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Abstract. Nakano’s “later” modality, inspired by Gödel-Löb provabil-
ity logic, has been applied in type systems and program logics to capture
guarded recursion. Birkedal et al modelled this modality via the internal
logic of the topos of trees. We show that the semantics of the proposi-
tional fragment of this logic can be given by linear converse-well-founded
intuitionistic Kripke frames, so this logic is a marriage of the intuition-
istic modal logic KM and the intermediate logic LC. We therefore call
this logic KMlin. We give a sound and cut-free complete sequent calcu-
lus for KMlin via a strategy that decomposes implication into its static
and irreflexive components. Our calculus provides deterministic and ter-
minating backward proof-search, yields decidability of the logic and the
coNP-completeness of its validity problem. Our calculus and decision
procedure can be restricted to drop linearity and hence capture KM.

1 Introduction

Guarded recursion [11] on an infinite data structure requires that recursive calls
be nested beneath constructors. For example, a stream of zeros can be defined
with the self-reference guarded by the cons:

z e r o s = 0 : z e ro s

Such equations have unique solutions and are productive: they compute arbi-
trarily large prefixes of the infinite structure in finite time, a useful property in
lazy programming.

Syntactic checks do not always play well with higher-order functions; the
insight of Nakano [27] is that guarded recursion can be enforced through the
type system via an ‘approximation modality’ inspired by Gödel-Löb provability
logic [7]. We follow Appel et al [1] and call this modality later, and use the
symbol �. The meaning of �τ is roughly ‘τ one computation step later’. Type
definitions must have their self-reference guarded by later. For example streams
of integers, which we perhaps expect to be defined as Stream ∼= Z × Stream,
are instead

Stream ∼= Z×�Stream
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Nakano showed that versions of Curry’s fixed-point combinator Y, and Turing’s
fixed-point combinator likewise, can be typed by the strong Löb axiom (see [24])

(�τ → τ) → τ (1)

Returning to our example, Y can be applied to the function

λx.〈0, x〉 : �Stream → Z×�Stream

to define the stream of zeros.
Nakano’s modality was popularised by the typing discipline for intermediate

and assembly languages of Appel et al [1], where for certain ‘necessary’ types a
‘Löb rule’ applies which correlates to the strong Löb axiom (1). The modality has
since been applied in a wide range of ways; a non-exhaustive but representative
list follows. As a type constructor, � appears in Rowe’s type system for Feath-
erweight Java [30], the kind system of the System F extension FORK [28], and
in types for functional reactive programming [22], with applications to graphical
user interfaces [21]. As a logical connective, � was married to separation logic
in [19], then to higher-order separation logic in [2], and to step-indexed logi-
cal relations for reasoning about programming languages with LSLR [13]. Thus
Nakano’s modality is important in various applications in computer science.

We have so far been coy on precisely what the logic of later is, beyond positing
that � is a modality obeying the strong Löb axiom. Nakano cited Gödel-Löb
provability logic as inspiration, but this is a classical modal logic with the weak
Löb axiom �(�τ → τ) → �τ , whereas we desire intuitionistic implication and
the stronger axiom (1). In fact there does exist a tradition of intuitionistic ana-
logues of Gödel-Löb logic [24], of which Nakano seemed mainly unaware; we will
see that logic with later can partly be understood through this tradition. In the
computer science literature it has been most common to leave proof theory and
search implicit and fix some concrete semantics; for example see Appel et al’s
Kripke semantics of stores [1]. A more abstract and general model can be given
via the internal logic of the topos of trees S [4]. This was shown to generalise sev-
eral previous models for logic with later, such as the ultrametric spaces of [5,22],
and provides the basis for a rich theory of dependent types. We hence take the
internal logic of S as a prominent and useful model of logic with later, in which
we can study proof theory and proof search.

In this paper we look at the propositional-modal core of the internal logic of
S. This fragment will be seen to have semantics in linear intuitionistic Kripke
frames whose reflexive reduction is converse-well-founded. Linear intuitionistic
frames are known to be captured by the intermediate logic Dummett’s LC [8]; the
validity of the LC axiom in the topos of trees was first observed by Litak [23]. In-
tuitionistic frames with converse-well-founded reflexive reduction are captured
by the intuitionistic modal logic KM, first called IΔ [26]. Hence the internal
propositional modal logic of the topos of trees is semantically exactly their com-
bination, which we call KMlin (Litak [24, Thm. 50] has subsequently confirmed
this relationship at the level of Hilbert axioms also).
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Our specific contribution is to give a sound and cut-free complete sequent
calculus for KMlin, and by restriction for KM also, supporting terminating back-
wards proof search and hence yielding the decidability and finite model property
of these logics. Our sequent calculus also establishes the coNP-completeness of
deciding validity in KMlin.

