laws and double
negation elimination, but not the full classical rules. This is in line with
a semantic interpretation of formulas by truth-value gaps or gluts. In the
semantics therefore we consider states that can have a partial interpreta-
tion or an overdetermined interpretation. If we look at it from the second
perspective, we have a nontrivial extension of FDE by a suitable condi-
tional, i.e. an intuitionistic conditional that allows for modus ponens and
the deduction theorem. The conditional can therefore be interpreted as an
object linguistic correspondent of the sequent arrow, that can additionally
be iterated.

In the following we address several questions in turn. In the second section
we introduce the propositional fragment of the logic of HYPE. We start by
repeating the axiomatic calculus as presented in Leitgeb [4] and simplified in
Speranski [9]. The main focus however, will be on sequent calculi. We start
by looking at G1hp, a system employing rules of contraposition. The main
advantage of this system is its simplicity. Then we move to a system in which
not only the structural rules of weakening and contraction are admissible,
but also the contraposition rule. This system will be called G3hp. The most
innovative aspect is the treatment of negated conditionals. We establish
the connection of both systems to the axiomatic calculus, and with it the
soundness and completeness of G1hp and G3hp.

The third section focusses on cut-elimination. We first present problems
for the standard strategy of G3-systems in the case of our introduction
rules for the conditional and present a counterexample for cut-elimination
in G3hp. Then we consider an extension cGh+

p of the system G1hp by
connections and more liberal rules. This is based on the solution for cut-
elimination in the case of constant domains in IL as suggested by Kashima
and Shimura in [3]. We establish a cut-elimination theorem for cGh+

p .
In Section 4 we establish the equivalence of cGh+

p with our previous
systems.

In the last section we show how the cut-elimination can be used to es-
tablish the conservativity of HYPE over IL as well as FDE.
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2. The Propositional Logic of HYPE

We consider a propositional language based on the following primitive logical
signs ¬,∨,→,⊥.2

Since we have the usual de Morgan laws we can make use of the following
abbreviations: � is short for ¬⊥, A∧B is short for ¬(¬A∨¬B) and A ↔ B
for (A → B) ∧ (B → A).3 The notion of a well-formed formula is standard.

Before we present the sequent systems we repeat the axiomatic system
of HYPE. We make use of the propositional part N•

p of the system QN•

due to Speranski in [9], which is a simplification of Leitgeb’s system in [4]
on p.336f. Speranski [9] shows in detail how to derive in N•

p the missing
principles stated in Leitgeb [4]. The propositional fragment N•

p includes the
intuitionistic axioms of Hi

A → (B → A) (A → (B → C)) → ((A → B) → (A → C)) (1)

A ∧ B → A A ∧ B → B (2)

A → A ∨ B B → A ∨ B (3)

A → (B → A ∧ B) (A → C) → ((B → C) → (A ∨ B → C)) (4)

⊥ → A (5)

and the axioms for double negation:

A → ¬¬A ¬¬A → A (6)

The system N•
p is closed under the rule of conditional contraposition:

�N•
p

A → B

�N•
p

¬B → ¬A

and under Modus ponens: if Γ �N•
p

A and Γ �N•
p

A → B, then Γ �N•
p

B.

N•
p is a neater presentation of HYPE where a few redundant principles

are dropped. The consequences of the two systems are identical.

2Here we deviate slightly from Leitgeb [4]. Officially in Leitgeb ⊥ is defined as ¬� and
the intutionistic negation is then recovered as A → ⊥.

3Although we do neither have A → B iff ¬A ∨ B nor ¬A iff A → ⊥, it is possible
to introduce the abbreviations A ⊃ B for ¬A ∨ B, a classical conditional, and ∼ A for
A → ⊥, an intuitionistic negation.
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2.1. G1hp

We present multiconclusion systems based on a multiconclusion calculus for
intuitionistic logic.4 Sequents are understood as (ordered pairs of) multisets.
The system G1hp consists of the following initial sequents and rules, where
¬Γ is short for the (multi-)set of all the negations of formulas in Γ:

(IDp) A ⇒ A (L⊥) ⊥ ⇒
Γ ⇒ Δ, A A,Γ ⇒ Δ

(Cut)
Γ ⇒ Δ

Γ ⇒ Δ(LW)
A, Γ ⇒ Δ

Γ ⇒ Δ(RW)
Γ ⇒ Δ, A

A,A,Γ ⇒ Δ
(LC)

A, Γ ⇒ Δ
Γ ⇒ Δ, A,A

(RC)
Γ ⇒ Δ, A

A, Γ ⇒ Δ B,Γ ⇒ Δ
(L∨)

A ∨ B,Γ ⇒ Δ
Γ ⇒ A,B,Δ

(R∨)
Γ ⇒ A ∨ B,Δ

Γ ⇒ Δ, A B,Γ ⇒ Δ
(L→)

A → B,Γ ⇒ Δ
Γ, A ⇒ B

(R→)
Γ ⇒ A → B

Γ ⇒ ¬Δ(ConCp)
Δ ⇒ ¬Γ

¬Γ ⇒ Δ(ClCp) ¬Δ ⇒ Γ

In the presence of weakening and contraction the choice of a context-sharing
version of (Cut) is not of greater significance. The next lemma collects some
basic facts about G1hp. They mostly concern the admissibility of some basic
inferences in G1hp.

Lemma 1.

1. The sequents ⇒ �, A ⇒ ¬¬A, ¬¬A ⇒ A, are derivable in G1hp.

2. The rule of contraposition

Γ ⇒ Δ(Cp) ¬Δ ⇒ ¬Γ

is admissible in G1hp.

4This goes back to Maehara’s version used in Takeuti [10] p. 52f and Dragalin’s system
used in Negri and Plato [6] p. 108f.
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3. The following rules are admissible in G1hp:

A,B,Γ ⇒ Δ
(L∧)

A ∧ B,Γ ⇒ Δ
Γ ⇒ A, Δ Γ ⇒ B,Δ

(R∧)
Γ ⇒ A ∧ B,Δ

4. Intersubstitutivity: If C ⇒ C ′ and C ′ ⇒ C, as well as Γ ⇒ Δ are
derivable in G1hp, then Γ(C ′/C) ⇒ Δ(C ′/C) is derivable, where
Γ(C ′/C) ⇒ Δ(C ′/C) is obtained by replacing all occurrences of C in
Γ and Δ by C ′.

Proof. For 1: ⇒ � is derived by (L⊥), (ConCp) and the definition of �.
From ¬A ⇒ ¬A the sequent A ⇒ ¬¬A is derived by (ConCp) and ¬¬A ⇒ A
by (ClCp).

For 2: By a series of cuts we get from Γ ⇒ Δ and A ⇒ ¬¬A for all A ∈ Δ
to Γ ⇒ ¬¬Δ. Using (ConCP) gives us ¬Δ ⇒ ¬Γ.

For 3: Starting with A,B,Γ ⇒ Δ, we use (Cp) and then (R∨). Then (Cp)
again and a series of cuts to eliminate the double negations. The argument
for the rule (R∧) is analogous.

For 4: By induction on the length of the derivation. If C is replaced in the
context then there is nothing special to consider. Also within the principal
formulas the replacement is unproblematic.

The next observation is that HYPE is an extension of intuitionistic logic.

Lemma 2. All the axioms (1)–(5) of the axiomatic system Hi of proposi-
tional intuitionistic logic are derivable in G1hp.

Combining Lemma 1 and Lemma 2 establishes that the axioms of N•
p

are derivable in G1hp. That it is also a subsystem will be established in
Lemma 11 in combination with Theorem 1. The first-order extension QN•

of N•
p is discussed in Speranski [9]. QN• is an extension of Došen’s logic N

by the principles of double negation ¬¬A → A and A → ¬¬A. Speranski
[9] establishes the equivalence of QN• and Leitgeb’s first-order axiomatic
system of HYPE as presented in [4].5

2.2. G3hp

We are now going to present a system in which the structural rules of weak-
ening and contraction are absorbed.

In order to achieve this we will employ an alternative inductive definition
of well-formed formula, similar to a Tait language. We start with the literals

5Corollary 7.4. p. 22 in [9].
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and then close it under the application of ∨,→ as well as ¬∨,¬ →,¬¬.
Given a set Φ of propositional variables LITΦ := Φ ∪ {¬p | p ∈ Φ}. We use
v as a metavariable for literals and v as the contrapositive of v, i.e. if v is
a propositional variable p, then v is ¬p, and if v is a negated propositional
variable ¬p, then v is p.

The system G3hp consists of the following initial sequents and rules that
are based on the positive build-up of formulas:

For v a literal:

(ID) v,Γ ⇒ Δ, v

(L⊥) ⊥, Γ ⇒ Δ (R¬⊥) Γ ⇒ Δ,¬⊥
Γ ⇒ Δ, A A,Γ ⇒ Δ

(Cut)
Γ ⇒ Δ

Propositional

A,Γ ⇒ Δ
(L¬¬ ) ¬¬A,Γ ⇒ Δ

Γ ⇒ Δ, A
(R ¬¬)

Γ ⇒ Δ,¬¬A

A,Γ ⇒ Δ B,Γ ⇒ Δ
(L∨)

A ∨ B,Γ ⇒ Δ

Γ ⇒ Δ, A,B
(R∨)

Γ ⇒ Δ, A ∨ B

A → B,Γ ⇒ Δ, A B,Γ ⇒ Δ
(L→)

A → B,Γ ⇒ Δ

A,Γ ⇒ B
(R→)

Γ ⇒ Δ, A → B

¬A,¬B,Γ ⇒ Δ
(L¬∨) ¬(A ∨ B),Γ ⇒ Δ

Γ ⇒ Δ,¬A Γ ⇒ Δ,¬B
(R¬∨)

Γ ⇒ Δ,¬(A ∨ B)

¬B ⇒ Δ,¬A
(L¬→) ¬(A → B),Γ ⇒ Δ

Γ ⇒ Δ,¬B ¬A,Γ ⇒ Δ,¬(A → B)
(R¬→)

Γ ⇒ Δ,¬(A → B)

We have the following admissible rules for the defined symbols:

Lemma 3. The following rules are admissible in G3hp:

(R�) Γ ⇒ Δ,� (L¬�) ¬�, Γ ⇒ Δ

A,B,Γ ⇒ Δ
(L∧)

A ∧ B,Γ ⇒ Δ
Γ ⇒ Δ, A Γ ⇒ Δ, B

(R∧)
Γ ⇒ Δ, A ∧ B

¬A, Γ ⇒ Δ ¬B,Γ ⇒ Δ
(L¬∧) ¬(A ∧ B), Γ ⇒ Δ

Γ ⇒ Δ,¬A,¬B
(R¬∧)

Γ ⇒ Δ,¬(A ∧ B)

The most obvious differences to other calculi are the rules for the negated
conditional. The main reason for their introduction is the aim of having the
admissibility of contraposition.