To our knowledge sequent calculi for intuitionistic Gödel-Löb logics, let alone
KM or KMlin, have not before been investigated, but such proof systems pro-
vide a solid foundation for proving results such as decidability, complexity, and
interpolation, and given an appropriate link between calculus and semantics can
provide explicit, usually finite, counter-models falsifying given non-theorems.

The main technical novelty of our sequent calculus is that we leverage the fact
that the intutionistic accessibility relation is the reflexive closure of the modal
relation, by decomposing implication into a static (classical) component and a
dynamic ‘irreflexive implication’ � that looks forward along the modal relation.
In fact, this irreflexive implication obviates the need for � entirely, as �ϕ is
easily seen to be equivalent to � � ϕ. Semantically the converse of this applies
also, as ϕ � ψ is semantically equivalent to �(ϕ → ψ)1, but the � connective
is a necessary part of our calculus. We maintain � as a first-class connective in
deference to the computer science applications and logic traditions from which
we draw, but note that formulae of the form �(ϕ → ψ) are common in the
literature - see Nakano’s (→ E) rule [27], and even more directly Birkedal and
Møgelberg’s � constructor. We therefore suspect that treating � as a first-class
connective could be a conceptually fruitful side-benefit of our work.

Note that for space reasons some proofs appear only in the extended version
of this paper [10].

2 From the Topos of Trees to Kripke Frames

In this section we outline the topos of trees model and its internal logic, and
show that this logic can be described semantically by conditions on intuitionis-
tic Kripke frames. Therefore after this section we discard category theory and
proceed with reference to Kripke frames alone.

The topos of trees, written S, is the category of presheaves on the first infinite
ordinal ω (with objects 1, 2, . . ., rather than starting at 0, in keeping with the
relevant literature). Concretely an object A is a pair of a family of sets Ai indexed
by the positive integers, and a family of restriction functions rAi : Ai+1 → Ai

indexed similarly. An arrow f : A → B is a family of functions fi : Ai → Bi

indexed similarly, subject to naturality, i.e. all squares below commute:

A1

f1

��

A2
a1��

f2

��

A3
a2��

f3

��

· · · Aj

fj

��

Aj+1

aj
��

fj+1

��

B1 B2
b1

�� B3
b2

�� · · · Bj Bj+1
bj

��

1 This in turn is equivalent in KMlin (but is not in KM) to �ϕ → �ψ [27, Sec. 3].
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Two S-objects are of particular interest: the terminal object 1 has singletons as
component sets and identities as restriction functions; the subobject classifier Ω
has Ωj = {0, . . . , j} and ωj(k) = min(j, k). We regard the positive integers as
worlds and functions x : 1 → Ω as truth values over these worlds, by considering
x true at j iff xj = j. Such an x is constrained by naturality to have one of three
forms: xj = j for all j (true everywhere); xj = 0 for all j (true nowhere); or
given any positive integer k, xj is k for all j ≥ k, and is j for all j ≤ k (becomes
true at world k, remains true at all lesser worlds). As such the truth values can
be identified with the set N ∪ {∞}, where ∞ captures ‘true everywhere’.

Formulae of the internal logic of S are defined as

ϕ ::= p | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕ � ϕ | �ϕ

where p ∈ Atm is an atomic formula. Negation may be defined as usual as
ϕ → ⊥. The connective �, read as irreflexive implication, is not in Birekedal et
al [4] but is critical to the sequent calculus of this paper; readers may view � as
a second-class connective generated and then disposed of by our proof system,
or as a novel first-class connective, as they prefer.

Given a map η from propositional variables p ∈ Atm to arrows η(p) : 1 → Ω,
and a positive integer j, the Kripke-Joyal forcing semantics for S are defined by

η, j � p iff η(p)j = j
η, j � � always
η, j � ⊥ never
η, j � ϕ ∧ ψ iff η, j � ϕ and η, j � ψ
η, j � ϕ ∨ ψ iff η, j � ϕ or η, j � ψ
η, j � ϕ → ψ iff ∀k ≤ j. η, k � ϕ implies η, k � ψ
η, j � ϕ � ψ iff ∀k < j. η, k � ϕ implies η, k � ψ
η, j � �ϕ iff ∀k < j. η, k � ϕ

A formula ϕ is valid if η, j � ϕ for all η, j. Note that ϕ � ψ is equivalent to
�(ϕ → ψ), and �ϕ is equivalent to � � ϕ. While implication → can be seen as
a conjunction of static and irreflexive components:

j � ϕ → ψ iff (j � ϕ implies j � ψ) and j � ϕ � ψ (2)

it is not definable from the other connectives, because we have no static (that is,
classical) implication. However our sequent calculus will effectively capture (2).