It is easy to see that our system G3hp is an extension of FDE in the
version LEfde2 as presented in Anderson and Belnap [1] §17 (without their
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→). The main difference are the additional rules for → and ¬ →. Without
the rules our system basically is LEfde2, neglecting the minor difference
of sequences versus multisets. Without the cut rule the conservativity is
obvious. We will establish the conservativity including the cut rule in Lemma
22.

2.3. Properties of G3hp

Before we state some properties of the calculus we clarify the terminology:
The (positive) depth |A| of a formula A is defined as:

|A| = 0 for A a literal, ⊥ or ¬⊥; |¬¬A| = |A| + 1;

|A ◦ B| = max(|A|, |B|) + 1; |¬(A ◦ B)| = max(|¬A|, |¬B|) + 1;

where ◦ is either ∨ or →.
We also adjust the notion of a subformula accordingly:

Definition 1.

(i) A is a subformula of A;

(ii) if B ◦ C is a subformula of A, then so are B, C;

(iii) if ¬(B ◦ C) is a subformula of A, then so are ¬B,¬C;

(iv) if ¬¬B is a subformula of A, then so is B.

The depth |D| of a derivation D is the maximum length of a path in
the prooftree, i.e. |D| := supi<n(|(Di)| + 1) (where D0, . . . ,Dn−1 are the
immediate subderivations of D).

We use �n Γ ⇒ Δ as short for: there exists a derivation D of Γ ⇒ Δ with
|D| ≤ n.

We have the depth preserving admissibility of Weakening.

Lemma 4. (Weakening depth-preserving) If �n Γ ⇒ Δ, then �n Γ, Γ′ ⇒
Δ, Δ′.

Lemma 5. A, Γ ⇒ Δ, A for all A.

Lemma 6. (Inversion)

(i) If �n A ∨ B,Γ ⇒ Δ, then �n A, Γ ⇒ Δ and �n B,Γ ⇒ Δ;

(ii) if �n Γ ⇒ Δ, A ∨ B, then �n Γ ⇒ Δ, A, B;

(iii) if �n A → B,Γ ⇒ Δ, then �n B,Γ ⇒ Δ;

(iv) if �n Γ ⇒ Δ,¬¬A, then �n Γ ⇒ Δ, A;

(v) if �n ¬¬A, Γ ⇒ Δ, then �n A, Γ ⇒ Δ;
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(vi) if �n ¬(A ∨ B), Γ ⇒ Δ, then �n ¬A,¬B,Γ ⇒ Δ;

(vii) if �n Γ ⇒ Δ,¬(A ∨ B), then �n Γ ⇒ Δ,¬A and �n Γ ⇒ Δ,¬B;

(viii) if �n Γ ⇒ Δ,¬(A → B), then �n Γ ⇒ Δ,¬B.

Remark: The rules (R →) and (L¬ →) are not invertible in contrast to
the single conclusion calculus G3i.6 Our system is therefore closer to the
calculus G3im as presented in Negri and von Plato [6]. In the problematic
case A → B is non-principal and the last inference is an application of
(L¬→):

¬D ⇒ ¬C,A → B

¬(C → D) ⇒ A → B

We cannot use the IH on the upper sequent, because it contains ¬C in the
context, which is not allowed. Even if we could employ the IH to the upper
sequent we would get ¬D,A ⇒ ¬C,B and then we cannot use (L¬→),
because of the additional A in the context.

In our G1h system as well as Leitgeb’s axiomatic system there are (re-
stricted) rules of contraposition. In our G3h system the rule of contraposi-
tion is admissible. Although the admissibility is not height preserving, it is
interesting to note that cut is not involved in the admissibility.

Lemma 7. [Admissibility of contraposition] If �n Γ ⇒ Δ, then � ¬Δ ⇒ ¬Γ.

Proof. By induction on n. For n = 0 we have the case (ID), which is
obvious as it is stated for literals. The case (L⊥) is handled by (R¬⊥). The
case (R¬⊥) by (L⊥) and (L¬¬).

For n �= 0 we distinguish the positive and the negative cases:
In the positive cases we use the IH on the premisses and then the corre-

sponding negative rule, for example if the last inference is an application of
(L →), then by the IH applied to the upper sequents we have ¬Δ ⇒ ¬Γ,¬B
as well as ¬A,¬Δ ⇒ ¬Γ,¬(A → B). Then we can apply (R¬→) to get the
desired.

In the negative cases we additionally make use of the ¬¬ rules, for exam-
ple if the last inference was (L¬→), then by IH we have ¬¬A,¬Δ ⇒ ¬¬B.
By inversion for ¬¬ we have A,¬Δ ⇒ B. Using (R →) we get ¬Δ ⇒
¬Γ, A → B and (R¬¬) gives the desired.

Lemma 8. (Admissibility of contraction)

(i) If �n Γ ⇒ Δ, A,A, then �n Γ ⇒ Δ, A;

6Compare Troelstra and Schwichtenberg [11], p. 79, Proposition 3.5.4. v.
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(ii) if �n A,A,Γ ⇒ Δ, then �n A, Γ ⇒ Δ.

Proof. By induction on n. If n = 0, then for any initial sequent Γ ⇒
Δ, A,A, the sequent Γ ⇒ Δ, A is also an initial sequent.

For n �= 0 we distinguish the cases where A is non-principal and cases
where it is principal.

If A is non-principal, then we argue as usual by the IH, except for the
cases with restricted contexts in the upper sequents, i.e. (R →) and (L¬→).
In these cases we get the desired directly by using the relevant rule.

If A is principal in an inference for which we have inversion, for example
if the last inference is (R¬→): �n Γ ⇒ Δ,¬(A → B),¬B and �n ¬A, Γ ⇒
Δ,¬(A → B),¬(A → B). By inversion �n Γ ⇒ Δ,¬B,¬B and by IH
�n Γ ⇒ Δ,¬B and �n ¬A, Γ ⇒ Δ,¬(A → B). Using (R¬→) we get the
desired.

If A is principal in an inference for which we do not have inversion, such
as (R →) and (L¬→) we argue directly by a suitable application of the rule
itself to the upper sequent.

2.4. The Equivalence of G1hp and G3hp

Lemma 9. The following rules are admissible in G1hp:
(L¬¬), (R¬¬), (L¬∨), (R¬∨), (L¬→) and (R¬→).

Proof. In all cases we argue by contraposition and double negation elimi-
nation. We only treat one exemplary case (L¬→): Assume that ¬B ⇒ Δ,¬A
is derivable. Then by admissible (Cp) ¬¬A,¬Δ ⇒ ¬¬B. By double nega-
tion elimination and suitable cuts we get A,¬Δ ⇒ B. By (R →) we have
¬Δ ⇒ A → B. Again using (Cp), double negation elimination and weaken-
ing we get the desired ¬(A → B) ⇒ Δ.

Lemma 10. The following rules are admissible in G3hp: (ConCp) and (ClCp).

Proof. Again we use admissible contraposition and inversion for ¬¬. For
example for (ConCp) we argue by assuming that Γ ⇒ ¬Δ is derivable. Ad-
missible contraposition gives ¬¬Δ ⇒ ¬Γ. We can eliminate the double nega-
tions due to inversion for ¬¬.

Combining these lemmata we get:

Theorem 1. G1hp and G3hp are equivalent, i.e. Γ ⇒ Δ is derivable in
G1hp iff Γ ⇒ Δ is derivable in G3hp.
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2.5. Equivalence with the Axiomatic Calculus of HYPE

Lemma 11. For all finite Γ, if Γ �N•
p

A, then Γ ⇒ A is derivable in G3hp.

Proof. All the axioms are derivable in G3hp. Conditional contraposition
is admissible in G3hp, because if ⇒ A → B is derivable, then we can cut on
the derivable sequent A → B,A ⇒ B and therefore A ⇒ B is also derivable.
Using admissible contraposition we also have ¬B ⇒ ¬A and by (R →) we
have ⇒ ¬B → ¬A.

As usual Γ ⇒ Δ corresponds to
∧

Γ → ∨
Δ. If Γ is empty

∧
Γ is ¬⊥ and

if Δ is empty, then
∨

Δ is ⊥. Then we have:

Lemma 12. If Γ ⇒ Δ is derivable in G3hp, then �N•
p

∧
Γ → ∨

Δ.

Proof. For the initial sequents we know that �N•
p

A → A. We also have
the structural property that if Γ � A and Γ ⊆ Γ′, then Γ′ � A. With
the deduction theorem and the derivable import export law, we get the
contexts in the antecedent and with the disjunction axioms we get them in
the succedents. For (L⊥) we distinguish the case Δ is empty and nonempty.
In the former case we have ⊥ → ⊥ as an axiom and then argue as before. If Δ
is nonempty we choose one of the formulas A in Δ for our instance of ⊥ → A.
(R¬⊥) is then treated similarly with the addition of contraposition. The
admissibility of the propositional rules is simple. We only show (L¬→). By
IH �N•

p
¬B → ∨

Δ∨¬A, then ¬B �N•
p

∨
Δ∨¬A and ¬B �N•

p
¬(¬ ∨

Δ∧A).
Then �N•

p
¬B → ¬(¬ ∨

Δ ∧A) and by contraposition �N•
p

¬ ∨
Δ ∧A → B.

By import export ¬ ∨
Δ �N•

p
A → B giving �N•

p
¬ ∨

Δ → (A → B) and
contraposing and double negation elimination gives �N•

p
¬(A → B) → ∨

Δ.

With these equivalence results we can infer the soundness and complete-
ness of our systems G3hp and also G1hp from the soundness and complete-
ness theorems of Leitgeb [4] and Speranski [9]. Since we do not repeat the
semantics here, we just state it as an observation.7

Observation 1. The proof systems G3hp and G1hp are sound and com-
plete with respect to the semantics of HYPE.

7For a presentation of the semantics of HYPE consult Leitgeb [4] and for a simplification
Speranski [9].
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3. Cut Elimination

3.1. A Counterexample for Cut-Elimination in G3hp

One of the central questions concerning sequent systems is that of cut-
eliminability. For a positive answer we could either try to follow Gentzen’s
strategy of introducing a more general rule of cut called mix or we could
try to make use of the admissibility of weakening and contraction. Ono [8]
used the first strategy to establish cut-elimination for several non-classical
systems and Negri and van Plato [6] used the second strategy. However, in
the course of establishing the cut-elimination for our systems G1hp, G3hp,
we run into a problem, due to the additional rules of contraposition or the
negated conditional. In the case of contraposition rules an inductive argu-
ment is problematic, because the logical complexity of formulas in the upper
sequents of contraposition is not less than the ones in the lower sequent.
Moreover, we do not have a single principal formula.

In the G3hp case with a negated conditional everything seems to be pre-
pared. We have propositional rules of the correct form, we have admissibility
of weakening and contraction. However, we encounter a problem due to the
additional rules for the negated conditional.

Consider a cut in which the cut-formula is non-principal in the right
upper sequent, which is inferred by a rule with restricted contexts, such as
(R →). In this case the usual cut-elimination procedure does not work. If we
try to push the cut upwards on the right, then we introduce a context that
blocks the applicability of (R →). A similar problem already occurs in the
case of multi-conclusion systems of intuitionistic logic. Although there are
ways to solve the problem in the case of intuitionistic logic, these strategies
are not applicable in the additional cases due to the negated rules. In the
G3hp case, we have no inversion for (R →) and (L¬ →) and therefore the
strategy employed in Negri and van Plato [6] does not work. Also Ono’s
strategy in [8] is not applicable in our case.

The problem bears some analogy to the case of constant domains in
intuitionistic logic, where we have a well-known counterexample to cut-
elimination due to the asymmetry of the conditional introduction with re-
stricted contexts and universal quantifier introduction without a restriction.
It is also possible to construct a counterexample to cut elimination for G3hp.
Consider the following sequent with the propositional variables P, Q, R:

¬(R → ¬(P → Q)), P ⇒ Q (†)
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A proof search shows that there is no derivation of (†) in G3hp without
cut. An application of (L¬→) would require that there is no formula in the
context, but ¬¬(P → Q) ⇒ Q,¬R is not derivable. On the other hand the
following are derivable:

¬(R → ¬(P → Q)), P ⇒ P → Q (7)

P → Q,¬(R → ¬(P → Q)), P ⇒ Q (8)

Although (†) is not cut-free derivable in G3hp it would be, if we could use
a negated conditional introduction on the sequent ¬¬(P → Q), P ⇒ Q,¬R,
which is easily seen to be derivable. Interesting is that the occurrence of ¬R
in the succedent is introduced by weakening and therefore independent of
the occurrence of P in the antecedent.

Kashima and Shimura [3] solve the problem in the constant domain case
by introducing connections and allowing for additional instances of condi-
tional introduction to establish a cut-elimination procedure. The main idea is
to strengthen the introduction rules for the conditional to allow for contexts
that are not connected to the antecedent. The connections enable an explicit
version of the relevant independence. Therefore we will follow Kashima and
Shimura’s strategy in the next subsection.

3.2. Connections

The main innovation of Kashima’s calculus is that we additionally keep
track of connections between formula occurrences at sequents throughout
proofs. These connections were first introduced by Kashima in [2] to solve
the problems for the constant domain variation of intuitionistic logic and
refined in Kashima and Shimura [3].8

The connections provide an extra layer of information regarding the se-
quents within a derivation. As a step towards our goal we have to clearly
distinguish different formula occurrences of one and the same formula within
a sequent. In order to keep track of occurrences we use labellings. A labelling
of the formula occurrences in a sequent by natural numbers is a one-to-one
function from a finite set of natural numbers to the set of formulas in the se-
quent. We only require that the labelling function is one-to-one and not that
the ordering is preserved. So for example for the sequent A,B,B ⇒ A,C we
can use the labelling A1, B2, B3 ⇒ A4, C5, but also A7, B5, B3 ⇒ A1, C16.

8Kashima and Shimura [3] work with sequences instead of multisets.
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We introduce a binary relation ∼ of connection between formula occur-
rences within a sequent.9 When Ai ∼ Bj we say that the formula occurrence
Ai is connected to the formula occurrence Bj . The main idea is that there
is a dependence relation between the two formula occurrences in an initial
sequent of the form A ⇒ A. Formulas introduced by weakening on the other
hand lack this dependence relation. These dependencies are preserved along
derivations and the connections are a bookkeeping device. Since the formula
occurrences in the lower sequent of an inference in most cases do have a
unique set of ancestors, the connections are inherited from its ancestors.

In the following we will explicitly add the information of connections
of a formula occurrence. We will accomplish this by listing the labels of
all the connected formula occurrences within brackets behind the formula
occurrence. This will also help to see the locality of the inferences.

Let us illustrate this with an example. Consider our previous sequent now
with some additional information A1[], B2[3, 5],⇒ B3[2], C4[], C5[2]. Then
at this sequent A1 has no connections, but B2 is connected to B3 and C5,
i.e. B2 ∼ B3 and B2 ∼ C5 and C4 has no connections.10

In order to simplify the presentation of the calculus we will employ some
conventions:

We will use sequents of the form Ai[1i, . . . , ni], Γ ⇒ Δ, Bj [1j , . . . , mj ].
With []i we refer to the finite set of labels of formula occurrences con-

nected to the formula occurrence Ai, i.e. [1i, . . . , ni]. Since formula occur-
rences and labels are uniquely identifiable we will switch back and forth
between the two, so that for example []A

i

will be used for the same purpose.
These sets of labels []i keeping track of the connections can also be empty.

In a sequent we usually do not display the sets of connections of the
contexts, but we assume that every formula occurrence γk ∈ Γ has a set of
connections []γ

k

. In general we will use the corresponding small letter γ to
refer to a(n arbitrary) formula of Γ. In order to keep track of the connections
to side formula occurrences i we make use of the successor labels i′, i.e. if i is
the label of a side formula occurrence in one of the premisses of a rule, then
i′ is the label of the occurrence of the successor formula in the lower sequent.
To avoid overlaps in cases like (R →′) and (L¬→′) as well as (R →+) and
(L¬→+), we assume that the labelling of the lower sequent is chosen, such

9Not to be confused with the intuitionistic negation.
10The brackets convention is not the most parsimonious version as we can recover

the connections of the formula occurrences in the succedent from the connections in the
antecedent.
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that no successor label of non-principal formula is identical to a label of an
active formula.

In the case of non-principal formulas in the context the connections are
inherited directly, i.e. [1′, . . . , n′]i

′
at the lower sequent is inherited from

[1, . . . n]i at an upper sequent in all the cases except for the rules (L →),
(R¬→) and (Cut), which will be explicitly stated.

The expression [1, . . . , n \ i] refers to the set of labels 1, . . . , n without i.
For inferences with two premisses we use the shorthand ‘lus’ for left upper

sequent and ‘rus’ for right upper sequent.

The Systems cGhp and cGh+
p . Due to a technical consideration it is conve-

nient to work with a sequent system in which there are no empty cedents. In
order to guarantee this we slightly deviate from the previous systems. One
modification concerns the initial sequents of ⊥ and ¬⊥.11 Another mod-
ification concerns the conditional rules with restricted contexts. Here we
introduce an arbitrary new formula C. The additional arbitrary formula C
in the conditional rules is introduced for technical reasons similar to the oc-
currences of A in the initial sequents for ⊥ and �. We call the occurrences
of Ai in the initial sequents for ⊥ and � as well as the occurrences of Cl in
the →-rules auxiliary occurrences.