We now turn to Kripke frame semantics. Kripke semantics for intuitionistic
modal logics are usually defined via bi-relational frames 〈W,R→, R�〉, where R→
and R� are binary relations on W , with certain interaction conditions ensuring
that modal formulae persist along the intuitionistic relation [33]. However for KM
and KMlin the intuitionistic relation is definable in terms of the box relation,
and so only the latter relation need be explicitly given to define a frame:

Definition 2.1. A frame is a pair 〈W,R〉 where W is a non-empty set and R a
binary relation on W . A KM-frame has R transitive and converse-well-founded,
i.e. there is no infinite sequence x1Rx2Rx3R · · ·. A KMlin-frame is a KM-frame
with R also connected, i.e. ∀x, y ∈ W. x = y or R(x, y) or R(y, x).
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Converse-well-foundedness implies irreflexivity. Also, KM- and KMlin-frames
may be infinite because non-well-founded chains · · ·Rw3Rw2Rw1 are permitted.

Given a binary relation R, let R= be its reflexive closure. If 〈W,R〉 is a KM-
frame then 〈W,R=〉 is reflexive and transitive so provides frame semantics for
intuitionistic logic. In fact frames arising in this way in general satisfy only the
theorems of intuitionistic logic, so KM is conservative over intuitionistic logic.
In other words, the usual propositional connectives are too coarse to detect the
converse well-foundedness of a frame; for that we need � and the strong Löb
axiom (1). Similarly the reflexive closure of a KMlin-frame is a linear relation
and so gives semantics for the logic LC, over which KMlin is conservative.

A model 〈W,R, ϑ〉 consists of a frame 〈W,R〉 and a valuation ϑ : Atm �→ 2W

obeying persistence:

if w ∈ ϑ(p) and wRx then x ∈ ϑ(p)

We hence define KM- and KMlin-models by the relevant frame conditions.
We can now define when a KM- or KMlin-model M = 〈W,R, ϑ〉 makes a

formula true at a world w ∈ W , with obvious cases �,⊥,∧,∨ omitted:

M,w � p iff w ∈ ϑ(p)
M,w � ϕ → ψ iff ∀x.wR=x and M,x � ϕ implies M,x � ψ
M,w � ϕ � ψ iff ∀x.wRx and M,x � ϕ implies M,x � ψ
M,w � �ϕ iff ∀x.wRx implies M,x � ϕ

Thus � is the usual modal box. As usual for intuitionistic logic, we have a
monotonicity lemma, provable by induction on the formation of ϕ:

Lemma 2.2 (Monotonicity). If M,w � ϕ and wRv then M, v � ϕ.

Fixing a class of models (KM- or KMlin-), a formula ϕ is valid if for every
world w in every model M we have M,w � ϕ. It is easy to observe that the two
semantics presented above coincide, given the right choice of frame conditions:

Theorem 2.3. Formula ϕ is valid in the internal logic of S iff it is KMlin-valid.

3 The Sequent Calculus SKMlin for KMlin

A sequent is an expression of the form Γ � Δ where Γ and Δ are finite, possibly
empty, sets of formulae with Γ the antecedent and Δ the succedent. We write
Γ, ϕ for Γ ∪{ϕ}. Our sequents are “multiple-conclusioned” since the succedent Δ
is a finite set rather than a single formula as in “single-conclusioned” sequents.

A sequent derivation is a finite tree of sequents where each internal node is
obtained from its parents by instantiating a rule. The root of a derivation is the
end-sequent. A sequent derivation is a proof if all the leaves are zero-premise
rules. A rule may require extra side-conditions for its (backward) application.