The system cGhp consists of the following rules:
Initial sequents

For all formulas A:

(ID) Ai[j] ⇒ Aj [i]
(L⊥′) ⊥i[j] ⇒ Aj [i]

(R¬⊥′) Ai[j] ⇒ (¬⊥)j [i]

Structural rules

Γ ⇒ Δ(LW)
Ai, Γ ⇒ Δ

Γ ⇒ Δ(RW)
Γ ⇒ Δ, Ai

Ai[1i, . . . , ni], A
j [1j , . . . ,mj ],Γ ⇒ Δ

(LC)
Ak[1′

i, . . . , n
′
i, 1

′
j , . . . ,m

′
j ],Γ ⇒ Δ

Γ ⇒ Δ, Ai[1i, . . . , ni], A
j [1j , . . . ,mj ]

(RC)
Γ ⇒ Δ, Ak[1′

i, . . . , n
′
i, 1

′
j , . . . ,m

′
j ]

Propositional rules

11This modification is already present in Kashima [2] and Kashima and Shimura [3].
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Ai[1i, . . . , ni], Γ ⇒ Δ
(L¬¬)

(¬¬A)i[1′
i, . . . , n

′
i], Γ ⇒ Δ

Γ ⇒ Δ, Ai[1i, . . . , ni](R ¬¬)
Γ ⇒ Δ, (¬¬A)i[1′

i . . . , n′
i]

Ai[1i, . . . , ni], Γ ⇒ Δ Bj [1j , . . . , mj ], Π ⇒ Λ
(L∨)

(A ∨ B)k[1′
i, . . . , n

′
i, 1

′
j , . . . , m

′
j ], Γ, Π ⇒ Δ, Λ

Γ ⇒ Δ, Ai[1i, . . . , ni](R∨)
Γ ⇒ Δ, (A ∨ B)i[1′

i, . . . , n
′
i]

Γ ⇒ Δ, Ai[1i, . . . , ni](R∨)
Γ ⇒ Δ, (B ∨ A)i[1′

i, . . . , n
′
i]

(¬A)i[1i, . . . , ni],Γ ⇒ Δ
(L¬∨)

(¬(A ∨ B))i[1′
i, . . . , n

′
i],Γ ⇒ Δ

(¬A)i[1i, . . . , ni],Γ ⇒ Δ
(L¬∨)

(¬(B ∨ A))i[1′
i, . . . , n

′
i],Γ ⇒ Δ

Γ ⇒ Δ, (¬A)i[1i, . . . , ni] Π ⇒ Λ, (¬B)j [1j , . . . ,mj ](R¬∨)
Γ, Π ⇒ Δ, Λ, (¬(A ∨ B))k[1′

i, . . . , n
′
i, 1

′
j , . . . ,m

′
j ]

Ai[1i, . . . , ni], Γ ⇒ Bj [1j , . . . , mj ](R→′)
Cl[k], Γ ⇒ (A → B)k[l, 1′

j , . . . , m
′
j \ i]

(¬B)i[1i, . . . , ni] ⇒ Δ, (¬A)j [1j , . . . , mj ](L¬→′)
(¬(A → B))k[l, 1′

i, . . . , n
′
i \ j] ⇒ Δ, Cl[k]

Γ ⇒ Δ, Ai[1i, . . . , ni] Bj [1j , . . . , mj ], Π ⇒ Λ
(L→)

(A → B)k[1′
j , . . . , m

′
j ], Γ, Π ⇒ Δ, Λ

With the sets of connections at the lower sequent defined as:

n′ ∈ []k iff n′ ∈ Λ and n ∈ []j at rus;

n′ ∈ []γ
l′

iff

{
n′ ∈ Δ & n ∈ []γ

l

at lus, or
n′ ∈ Λ & i ∈ []γ

l

at lus & n ∈ []j at rus;

n′ ∈ []π
l′

iff n′ in Λ and n ∈ []πl at rus.
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Γ ⇒ Δ, (¬B)i[1i, . . . , ni] (¬A)j [1j , . . . , mj ], Π ⇒ Λ
(R¬→)

Γ, Π ⇒ Δ, Λ, (¬(A → B))k[1′
j , . . . , m

′
j ]

With the sets of connections at the lower sequent defined as:

n′ ∈ []δ
l′

iff n′ in Γ and n ∈ []δ
l

at lus.

n′ ∈ []λ
l′

iff

{
n′ ∈ Π & n ∈ []λ

l

at rus, or
n′ ∈ Γ & n ∈ []i at lus & j ∈ []λ

l

at rus;
n′ ∈ []k iff n′ ∈ Γ and n ∈ []i at lus;

Γ ⇒ Δ, Ci[1i, . . . , ni] Cj [1j , . . . ,mj ], Π ⇒ Λ
(Cut)

Γ, Π ⇒ Δ, Λ

With the sets of connections at the lower sequent defined as:

n′ ∈ []γ
l′

iff

{
n′ ∈ Δ & n ∈ []γ

l

at lus, or
n′ ∈ Λ & i ∈ []γ

l

at lus & n ∈ []j at rus;

n′ ∈ []π
l′

iff n′ in Λ and n ∈ []π
l

at rus.

The system cGh+
p is gained from cGhp by replacing the rules with restricted

contexts (R →′) and (L¬→′) by their less restrictive counterparts (R →+)
and (L¬→+):

Ai[1i, . . . , ni], Γ ⇒ Δ, Bj [1j , . . . , mj ](R →+) for all δ ∈ Δ, δ /∈ []i
Cl[k], Γ ⇒ Δ, (A → B)k[l, 1′

j , . . . ,m
′
j \ i]

(¬B)i[1i, . . . , ni], Γ ⇒ Δ, (¬A)j [1j , . . . ,mj ](L¬→+) for all γ ∈ Γ, γ /∈ []j
(¬(A → B))k[l, 1′

i, . . . , n
′
i \ j], Γ ⇒ Δ, Cl[k]

Let us illustrate the connections due to an example, a derivation of (†)
in cGh+

p :
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P i[j] ⇒ P j [i]
P i[j] ⇒ P j [i], (¬R)k Ql[m] ⇒ Qm[l]
(P → Q)n[m], P i[m] ⇒ Qm[n, i], (¬R)k

(¬¬(P → Q))n[m], P i[m] ⇒ Qm[n, i], (¬R)k

(L¬→+)
(¬(R → ¬(P → Q)))o[m, p], P i[m] ⇒ Qm[o, i], Qp[o]

(¬(R → ¬(P → Q)))o[m], P i[m] ⇒ Qm[o, i]

The application of (L¬→+) is justified since the formula occurrence (¬D)k

at the upper sequent is not connected to Ai.

3.3. Cut Elimination for cGh+
p

In this section we work with a variation of cGh+
p , where cut is replaced by

the following more general mix rule. In the following Δ1, Π1 are multisets
of a single formula, the mix formula M . The sets Δ1, Π1 are allowed to be
empty and the mixformula M is allowed to appear in Π0, Δ0, such that not
all occurrences of M in the upper sequents have to be deleted.12

Γ ⇒ Δ0, Δ1 Π1, Π0 ⇒ Λ
(mix)

Γ, Π0 ⇒ Δ0, Λ

With the sets of connections at the lower sequent defined as:

n′ ∈ []γ
l′

iff

⎧
⎨

⎩

n′ ∈ Δ0 & n ∈ []γ
l

at lus, or
n′ ∈ Λ & ∃M i ∈ Δ1 at lus ∃M j ∈ Π1 at rus,

with i ∈ []γ
l

& n ∈ []j ;
n′ ∈ []π

l′
iff n′ in Λ and n ∈ []π

l

at rus.
As usual we define the grade of the mixformula to be the logical com-

plexity of the formula, in our case it is its positive depth.
In an inference all the side formula occurrences in the lower sequent have

a corresponding formula occurrence in an upper sequent, called its prede-
cessors. In the case of contraction we call both active formula occurrences
the predecessors of the principal formula occurrence.

As for the rank of a mix inference we use the sum of the left rank and the
right rank as for example in Takeuti [10], p.23. The difference to Takeuti’s
version stems from the fact that we allow for our multisets of the mixformula
to be empty as well as occurrences of the mixformula in Δ0 and Π0. To adjust
our system we define the left (right) rank of a mix to be the maximum length
of subsequent sequents in the subderivation D of the left upper sequent

12Kashima and Shimura [3] use such a rule as well as Ono [8] and the cut elimination
follows the strategy of Kashima and Shimura [3].
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(right upper sequent), that contain a predecessor of one of the mixformula
occurrences in Δ1 (Π1). In the case that the set of mixformulas on the left
(right) is empty we let the left (right) rank be 0.

If D is a derivation last(D) refers to the last inference of D and fs(D) to
the final sequent of D. If there are two derivations D,D′ of the same final
sequent Γ ⇒ Δ, then we say that D � D′ iff all formula occurrences that
are connected in fs(D) are also connected in fs(D′). D � D′ iff D � D′ and
D′ � D

The following lemma is a variant of Kashima and Shimura’s Lemma 3.2.
that states, that if A, Γ ⇒ Δ is cut-free derivable and A has no connections
to Δ, then Γ ⇒ Δ is also cut-free derivable. In our case this would not hold
without the additional formula occurrence Cl in the lower sequent of the
conditional rules, due to the simple fact that we could have ‘anti-theorems’,
i.e. sequents with empty succedent.13 To avoid empty succedents was one
of the reasons for Kashima and Shimura to use initial sequents of the form
⊥ ⇒ Ai. In our case we avoid empty cedents completely. Theorems have the
form � ⇒ A and anti-theorems B ⇒ ⊥.

For the following lemma we slightly adapt the notion of depth of a deriva-
tion D by counting multiple successive applications of weakening as a single
application and labelling this measure as d(D).

Lemma 13.

(i) If there is a cut- and mixfree derivation D of Ai, Γ ⇒ Δ in cGh+
p , such

that δ /∈ []i in last(D) for all δ ∈ Δ, then there is a cut- and mixfree
derivation D′ of Γ ⇒ Δ in cGh+

p , with D′ � D and d(D′) ≤ d(D).

(ii) If there is a cut- and mixfree derivation D of Γ ⇒ Δ, Ai in cGh+
p , such

that γ /∈ []i in last(D) for all γ ∈ Γ, then there is a cut- and mixfree
derivation D′ of Γ ⇒ Δ in cGh+

p , with D′ � D and d(D′) ≤ d(D).

Proof. We prove (i) by induction on d(D). The case of initial sequents is
impossible.

For the rules we distinguish the case where A is principal or nonprincipal.
The case that A is an auxiliary is not possible.

Weakening is in both cases trivial. Contraction is also simple in both
cases.

The propositional cases in which the active formulas are on the same side
as the principal are straightforward.

13Thanks to a referee for demanding a clarification of this point.
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Case (L →).

Θ ⇒ Λ, Bl Cj , Π ⇒ Σ
(B → C)k, Θ, Π ⇒ Λ, Σ

If A = B → C is principal and (B → C)k is not connected to Λ, Σ, then Cj

is also not connected to Σ in the right upper sequent and we get the desired
by IH and weakening.
If A is nonprincipal, then we have two subcases:

– Subcase 1:
Ai ∈ Θ. If j /∈ []σ for all σ ∈ Σ at the right upper sequent, then we use
the IH on the right upper sequent and weakening. If j ∈ σ for some
σ ∈ Σ at the right upper sequent, then λ /∈ []i and l /∈ []i at the left
upper sequent, as otherwise Ai would be connected to some σ ∈ Σ at
the lower sequent, in contrast to the assumption. Then we can use the
IH on the left upper sequent and then (L →).

– Subcase 2:
Ai ∈ Π, then at the right upper sequent Ai is not connected to any
σ ∈ Σ and we can use the IH and then (L →).

Case (R →+).
Then A can only be in Γ and then we can use the IH and then (R →+).

Case (L¬→+).

(¬B)o[1i, . . . , ni], Γ ⇒ Δ, (¬D)j [1j , . . . , mj ]
for all γ ∈ Γ, γ /∈ []j

(¬(D → B))k[l, 1′
i, . . . , n

′
i \ j], Γ ⇒ Δ, Cl[k]

Then Ai can only be nonprincipal and we can use IH, since Ai is neither
connected to any δ ∈ Δ nor (¬D)j at the upper sequent.

Case (R¬→).
Here Ai is also only in the context with two subcases. In both of them we
can use the IH.

For (ii) we argue analogously.

In the next lemma, which corresponds to Lemma 3.3. in [3], we show that
cuts for the initial sequents (L⊥′) and (R¬⊥′) are eliminable.

Lemma 14.

(i) If there is a cut- and mixfree derivation D of Γ ⇒ Δ,⊥j in cGh+
p , then

there is a cut- and mixfree derivation D′ of Γ ⇒ Δ, Aj in cGh+
p , such

that []γ at fs(D′) is the same as []γ at fs(D) for all γ ∈ Γ and |D′| ≤ |D|;
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(ii) if there is a cut- and mixfree derivation D of (¬⊥)j , Γ ⇒ Δ in cGh+
p ,

then there is a cut- and mixfree derivation D′ of Aj , Γ ⇒ Δ in cGh+
p ,

such that []δ at fs(D′) is the same as []δ at fs(D) for all δ ∈ Δ and
|D′| ≤ |D|.

Proof. (i) is proved by induction on the depth of the derivation D.
If Γ ⇒ Δ,⊥j is an initial sequent, then it has to be of the form ⊥k ⇒ ⊥j

and we get ⊥k ⇒ Aj as an instance of (L⊥′).
If fs(D) is not an initial sequent, then ⊥j is principal, auxiliary or neither.
In the principal case it is a structural inference. Weakening is obvious.

Contraction is handled by using the induction hypothesis twice and then
contraction.

In the auxiliary case it is (L¬→+) with C = ⊥. In this case, we use the
rule (L¬→+) on the upper sequent with C = A.

In the other cases we argue by employing the induction hypothesis on
the upper sequents of last(D). (ii) is similar.

Lemma 15. If there are cut- and mixfree derivations D of Γ ⇒ Δ0, Δ1 in
cGh+

p and E of Π1, Π0 ⇒ Λ in cGh+
p and Δ1, Π1 are (possibly empty)

sequences consisting only of a formula M , then there is a cut- and mixfree
derivation F of Γ, Π0 ⇒ Δ0, Λ in cGh+

p , such that all the connections at
fs(F) are connections at the sequent that would result in an application of
mix on fs(D) and fs(E), i.e.

(i) if δ0 ∈ []γ at fs(F), then δ0 ∈ []γ at fs(D);

(ii) if λ ∈ []π0 at fs(F), then λ ∈ []π0 at fs(E);

(iii) δ0 /∈ []π0 at fs(F);

(iv) if λ ∈ []γ at fs(F), then there is a δ1 in Δ1 with δ1 ∈ []γ at last fs(D)
and there is a π1 in Π1 with λ ∈ []π1 at last fs(E).

Proof. By an induction on the grade of the mixformula M with a side
induction on the rank. So the last inference that we want to replace is of the
form

D
Γ ⇒ Δ0, Δ1

E
Π1, Π0 ⇒ Λ

(mix)
Γ, Π0 ⇒ Δ0, Λ

We distinguish the cases:

(I) left rank = 0 or right rank = 0: then either Δ1 or Π1 are empty. These
cases are easily treated by weakening.
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(II) rank = 2 and left rank �= 0 and right rank �= 0:
If one of the sequents is an initial sequent, then

(a) last(D) is an instance of (ID), say Ai ⇒ Aj , then Δ0 is empty and Π1

is nonempty. If Π1 consists of a single occurrence of A, we can use E .
Otherwise we use contraction on fs(E).

(b) last(D) is an instance Ai ⇒ (¬⊥)j of (R¬⊥′) and Π1 is a nonempty
multiset of ¬⊥. By contraction and Lemma 14 (ii) we can transform E
into a cut- and mixfree derivation of Ai, Π0 ⇒ Λ.

(c) last(D) is an instance ⊥i ⇒ Aj of (L⊥′) and Π1 is a nonempty multiset
of A’s. If none of the mixformulas in Π1 are connected to some λ ∈ Λ
at fs(E), then we use Lemma 13 (i) and weakening. If some mixformula
M l is connected to some λk, then we use ⊥i ⇒ λk as an instance of
(L⊥′) and weakening.

(d) last(E) is an instance of (ID), similar to (a).
(e) last(E) is an instance of (L⊥′), similar to (b).
(f) last(E) is an instance of (R¬⊥′), similar to (c).

If none of the sequents is an initial sequent, then on both sides we have
a single mix formula that is either principal or auxiliary. If last(D) or
last(E) is an instance of weakening, then we get the result also by weak-
ening. So we focus on the propositional cases.

If last(E) is (R →+) with the auxiliary C being our mix formula, then
our proof has the form

D
Γ ⇒ Δ0, C

m

E0

Ai, Π0 ⇒ Λ, Bj

Cl, Π0 ⇒ Λ, (A → B)k

(mix)
Γ, Π0 ⇒ Δ0, Λ, (A → B)k

Then we can argue as follows: If Γ has no connection to Cm at fs(D),
then we can use Lemma 13 to get Γ ⇒ Δ0 and then use weakening. If
there is a formula γ ∈ Γ, such that m ∈ []γ at fs(D), then we use this γ
as our C in an application of (R →+) to fs(E0) and then weakening.

The case of (L¬→+) as last(D) with Cl the mixformula is analogous.

In the case of the mix being principal the unique readability and the
symmetry of the calculus allow us to argue standardly, so we only discuss
the case of a negated conditional:

(e) Let us consider the case of ¬→, then last(D) is of the form
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D0

Γ′ ⇒ Δ′
0, (¬B)i

D1

(¬A)j , Γ′′ ⇒ Δ′′
0

Γ ⇒ Δ0, (¬(A → B))k

where Γ = Γ′, Γ′′ and Δ0 = Δ′
0, Δ

′′
0 .

On the right hand last(E) is of the form
E0

(¬B)mΠ0 ⇒ Λ, (¬A)n

π /∈ []n for all π ∈ Π0
(¬(A → B))o, Π0 ⇒ Λ, Cl

Since rank is 2 there are no other occurrences of the mixformula rele-
vant. Then our derivation F isD0

Γ′ ⇒ Δ′
0, (¬B)i

E0

(¬B)m, Π0 ⇒ Λ, (¬A)n

(∗) Γ′, Π0 ⇒ Δ′
0, Λ, (¬A)n

D1

(¬A)j , Γ′′ ⇒ Δ′′
0

Γ, Π0 ⇒ Δ0, Λ
Γ, Π0 ⇒ Δ0, Λ, Cl

It is simple to check that all the connections in the last sequent of F
are connections in the sequent that we would get by applying mix.
(i) If δ0 ∈ []γ at fs(F), then δ0 ∈ []γ at fs(D0) or δ0 ∈ []γ at fs(D1) or

n ∈ []γ at (∗) and δ0 ∈ []j at last(D1).
In the first two cases γ ∼ δ0 at fs(D).
In the third case by IH n ∈ []γ at (∗) implies that i ∈ []γ at fs(D0)
and n ∈ []m at fs(E0). But then δ0 ∈ []γ at last(D).

(ii) If λ ∈ []π0 at fs(F), then λ ∈ []π0 at fs(E0) and at fs(E).
(iii) δ0 /∈ []π0 since π0 /∈ []n for all π0 ∈ Π0 at fs(E0).
(iv) If λ ∈ []γ at fs(F), then λ ∈ []γ at (∗). By IH i ∈ []γ at fs(D0), and

λ ∈ []m at fs(E0). Then k ∈ []γ at fs(D) and λ ∈ []o at fs(E).
(v) γ, π0 � Cl.

(III) rank > 2 and left rank �= 0 and right rank �= 0:

If left rank > 1 we distinguish cases depending on last(D).

If right rank > 1 we distinguish cases depending on last(E).

Except for the conditional cases with restricted contexts the standard
strategy works.

We discuss the interesting case of restricted contexts

(a) last(E) is (R →+) and all the mixformulas in Π1 are nonprincipal:
E0

Π1, Π0, A
i ⇒ Λ, Bj

λ /∈ []i for all λ ∈ Λ
Cl, Π1, Π0 ⇒ Λ, (A → B)k
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and fs(D) is Γ ⇒ Δ0, Δ1.
If Cl is not one of the mixformulas in Π1 we can argue

D
Γ ⇒ Δ0, Δ1

E0

Π1, Π0, A
i ⇒ Λ, Bj

by IH
(∗) Γ, Π0, A

i ⇒ Δ0, Λ, Bj

Cl, Γ, Π0 ⇒ Δ0, Λ, (A → B)k

The application of (R →+) is justified, since at (∗), for all λ ∈ Λ, λ /∈ []i

by assumption. But also δ0 /∈ []i, for all δ0 ∈ Δ0 by IH and the fact that
in an application of mix no formulas of the contexts of the succedent
of the left upper sequent and the antecedent of the right upper sequent
get connected.

If k ∈ []γ at fs(F), then there is some δ1 ∈ Δ1 with δ1 ∈ []γ at fs(D)
and some π1 ∈ Π1 with j ∈ []π1 at fs(E0). Then also k ∈ []π1 at fs(E).
The other connections are easy to check.