The sequent calculus SKMlin is shown in Fig. 1, where Γ , Δ, Φ, Θ, and Σ,
with superscripts and/or subscripts, are finite, possibly empty, sets of formulae.
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�R
Γ � �,Δ

id
Γ, ϕ � ϕ,Δ

⊥L
Γ,⊥ � Δ

Γ,ϕ � Δ Γ, ψ � Δ∨L
Γ, ϕ ∨ ψ � Δ

Γ � ϕ,ψ,Δ∨R
Γ � ϕ ∨ ψ,Δ

Γ,ϕ, ψ � Δ∧L
Γ, ϕ ∧ ψ � Δ

Γ � ϕ,Δ Γ � ψ,Δ∧R
Γ � ϕ ∧ ψ,Δ

Γ, ϕ � ψ � ϕ,Δ Γ,ϕ � ψ,ψ � Δ→L
Γ, ϕ → ψ � Δ

Γ,ϕ � ψ,Δ Γ � ϕ � ψ,Δ→R
Γ � ϕ → ψ,Δ

Prem1 · · · Premk Premk+1 · · · Premk+n
step †

Σl, Θ
�, Γ� � Δ�, Φ�, Σr

Prem1≤i≤k = Σl, Θ,Θ�, Γ→, ϕi � ψi, ϕi � ψi,Δ
→
−i, Φ

Premk+1≤i≤k+n = Σl, Θ,Θ�, Γ→,�φi−k � Δ→, Φ

Θ� = �θ1, · · · ,�θj Θ = θ1, · · · , θj
Γ� = {α1 � β1, · · · , αl � βl} Γ→ = {α1 → β1, · · · , αl → βl}
Δ� = {ϕ1 � ψ1, · · · , ϕk � ψk} Δ→ = {ϕ1 → ψ1, · · · , ϕk → ψk}
Δ→

−i = Δ→ \ {ϕi → ψi}
Φ� = �φ1, · · · ,�φn Φ = φ1, · · · , φn

where † means that the conditions C0, C1 and C2 below must hold

(C0) Δ� ∪ Φ� 	= ∅
(C1) ⊥ 	∈ Σl and � 	∈ Σr and (Σl ∪Θ� ∪ Γ�) ∩ (Δ� ∪ Φ� ∪Σr) = ∅
(C2) Σl and Σr each contain atomic formulae only

Explanations for the conditions:

(C0) there must be at least one �- or �-formula in the succedent of the conclusion

(C1) none of the rules ⊥L,�R, id are applicable to the conclusion

(C2) none of the rules ∨L, ,∨R,∧L,∧R,→L,→R are applicable to the conclusion

Fig. 1. Rules for sequent calculus SKMlin

Rules �R, ⊥L, id, ∨L, ∨R, ∧L, ∧R are standard for a multiple-conclusioned
calculus for Int [32]. Rules→L and→R can be seen as branching on a conjunction
of static and an irreflexive implication: see equation (2). The occurrence of ϕ � ψ
in the right premise of →L is redundant, since ψ implies ϕ � ψ, but its presence
makes our termination argument simpler.

The rule step resembles Sonobe’s multi-premise rule for →R in LC [31,12],
but its interplay of static and dynamic connectives allows us to capture the
converse-well-foundedness of our frames. The reader may like to skip forward to
compare it to the rules for KM in Fig. 4, which are simpler because they do not
have to deal with linearity. Condition C0 is essential for soundness; C1 and C2
are not, but ensure that the step rule is applicable only if no other rules are
applicable (upwards), which is necessary for semantic invertibility (Lem. 3.11).
Note that the formulae in Θ� appear intact in the antecedent of every premise.
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mp
(�p → p) → p,�p → p,�p � p

step
(�p → p) � p,�p � p � �p, p

id
(�p → p) � p,�p � p, p � p →L

(�p → p) � p,�p → p � p
step� (�p → p) � p

mp
�p → p,�p � p

step�p � p � �p, p
id�p � p, p � p →L�p → p � p � (�p → p) � p →R� (�p → p) → p

Fig. 2. SKMlin proof of the strong Löb axiom

id
p � q, p, q � p, q

id
p → q, p, q � p, q � p

step
p � q, p � q, q � p →R

p � q, p � q, q → p

Symmetric to left

q � p, q � p, p → q
step� p � q, q � p

id
p, q � q, p

id
p, q � p, q � p

step
p � q, q � p →R

p � q, q → p

id
q, p � q, p � q

step
q � p, p � q � p � q, q � p →R� p � q, q → p →R� p → q, q → p ∨R� p → q ∨ q → p

Fig. 3. SKMlin proof of the LC axiom

This is not essential as Θ implies Θ�, but will simplify our proof of completeness.
In constrast the formulae in Φ� do not appear in the succedent of any premise.
Also, the formulae in Σr do not appear in the succedent of any premise. So step
contains two aspects of weakening, but C2 ensures this is not done prematurely.

Figs. 2 and 3 give example proofs, using the following derived rule:

Lemma 3.1. The Modus Ponens rules mp is derivable in SKMlin as follows:

Proof.

id
Γ, ϕ, ϕ � ψ � ϕ, ψ

id
Γ, ϕ, ϕ � ψ, ψ � ψ →L

Γ, ϕ, ϕ → ψ � ψ

3.1 Soundness of SKMlin

Given a world w in some model M , and finite sets Γ and Δ of formulae, we
write w � Γ if every formula in Γ is true at w in model M and write w �� Δ if
every formula in Δ is not true at w in model M .

A sequent Γ � Δ is refutable if there exists a model M and a world w in
that model such that w � Γ and w �� Δ. A sequent is valid if it is not refutable.
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A rule is sound if some premise is refutable whenever the conclusion is refutable.
A rule is semantically invertible if the conclusion is refutable whenever some
premise is refutable. Given a model M and a formula ϕ, a world w is a refuter
for ϕ if M,w �� ϕ. It is a last refuter for ϕ if in addition M,w � �ϕ. An
eventuality is a formula of the form ϕ � ψ or �ϕ in the succedent of the
conclusion of an application of the rule step.

Lemma 3.2. In every model, every formula ϕ with a refuter has a last refuter.

Proof. Suppose ϕ has refuter w in model M , i.e. M,w �� ϕ. If all R-successors v
of w have v � ϕ then w � �ϕ, and so w is the last refuter we seek. Else pick any
successor v such that M, v �� ϕ and repeat the argument replacing w with v. By
converse well-foundedness this can only be done finitely often before reaching a
world with no R-successors, which vacuously satisfies �ϕ.

Theorem 3.3 (Soundness). If � ϕ is SKMlin-derivable then ϕ is KMlin-valid.
Proved in extended version [10].

3.2 Terminating Backward Proof Search

In this section we describe how to systematically find derivations using backward
proof search. To this end, we divide the rules into three sets as follows:

Termination Rules: the rules id,⊥L,�R
Static Rules: the rules →L,→R,∨L,∨R,∧L,∧R
Transitional Rule: step.

The proof search strategy below starts at the leaf (end-sequent) Γ0 � Δ0:

while some rule is applicable to a leaf sequent do
stop: apply any applicable termination rule to that leaf
saturate: else apply any applicable static rule to that leaf
transition: else apply the transitional rule to that leaf

The phase where only static rules are applied is called the saturation phase.
The only non-determinism in our procedure is the choice of static rule when
many static rules are applicable, but as we shall see later, any choice suffices.
Note that conditions C1 and C2 actually force step to have lowest priority.

Let sf(ϕ) be the set of subformulae of ϕ, including ϕ itself and let m be the
length of ϕ. Let cl(ϕ) = sf(ϕ) ∪ {ψ1 � ψ2 | ψ1 → ψ2 ∈ sf(ϕ)}.
Proposition 3.4. The (backward) saturation phase terminates for any sequent.

Proof. Each rule either: removes a connective; or removes a formula completely;
or replaces a formula ϕ → ψ with ϕ � ψ to which no static rule can be applied.

Given our strategy (and condition C1), we know that the conclusion of the
step rule will never be an instance of id, hence ϕ � ψ or �ϕ is only an eventu-
ality when an occurrence of it does not already appear in the antecedent of the
conclusion of the step rule in question.
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Proposition 3.5. For all rules, the formulae in the premise succedents are sub-
formulae of formulae in the conclusion, or are →-formulae created from �-
formulae in the conclusion succedent: we never create new eventualities upwards.

Proposition 3.6. Any application of the rule step has strictly fewer eventual-
ities in each premise, than in its conclusion.

Proof. For each premise, an eventuality�ϕ crosses from the succedent of the con-
clusion to the antecedent of that premise and appears in all higher antecedents,
or an eventuality ϕ � ψ from the succedent of the conclusion turns into ϕ → ψ
in the antecedent of the premise and this ϕ → ψ turns back into ϕ � ψ via
saturation, meaning that the eventuality (�ϕ or ϕ � ψ) cannot reappear in the
succedent of some higher saturated sequent without creating an instance of id.

Theorem 3.7. Backward proof search terminates.