If Cl is one of the mixformulas in Π1, then we argue as before. In
the case that there is no connection between Γ and Δ1 in fs(D) we use
Lemma 13 and weakening. Otherwise we use the IH and then choose C
in an application of (R →+) to be one of the γ’s that are connected to
a mixformula in Δ1.

(b) last(E) is (L¬→+) and all of the mixformulas of Π1 are nonprincipal:
E0

Π1, Π0, (¬B)i ⇒ Λ, (¬A)j

j /∈ []π for all π ∈ Π1, Π0
Π1, Π0, (¬(A → B))k ⇒ Λ, Cl

and fs(D) is Γ ⇒ Δ0, Δ1 with Δ1 containing only mixformulas.
Then the derivation looks like

D
Γ ⇒ Δ0, Δ1

E0

Π1, Π0, (¬B)i ⇒ Λ, (¬A)j

by IH
(∗) Γ, Π0, (¬B)i ⇒ Δ0, Λ, (¬A)j

Γ, Π0, (¬(A → B))k ⇒ Δ0, Λ, Cl

The application of (L¬→+) is justified, since j /∈ []π for all π ∈ Π0 at
(∗). Also j /∈ []γ for all γ ∈ Γ at (∗), because j /∈ []π for all π ∈ Π1 at
fs(E0).

For the connections we notice δ0 /∈ []k at fs(F). If λ ∈ []k at fs(F),
then λ ∈ []k at fs(E). Also l ∈ []k at fs(E).

If one of the mixformulas is principal and there are other occurrences
of the mixformula in Π1 that are nonprincipal, then by IH the following
is also mixfree derivable:
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D
Γ ⇒ Δ0, Δ1

D
Γ ⇒ Δ0, Δ1

E0

Π1, Π0, (¬B)i ⇒ Λ, (¬A)j

Γ, Π0, (¬B)i ⇒ Δ0, Λ, (¬A)j

(∗) (¬(A → B))k, Γ, Π0 ⇒ Δ0, Λ, Cl

Γ, Γ, Π0 ⇒ Δ0, Δ0, Λ, Cl

Γ, Π0 ⇒ Δ0, Λ, Cl

The application of (L¬→+) is again justified. Moreover, we have re-
duced the right rank to 1, so that we can use the IH again.

If δ0 ∈ []γ at fs(F), then δ0 ∈ []γ at fs(D).
If λ ∈ []γ at fs(F), then m ∈ []γ for some mixformula Mm in Δ1 at
fs(D) and either λ ∈ []k at (∗) or λ ∈ []π1 at fs(E0). In the first case
λ ∈ []k also at fs(E) and in the second case λ ∈ []γ at fs(E).
If l ∈ []γ at fs(F) then n ∈ []γ for some mixformula Mn in Δ1 at fs(D).
δ0 /∈ []π0 at fs(F).
If λ ∈ []π0 at fs(F), then λ ∈ []π0 at fs(E) and l /∈ []π0 at fs(F).

(c) last(D) is (R →+) analogous to (b).
(d) last(D) is (L¬→+) analogous to (a).

Theorem 2. If Γ ⇒ Δ is derivable in cGh+
p , then there is a cut- and

mixfree derivation of Γ ⇒ Δ in cGh+
p .

4. Equivalence of cGh+
p and G1hp

The next step is to relate the system cGh+
p to our more familiar systems

G1hp and G3hp. Obviously cGh+
p is an extension of cGhp. We notice that

in cGhp the rules of contraposition (Cp), (ConCp) and (ClCp) are admissible,
similar to Lemmas 7 and 10. Then it is also simple to show that cGhp and
G1hp are equivalent in the following sense:

Lemma 16. For all Γ ⇒ Δ, G1hp � Γ ⇒ Δ iff cGhp � �, Γ ⇒ Δ,⊥.

Proof. For left to right we argue by induction on the depth of the derivation
in G1hp. For the initial sequents (L⊥), we argue by (L⊥′) and weakening.

For the cases with unrestricted contexts no problem appears, for example
(L→):

Γ ⇒ Δ, A B,Γ ⇒ Δ
A → B,Γ ⇒ Δ
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By IH �, Γ ⇒ Δ, A,⊥ and �, B,Γ ⇒ Δ,� are derivable in cGhp. With
(L→) we get �,�, A → B,Γ, Γ ⇒ Δ, Δ,�,� and with contraction we are
done.

In the case of an (R→)-inference,14

A, Γ ⇒ B

Γ ⇒ A → B

we use the IH to get

�, A,Γ ⇒ B,⊥ ⊥ ⇒ B

�, A,Γ ⇒ B,B

�, A,Γ ⇒ B

�,�, Γ ⇒ A → B

�, Γ ⇒ A → B

�, Γ ⇒ A → B,⊥

The case (L¬→) is analogous.
For the other direction by adapting the proof of Lemma 9 we notice that

if cGhp � Γ ⇒ Δ, then G1hp � Γ ⇒ Δ. The extra occurrences of ⊥,�
can then be eliminated with (Cut) using the initial sequents (L⊥) and the
G1hp-derivable the sequents ⇒ �.

It is more demanding to establish the admissibility of the more general
rules (R →+) and (L¬→+) in cGhp in the presence of (Cut). The task is
to provide an inductive argument on the depth of the derivation that shows
that we can basically always work with sequents in which all the formulas
without the relevant connections are already in conditional form.15

We call Γ0; Γ1 ⇒ Δ0; Δ1 a partition of Γ ⇒ Δ if Γ0 and Γ1 are (multi-
)subsets of Γ and Δ0 and Δ1 are (multi-)subsets of Δ with Γ = Γ0 ∪Γ1 and
Δ = Δ0 ∪ Δ1. If in a partition Γ0; Γ1 ⇒ Δ0; Δ1 one of the Γi is empty we
understand it as � and if one of the Δi is empty, then it is ⊥.

We will make use of the shorthands
∧

Γ and
∨

Δ, where if Λ is empty,
then

∧
Λ is just �, and

∨
Λ is just ⊥. For convenience we use (Γ; Δ) as an

abbreviation for the formula
∧

Γ → ∨
Δ.

14Thanks to a referee for suggesting the following simplification.
15Again we follow the basic strategy of Kashima and Shimura [3].
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We first provide an auxiliary Lemma that helps us argue with (Γ; Δ).
For this we introduce the class of special sequents defined inductively: The
following are special sequents:

(Γ; Δ) ⇒ (A,Γ; Δ); (Γ; Δ) ⇒ (Γ; Δ, A) (9)
(A,A,Γ; Δ) ⇒ (A,Γ; Δ); (Γ; Δ, A,A) ⇒ (Γ; Δ, A) (10)

(A,Γ; Δ) ⇒ (¬¬A,Γ; Δ); (Γ; Δ, A) ⇒ (Γ; Δ,¬¬A)

(11)
(Γ; Δ, A) ⇒ (Γ; Δ, A ∨ B); (Γ; Δ, B) ⇒ (Γ; Δ, A ∨ B)

(12)
(¬A,Γ; Δ) ⇒ (¬(A ∨ B),Γ; Δ); (¬B,Γ; Δ) ⇒ (¬(A ∨ B),Γ; Δ)

(13)
(A,Γ; Δ) ∧ (B,Π; Λ) ⇒ (A ∨ B,Γ,Π; Δ,Λ) (14)

(Γ; Δ,¬A) ∧ (Π; Λ,¬B) ⇒ (Γ,Π; Δ,Λ,¬(A ∨ B)) (15)
(Γ; Δ, A) ∧ (B,Π; Λ) ⇒ (A → B,Γ,Π; Δ,Λ) (16)

(Γ; Δ,¬B) ∧ (¬A,Π; Λ) ⇒ (Γ,Π; Δ,Λ,¬(A → B)) (17)
(Γ; Δ, C) ∧ (C,Π; Λ) ⇒ (Γ,Π; Δ,Λ) (18)

The class of special sequents is also closed under the following inductive
clause:

If A ⇒ B is a special sequent, then ¬B ⇒ ¬A is also a special sequent.

It will be sufficient to use a special form of cut on special sequents:

Γ ⇒ Δ, A A ⇒ B
(sp-cut1) for A ⇒ B a special sequent

Γ ⇒ Δ, B

¬A, Γ ⇒ Δ A ⇒ B
(sp-cut2) for ¬B ⇒ ¬A a special sequent¬B,Γ ⇒ Δ

Γ ⇒ Δ, (A, Π; Λ) (A, Π; Λ), A ⇒ (Π; Λ)
(sp-cut3)

Γ, A ⇒ Δ, (Π; Λ)

¬(Π; Λ) ⇒ ¬(A, Π; Λ),¬A ¬(A, Π; Λ), Γ ⇒ Δ
(sp-cut4) ¬(Π; Λ), Γ ⇒ Δ,¬A

With the derivability of the special sequents as well as (A,Π; Λ), A⇒(Π; Λ)
we can reformulate the rules also as:
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Γ ⇒ Δ, Ai

(sp-cut1)
Γ ⇒ Δ, Bj

(¬A)i, Γ ⇒ Δ
(sp-cut2)

(¬B)j , Γ ⇒ Δ

for A ⇒ B a special sequent, for ¬B ⇒ ¬A a special sequent,
where if γ ∼ Ai, then γ ∼ Bj . where if (¬A)i ∼ δ, then (¬B)j ∼ δ.

Γ ⇒ Δ, (A, Π; Λ)j

(sp-cut3)
Ai, Γ ⇒ Δ, (Π; Λ)j

(¬(A, Π; Λ))i, Γ ⇒ Δ
(sp-cut4)

(¬(Π; Λ))i, Γ ⇒ Δ, (¬A)j

where the connections are as to be expected, i.e. in (sp-cut3) we have
Ai ∼ (Π; Λ)j , γ ∼ δ in the lower sequent iff γ ∼ δ in the upper sequent and

γ ∼ (Π; Λ)j iff γ ∼ (A, Π; Λ)j . (sp-cut4) is analogous with
(¬(Π; Λ))i ∼ (¬A)j .

Lemma 17. The special sequents are cutfree derivable in cGhp, where the
cedents are connected. The rules (sp-cuth) for 1 ≤ h ≤ 4 are admissible in
cGhp.

Proof. The base cases are tedious but simple and the inductive clause by
admissible contraposition.

We focus on the rules: For (sp-cut3) we argue as follows: We derive cut-
free (A, Π; Λ), A ⇒ (Π; Λ) and then use

Γ ⇒ Δ, (A, Π; Λ)

A ⇒ A
∧

Π ⇒ ∧
Π

A,
∧

Π ⇒ A ∧ ∧
Π

∨
Λ ⇒ ∨

Λ
(A, Π; Λ), A,

∧
Π ⇒ ∨

Λ
(A, Π; Λ), A ⇒ (Π; Λ)

A, Γ ⇒ Δ, (Π; Λ)
For the case (sp-cut4) we argue by admissible contraposition that we get

¬(Π; Λ) ⇒ ¬(A, Π; Λ),¬A.

In addition to the special sequents we have the following: We collect some
properties for cut-free derivable sequents:

Lemma 18. The following sequents are cut-free derivable in cGhp:

(Π; Λ) ∨ A ⇒ (Π; Λ, A) (19)

¬(Π; Λ, A) ⇒ ¬((Π; Λ) ∨ A) (20)

The following rules are admissible in cGhp:

Γ ⇒ Δ, (Π; Λ), A
Γ ⇒ Δ, (Π; Λ, A)

¬(Π; Λ), A,Γ ⇒ Δ
¬(Π; Λ,¬A), Γ ⇒ Δ



670 M. Fischer

In the rest of the section we prove the admissibility of (R →+) and
(L¬ →+) in cGhp, which will be a corollary of the following lemma. The
idea is to replace all subderivations that have only a single application of
(R →+) or (L¬ →+) as the last inference with a derivation without using
(R →+) or (L¬→+). We have to ensure that due to the replacement no new
connections are introduced, i.e. we have to insure that all the connections in
the new derivation would have been connections at the sequent that would
result in an application of (R →+) or (L¬ →+). We will make use of the
abbreviation Γ � Δ as short for: for all γ ∈ Γ and for all δ ∈ Δ, γ � δ.

Lemma 19. Let D be a derivation of Γ ⇒ Δ in cGhp and Γ0; Γ1 ⇒ Δ0; Δ1

a partition, such that Γ1 � Δ0 at fs(D).
Let S1 be a sequent Cl, Γ0 ⇒ Δ0, (Γ1; Δ1)i that would result in an appli-

cation of (R →+) and S2 a sequent (¬(¬Δ0; ¬Γ0))i, Γ1 ⇒ Δ1, C
l that would

result in an application of (L¬→+), then there are derivations D′ and D′′

in cGhp, such that:

(i) Cl, Γ0 ⇒ Δ0, (Γ1; Δ1)i is fs(D′), with

if n ∈ []l at fs(D′), then n ∈ []l at S1 and

if n ∈ []γ0 at fs(D′), then n ∈ []γ0 at S1;

(ii) (¬(¬Δ0; ¬Γ0))i, Γ1 ⇒ Δ1, C
l is fs(D′′), with

if n ∈ []i at fs(D′′), then n ∈ []i at S2 and

if n ∈ []γ1 at fs(D′′), then n ∈ []γ1 at S2.

Proof. By induction on the depth of the derivation d(D) we show (i) and
(ii).

The cases of initial sequents are simple.

(a) For (ID) we have four partitions to consider:

1. In the case of Ai; ⇒ Aj ; for (i) we get Cl, Ai ⇒ Aj , (�; ⊥) from (ID) by
weakening. For (ii) we get ¬(¬A; ¬A) ⇒ Cl from (ID) with (L¬→′).

2. In the case of Ai; ⇒; Aj we have that Γ1 is empty. For (i) we get
Cl, Ai ⇒ (�; Aj) from (ID) by (R →′) and weakening. For (ii) we get
(¬(¬⊥; ¬A))k ⇒ Aj , Cl from (ID) by (L¬¬), (RW) and (L¬→′).

3. The case ; Ai ⇒ Aj ; is not possible by our assumption.
4. The remaining case is ; Ai ⇒; Aj . For (i) we get Cl ⇒ (A; A)k from

(ID) by (R →′). For (ii) we get ¬(¬⊥; ¬�), Ai ⇒ Aj by weakening from
(ID).

(b) For (L⊥′) we also have three possible partitions.
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1. In the case of ⊥i; ⇒ Aj ;. For (i) we have Cl,⊥ ⇒ A, (�; ⊥)k by (L⊥′)
and weakening. For (ii) we get ¬(¬A; ¬⊥)k ⇒ Cl from ⊥ ⇒ ¬¬A by
(L¬¬) and (L¬→′).

2. In the case ⊥i; ⇒; Aj we have Cl,⊥ ⇒ (�; A)k by (L⊥′) and weakening
and ¬(¬⊥; ¬⊥)k ⇒ Aj , Cl by (ID), (L¬→′) and weakening.

3. In the case of ;⊥i ⇒; Aj we have Cl ⇒ (⊥; A)k by (L⊥′) and (R →′).
¬(¬⊥; ¬�)k,⊥i ⇒ Aj .

(c) The case (R¬⊥′) is analogous.

We distinguish cases according to last(D) starting with structural infer-
ences:

(d) In the case of weakening we consider

Γ ⇒ Δ
Π, Γ ⇒ Δ, Λ

with n applications of (LW) and m applications of (RW) and all Ai

in Π and all Bj in Λ in the lower sequent have no connections. For
simplification we do mention the labels.

We have to show (i) and (ii) for arbitrary permutations Π0, Γ0; Π1, Γ1

⇒ Λ0, Δ0; Δ1, Λ1.

By IH we have the derivations D′ of Cl, Γ0 ⇒ Δ0, (Γ1; Δ1)k and D′′

of (¬(¬Δ0; ¬Γ′
0))

k, Γ1 ⇒ Δ1, C
l.

For (i) we argue as follows: we get Cl, Π0, Γ0 ⇒ Δ0, Λ0, (Γ1; Δ1)k by
weakening from D′ and then Cl, Π0, Γ0 ⇒ Δ0, Λ0, (Π1, Γ1; Δ1, Λ1)k

by internal weakening (9) and (sp-cut1).

For (ii) we argue similarly.

(e)–(f) (LC), (RC) are similar.

The next cases are the propositional ones. The strategy is to mimik
the application of the rule with the corresponding special sequents.
We discuss only the conditional cases:

(g) (L →): So the last inference is of the form

D0

Γ ⇒ Δ, Ai

D1

Bj , Π ⇒ Λ
(A → B)k, Γ, Π ⇒ Δ, Λ
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Then we have two partitions of fs(D) to consider:

1. (A → B)k, Γ0, Π0; Γ1, Π1 ⇒ Δ0, Λ0; Δ1, Λ1

For (i) we make a case distinction:
– if Γ1 � Ai at fs(D0), then there is a partition Γ0; Γ1 ⇒ Δ0, A

i; Δ1

of the left upper sequent with Γ1 � Ai and a partition Bj , Π0; Π1 ⇒
Λ0, Λ1 with Π1 � Λ0. So by IH we have

D′
0

Cl0 , Γ0 ⇒ Δ0, A
i, (Γ1; Δ1)

D′
1

Bj , Cl1 , Π0 ⇒ Λ0, (Π1; Λ1) (L →)
(A → B)k, Cl0 , Cl1 , Γ0, Π0 ⇒ Δ0, (Γ1; Δ1), Λ0, (Π1; Λ1)

(A → B)k, Γ0, Π0, C
l ⇒ Δ0, Λ0, (Γ1, Π1; Δ1, Λ1).

The double line inference is due to special sequents for internal
weakening and contraction and (sp-cut1).

The connections are ok since we can trace back the connections
of (A → B)k to the connections of Bj which by IH will also be
connected in the case of the original proof.

– if Γ1 ∼ Ai at fs(D0), then Bj
� Λ0 at fs(D1) since otherwise

Γ1 ∼ Λ0 at fs(D).
If Bj ∼ Λ1 at fs(D1), then we have

D′
0

Cl0 , Γ0 ⇒ Δ0, (Γ1; Δ1, A)

D′
1

Cl1 , Π0 ⇒ Λ0, (B,Π1; Λ1)
Cl0 , Cl1 , Γ0, Π0 ⇒ Δ0, Λ0, (Γ1; Δ1, A) ∧ (B,Π1; Λ1)

(sp-cut1)
Cl, Γ0, Π0 ⇒ Δ0, Λ0, (A → B,Γ1, Π1; Δ1, Λ1) (sp-cut3)

(A → B)k, Cl, Γ0, Π0 ⇒ Δ0, Λ0, (Γ1, Π1; Δ1, Λ1)
Also in this case the connections are ok. (A → B)k is only con-
nected to (Γ1, Π1; Δ1, Λ1) at fs(D′), but Bj was connected to Λ1 at
fs(D1) and so (A → B)k would also be connected to (Γ1, Π1; Δ1, Λ1)
after an (R →+) inference.
If Bj

� Λ1 at fs(D1), then we can use Lemma 13 to infer Π ⇒ Λ
with a proof of depth less or equal to D1 and with Π1 � Λ0. Then
we can use the IH to get Cl, Π0 ⇒ Λ0, (Π1; Λ1) and then argue by
weakening and the special sequents for weakening.