Proof. By Prop. 3.4 each saturation phase terminates, so the only way a branch
can be infinite is via an infinite number of applications of the step rule. But by
Prop. 3.6 each such application reduces the number of eventualities of the branch,
and by Prop. 3.5, no rule creates new eventualities. Thus we must eventually
reach a saturated sequent to which no rule is applicable, or reach an instance of
a termination rule. Either way, proof search terminates.

Proposition 3.8. Given an end-sequent Γ0 � Δ0, the maximum number of
different eventualities is the sum of the lengths of the formula in Γ0 ∪Δ0.

Proof. Each eventuality �ϕ is a subformula of the end-sequent, and each even-
tuality ϕ � ψ is created from a subformula ϕ → ψ which is also a subformula
of the end-sequent or is a subformula of the end-sequent.

Corollary 3.9. Any branch of our proof-search procedure for end-sequent Γ0 �
Δ0 contains at most l applications of the step rule, where l is the sum of the
lengths of the formulae in Γ0 ∪Δ0.

3.3 Cut-Free Completeness Without Backtracking

The rules of our sequent calculus, when used according to conditions C0, C1,
and C2, can be shown to preserve validity upwards as follows.

Lemma 3.10 (Semantic Invertibility). All static rules are semantically in-
vertible: if some premise is refutable then so is the conclusion. Proved in extended
version [10].

For a given conclusion instance of the step rule, we have already seen that
conditions C0, C1 and C2 guarantee that there is at least one eventuality in
the succedent, that no termination rule is applicable, that the conclusion is
saturated, and that no eventuality in the succedent of the conclusion is ignored.

Lemma 3.11. The rule step (with C0, C1 and C2) is semantically invertible.
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Proof. Suppose some premise is refutable. That is,

1. for some 1 ≤ i ≤ k there exists a model M1 = 〈W1, R1, ϑ1〉 and w1 ∈ W1

such that M1, w1 � Σl, Θ,Θ�, Γ→, ϕi � ψi, ϕi and M1, w1 �� ψi, Δ
→
−i, Φ; or

2. for some k + 1 ≤ i ≤ k + n there exists a model M2 = 〈W2, R2, ϑ2〉 and
w2 ∈ W2 such that M2, w2 � Σl, Θ,Θ�, Γ→,�φi−k and M2, w2 �� Δ→, Φ.

1 ≤ i ≤ k: We must show there is some model M containing a world w0 such
that M,w0 � Σl, Θ

�, Γ� and M,w0 �� Δ�, Φ�, Σr. We do this by taking the
submodel generated by w1, adding an extra world w0 as a predecessor of w1,
letting w0 reach every world reachable from w1, and setting every member of Σl

to be true at w0.
We formally define M by: W = {w ∈ W1 | w1R1w} ∪ {w0, w1}; R =

{(v, w) ∈ R1 | v ∈ W,w ∈ W} ∪ {(w0, w) | w ∈ W \ {w0}}; for every atomic
formula p and for every w ∈ W \ {w0}, let w ∈ ϑ(p) iff w ∈ ϑ1(p) and put
w0 ∈ ϑ(p) iff p ∈ Σl.

By simultaneous induction on the size of any formula ξ, it follows that for
every world w �= w0 in W , we have M1, w � ξ iff M,w � ξ.

We have M,w0 �� Σr by definition (since its intersection with Σl is empty).
We have M,w0 � Θ� since M1, w1 � Θ implies M,w1 � Θ, and we know that
w0Rw1. Similarly, we have M,w0 � Γ� since w0Rw1 and M1, w1 � Γ→. Since
M1, w1 � ϕi and M1, w1 �� ψi, we must have M,w0 �� ϕi � ψi as desired.
Together with M1, w1 �� Δ→

−i, we have M,w0 �� Δ�. Finally, since M1, w1 �� Φ,
we must have M,w0 �� Φ�. Collecting everything together, we have M,w0 �
Σl, Θ

�, Γ� and M,w0 �� Δ�, Φ�, Σr as desired.
The case k + 1 ≤ i ≤ k + n follows similarly.

Theorem 3.12. If the sequent � ϕ0 is not derivable using the rules of Fig. 1
according to our proof-search strategy then ϕ0 is not KMlin-valid.