For (ii) we consider the cases
– If Ai

� Γ1 at fs(D0), then with the IH applied to the partition
Γ0; Γ1 ⇒ Ai, Δ0; Δ1 we have

¬(¬Λ0; ¬Π0,¬B),Π1 ⇒ Λ1, Cl0 ¬(¬A,¬Δ0; ¬Γ0),Γ1 ⇒ Δ1, Cl1

(L¬∧)
¬((¬Λ0; ¬Π0,¬B) ∧ (¬A,¬Δ0; ¬Γ0)),Γ1,Π1 ⇒ Δ1,Λ1, Cl

(sp-cut2)¬(¬Λ0,¬Δ0; ¬Π0,Γ0,¬(A → B)),Γ1,Π1 ⇒ Δ1,Λ1, Cl
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– if Ai ∼ Γ1 at fs(D1), then Bj
� Λ0 and by IH

¬(¬Δ0; ¬Γ0),Γ1 ⇒ Δ1, Ai, Cl0 ¬(¬Λ0; ¬Π0), Bj ,Π1 ⇒ Λ1, Cl1

¬(¬Δ0; ¬Γ0),¬(¬Λ0; ¬Π0),Γ1,Π1, (A → B)k ⇒ Δ1,Λ1, Cl0 , Cl1

¬(¬Δ0,¬Λ0; ¬Γ0,¬Π0),Γ1,Π1, (A → B)k ⇒ Δ1,Λ1, Cl

Using Lemma 18 we get

¬(¬Δ0,¬Λ0; ¬Γ0,¬Π0,¬(A → B)), Γ1, Π1 ⇒ Δ1, Λ1, C
l.

The connections are ok
2. Γ0, Π0; (A → B)k, Γ1, Π1 ⇒ Δ0, Λ0; Δ1, Λ1.

By assumption (A → B)k
� Λ0 at fs(D) and therefore also Bj

� Λ0 at
fs(D1).
For (i) similar to the first partition, but simpler. By IH we have
Cl0 , Γ0 ⇒ Δ0, (Γ1; Δ1, A) Cl1 , Π0 ⇒ Λ0, (B,Π1; Λ1)

Cl0 , Cl1 , Γ0, Π0 ⇒ Δ0, Λ0, (Γ1; Δ1, A) ∧ (B,Π1; Λ1)
(sp-cut1)

Cl, Γ0, Π0 ⇒ Δ0, Λ0, (A → B,Γ1, Π1; Δ1, Λ1)

For (ii) we can argue with the IH to get

¬(¬Δ0; ¬Γ0),Γ1 ⇒ Δ1, Ai, Cl1 ¬(¬Λ0; ¬Π0), Bj ,Π1 ⇒ Λ1, Cl0

(L →)¬(¬Δ0; ¬Γ0) , ¬(¬Λ0; ¬Π0), (A → B)k,Γ1,Π1 ⇒ Δ1,Λ1, Cl0 , Cl1

¬(¬Δ0,¬Λ0; ¬Γ0,¬Π0), (A → B)k,Γ1,Π1 ⇒ Δ1,Λ1, Cl

(h) (R →′): Then we have an inference of the form:

Ai, Γ ⇒ Bj

Dl, Γ ⇒ (A → B)k

We have the two partitions:

1. Dl, Γ0; Γ1 ⇒ (A → B)k; . In this case we have Γ1 � (A → B)k in the
lower sequent, therefore Γ1 � Bj in the upper sequent. Then we can
use Lemma 13 to infer Ai, Γ0 ⇒ Bj and with (R →′) we get Dl, Γ0 ⇒
(A → B)k.
For (i) we use weakening to get Cn, Dl, Γ0 ⇒ (A → B)k, (Γ1; ⊥);

For (ii) we use double negation introduction and (L¬→′) to infer ¬(¬(A →
B);¬D,¬Γ0) ⇒ Cn. Then with weakening we get the desired ¬(¬(A →
B);¬D,¬Γ0), Γ1 ⇒ Cn.

2. If (A → B)k is part of Δ1, then Dl can be part of Γ0 or Γ1

For (i) we can in both cases use (R →′) and weakening to infer either
Cn, Dl, Γ0 ⇒ (Γ1; A → B) or Cn, Γ0 ⇒ (D,Γ1; A → B).
For (ii) we argue as follows:
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If Bj ∼ Γ0 at the upper sequent, then by IH
¬(¬⊥; ¬Γ0), Γ1, A

i ⇒ Bj , Bm. Contracting and then using (R →′) gives
us ¬(¬⊥; ¬Γ0), Dl, Γ1 ⇒ (A → B)k and we can use weakening. The
connections are ok by our assumption.
If Bj

� Γ0 at the upper sequent, then we use Lemma 13 to infer
Ai, Γ1 ⇒ Bj and then Dl, Γ1 ⇒ (A → B)k by (R →′). We get ¬(¬⊥;
¬Γ0), Dl, Γ1 ⇒ (A → B)k, Cm by weakening.
In the case that Dl is part of Γ1 we are done. In the other case we use
Lemma 18 to infer ¬(¬⊥; ¬Γ0,¬D), Γ1 ⇒ (A → B)k, Cm.

The other cases, including (Cut), are similar.

We sum up the result in the following lemma:16

Lemma 20. If cGh+
p � Γ ⇒ Δ, then cGhp � Γ ⇒ Δ.

Proof. Let D be a derivation of Γ ⇒ Δ in cGh+
p . By the Cut-elimination

Theorem 2 we can assume that it is a cut-free derivation. Let Di be a
subderivation of D with the only application of (R →+) or (L¬→+) as last
inference. Then we can use the corresponding derivations given in Lemma
19. In the case (R →+) we can directly replace the subderivation Di. In
the case (L¬ →+) we have to replace the negated conditionals of the form
¬(¬¬A → ¬¬B) by ¬(A → B). In both cases the replacement does not
increase the connections and therefore we can successively replace all the
subderivations to get a cGhp derivation D′ of Γ ⇒ Δ.

Theorem 3. The following are equivalent:

(i) �, Γ ⇒ Δ,⊥ is derivable in cGh+
p ;

(ii) �, Γ ⇒ Δ,⊥ is cut-free derivable in cGh+
p ;

(iii) �, Γ ⇒ Δ,⊥ is derivable in cGhp;

(iv) Γ ⇒ Δ is derivable in G1hp;

(v) Γ ⇒ Δ is derivable in G3hp.

16In Kashima and Shimura [3] the rules of (sp-cut) are used to establish a partial
cut-elimination. A similar strategy would probably work, if we define a calculus with the
(sp-cut)-rules instead of (Cut). In this case we have make some adjustments, for example
replace the special sequent of internal cut (18) by the following:

(Γ; Δ, (A,Π; Λ)) ⇒ (Γ, A; Δ, (Π; Λ)) (21)
((Π; Λ,¬A),Γ; Δ) ⇒ ((Π; Λ),Γ; Δ,¬A) (22)

and add an additional inductive clause: If A ⇒ B is a special sequent, then (Γ; Δ, A) ⇒
(Γ; Δ, B) and (¬A,Γ; Δ) ⇒ (¬B,Γ; Δ) are also a special sequents.



Sequent Calculi for the Propositional Logic of HYPE 675

Proof. From (i) to (ii) by the Cut-elimination Theorem 2. From (ii) to
(iii) by Lemma 20. From (iii) to (i) is obvious. The equivalence of (iii) and
(iv) by Lemma 16 and the equivalence of (iv) and (v) by Theorem 1.

5. Conservativity

We look at one application of the cut-elimination, the conservativity of
HYPE over its intuitionistic part as well as its FDE-fragment. In Leitgeb
[4] the conservativity considerations are semantic considerations and focus
on the intuitionistic part.

First of all we have a subformula property for cut-free derivations for our
suitably modified notion of subformula given in Definition 1.

Lemma 21. Let D be a cut-free derivation of Γ ⇒ Δ in cGh+
p and Γ′ ⇒ Δ′

in D. All the formulas in Γ′ ⇒ Δ′ are subformulas of
∧

Γ → ∨
Δ;

The cut elimination can be directly employed to establish the conserva-
tivity of HYPE over FDE17 as well as intuitionistic logic:18

Lemma 22. (Conservativity)

(i) For every sequent Γ ⇒ Δ derivable in G3hp and not containing →, the
sequent Γ ⇒ Δ is derivable in G3fdep;

(ii) for every sequent Γ ⇒ Δ derivable in G3hp and not containing ¬, the
sequent Γ ⇒ Δ is derivable in G3ip.

Proof. For (i): if Γ ⇒ Δ is derivable in G3hp and not containing →, then
�, Γ ⇒ Δ,⊥ is cut-free derivable in cGh+

p . Without → the proof does not
use the more general rules so that it is a cutfree proof in cGhp without
the rules for →. It is an easy exercise to check that it is then derivable in
G3fdep.

for (ii): if Γ ⇒ Δ is derivable in G3hp and not containing ¬, then
�, Γ ⇒ Δ,⊥ is cut-free derivable in cGh+

p . Since it does not contain ¬, it is
derivable in the propositional part of Kashima and Shimura’s CLD in [3].
With their Corollary 4.4 it is derivable in the intuitionistic calculus G3ip.

There is an interesting aspect for the issue of conservativity. For the
axiomatic calculus the conservativity extends to theories conceived as sets

17For a sequent formulation of FDE compare Anderson and Belnap §17 [1]. The addition
of ⊥ is unproblematic.

18Compare Leitgeb [4], p. 380.
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of formulas, such that if Σ �H A and Σ, A in L\{→}, then Σ �FDE A.19 This is
not the case if we consider theories as sets of sequents. There are finite sets of
sequents Γ1 ⇒ Δ1, . . . ,Γn ⇒ Δn, Γ ⇒ Δ not containing →, such that there
is a derivation of Γ ⇒ Δ from the initial sequents Γ1 ⇒ Δ1, . . . ,Γn ⇒ Δn

in HYPE, even so there is no derivation in FDE. An example is given in the
arithmetical case by PA in a language expansion L+ containing a partial
predicate, where induction is formulated as a rule. Whereas PA over FDE
does not derive TIL+(ωω), PA over HYPE does derive TIL+(ωω). In the case
of HYPE we can carry out the usual Gentzen proof for PA, but we do not
have this option in FDE.
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