Proof. Suppose � ϕ0 is not derivable using our systematic backward proof
search procedure. Thus our procedure gives a finite tree with at least one leaf
Σl, Γ

�, Θ� � Σr obeying both C1 and C2 to which no rules are applicable.
Construct M0 = 〈W0, R0, ϑ0〉 as follows: let W0 = {w0}; let R0 = ∅; and w0 ∈

ϑ0(p) iff p ∈ Σl. Clearly, we have M0, w0 � Σl by definition. Also, M0, w0 �� Σr

since its intersection with Σl is empty by C1. Every formula α � β ∈ Γ� and
�θ ∈ Θ� is vacuously true at w0 in M0 since w0 has no strict successors. Thus
the leaf sequent Σl, Γ

�, Θ� � Σr is refuted by w0 in model M0. The Invertibility
Lemmas 3.10 and 3.11 now imply that � ϕ0 is refutable in some KMlin-model.

Corollary 3.13 (Completeness). If ϕ is KMlin-valid then � ϕ is SKMlin-
derivable.

Cor. 3.13 guarantees that any sound rule can be added to our calculus without
increasing the set of provable end-sequents, including both forms of cut below:

Γ � ϕ,Δ Γ, ϕ � Δ

Γ � Δ

Γ,� ϕ,Δ Γ ′, ϕ � Δ′

Γ, Γ ′ � Δ,Δ′
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Since all static rules are semantically invertible, any order of rule applications
for saturation suffices. Since all rules are invertible we never need backtracking.
That is, our strategy straightfowardly yields a decision procedure. It also tells us
that KMlin, like its parent logics KM and LC, enjoys the finite model property:

Theorem 3.14. If ϕ is not KMlin-valid then it is refutable in a rooted (finite)
KMlin-model of length at most l + 1 where l is the length of ϕ.

Proof. Suppose that ϕ is not valid: that is, ϕ is refuted by some world in some
KMlin model. By soundness Thm. 3.3 � ϕ is not derivable using our proof-search
strategy. In particular, in any branch, there can be at most l applications of the
rule step by Cor. 3.9. From such a branch, completeness Thm. 3.12 allows us
to construct a model M and a world w which refutes ϕ. But the model M we
constuct in the completeness proof is a rooted (finite) KMlin-model with at most
l+1 worlds since the only rule that creates new worlds is the (transitional) step
rule and there are at most l such rule applications in any branch.

Corollary 3.15. KMlin has the finite model property.

3.4 Complexity

We first embed classical propositional logic into KMlin.

Lemma 3.16. If ϕ is a formula built out of atomic formulae, � and ⊥ using
only the connectives ∧, ∨, →, and the sequent � (ϕ → ⊥) → ⊥ is derivable, then
ϕ is a tautology of classical propositional logic.

Proof. Any derivation in our systematic proof search procedure ends as:

ϕ � ⊥ � ϕ,⊥ · · · →L
ϕ → ⊥ � ⊥ · · · →R� (ϕ → ⊥) → ⊥

Thus, the sequent ϕ � ⊥ � ϕ,⊥ is derivable.
Soundness Thm. 3.3 then implies that this sequent is valid on all models. In

particular, it is valid on the class of single-pointed models M = 〈W,R, ϑ〉 where
W = {w0} and R = ∅. The formula ϕ � ⊥ is true at w0 vacuously since w0

has no R-successor. The formula ⊥ is not true in any model, including this one,
hence M,w0 �� ⊥. Thus M,w0 � ϕ. That is, ϕ itself is valid on all single-pointed
models. But such a model is just a valuation of classical propositional logic.

Lemma 3.17. If ϕ is a formula built out of atomic formulae, � and ⊥ using
only the connectives ∧, ∨, →, and the sequent � (ϕ → ⊥) → ⊥ is not derivable,
then ϕ is not a tautology of classical propositional logic.

Proof. Suppose � (ϕ → ⊥) → ⊥ is not derivable. Then, by Thm. 3.12, (ϕ →
⊥) → ⊥ is not KMlin-valid. Thus, there is a finite linear model M = 〈W,R, ϑ〉
with root world w0 ∈ W such that M,w0 �� (ϕ → ⊥) → ⊥. Thus there is a world
v such that w0R

=v and M, v � ϕ → ⊥, which implies that every R=-succesor
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Σl, Θ, Θ�, Γ→, ϕ � ψ,ϕ � ψ
� R ‡

Σl, Θ
�, Γ� � ϕ � ψ,Δ�, Φ�, Σr

Σl, Θ, Θ�, Γ→,�ψ � ψ
�R ‡

Σl, Θ
�, Γ� � �ψ,Δ�, Φ�, Σr

where ‡ means that the following conditions hold:

(C1): ⊥ 	∈ Σl and � 	∈ Σr and the conclusion is not an instance of id

(C2): Σl and Σr contain only atomic formulae (i.e. the conclusion is saturated)

Fig. 4. Transitional rules for logic KM

of v, including a world u (say) with no R-successors, makes ϕ false. But such
a final world u is just a valuation of classical propositional logic, thus there is
a model of classical propositional logic which makes ϕ false. That is, ϕ is not a
tautology of classical propositional logic.

Lemma 3.18. There is a non-deterministic algorithm to test the refutability
(non-validity) of the sequent � ϕ in time polynomial in the length of ϕ. Proved
in extended version [10].

Corollary 3.19. The validity problem for KMlin is coNP-complete.

Proof. By Lem. 3.16 we can faithfully embed the validity problem for classical
propositional logic into KMlin, hence it is at least as hard as checking validity in
classical propositional logic (coNP). By Lem. 3.18, we can non-deterministically
check non-validity of a given formula in time at most polynomial in its size.

4 Terminating Proof Search for KM

This section turns to logic KM, for which models need not be linear. One might
expect that KM, which is conservative over Int, would require single-conclusioned
sequents only, but KM-theorems such as the axiom �ϕ → (ϕ ∨ (ϕ → ψ)) (see
Litak [24]) seem to require multiple conclusions. As such our calculus will resem-
ble that for KMlin. The static rules will be those of KMlin, but the transitional
rule step of KMlin is now replaced by rules � R and �R as shown in Fig. 4.

The backward proof-search strategy is the same as that of Sec. 3.2, except the
transitional rule applications now reads as below:

transition: else choose a �- or �-formula from the succedent and apply
� R or �R, backtracking over these choices until a derivation is found
or all choices of principal formula have been exhausted.

So if the given sequent is � Δ�, Φ�, Σr and Δ� contains m formulae and Φ�

contains n formulae, then in the worst case we must explore m premise instances
of � R and n premise instances of �R.

Theorem 4.1. The rules � R and �R are sound for the logic KM. Proved in
extended version [10].

Termination follows using the same argument as for SKMlin. However the
new rules are not semantically invertible, since we have to choose a particular
�- or �-formula from the succedent of the conclusion and discard all others
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when moving to the premise, yet a different choice may have given a derivation
of the conclusion. Thus these rules require the backtracking which is built into
the new transition part of our proof search strategy.

Lemma 4.2. If a sequent s obeys the ‡ conditions and every premise instance
obtained by applying the rules � R and �R backwards to s is not derivable, then
the sequent s is refutable. Proved in extended version [10].

Corollary 4.3. If the end-sequent Γ0 � Δ0 is not derivable using backward proof
search according to our strategy then Γ0 � Δ0 is refutable.

Corollary 4.4. If ϕ0 is KM-valid then � ϕ0 is SKM-derivable.

As for KMlin, our proofs yield the finite model property for KM as an imme-
diate consequence, although for KM this is already known [26].

5 Related Work

Ferrrari et al [15] give sequent calculi for intuitionistic logic using a compartment
Θ in the antecedents of their sequents Θ;Γ � Δ. This compartment contains
formulae that are not necessarily true now, but are true in all strict successors.
Fiorino [16] gives a sequent calculus using this compartment for LC. This yields
linear depth derivations, albeit requiring a semantic check which is quadratic.
Both [15,16] build in aspects of Gödel-Löb logic by allowing (sub)formulae to
cross from the succedent of the conclusion into the compartment Θ. Our calculus
differs by giving syntactic analogues � and � for these meta-level features, and
by requiring no compartments, but it should be possible to adapt these authors’
work to design sequent calculi for KMlin with linear depth derivations.

Restall [29] investigates “subintuitionistic logics” where each of the conditions
on Kripke frames of reflexivity, transitivity and persistence can be dropped. The
logic of our novel connective � can be seen as the logic bka, which lacks reflexiv-
ity, but has the additional conditions of linearity and converse well-foundedness,
which Restall does not consider. The models studied by Restall all require a
root world, and thus they disallow sequences · · ·x3Rx2Rx1 which are permitted
by KMlin-models. Ishigaki and Kikuchi [20] give “tree-sequent” calculi for the
first-order versions of some of these subintuitionistic logics. Thus “tree-sequent”
calculi for KM and KMlin are possible, but our calculi require no labels.

Labelled sequent calculi for KM and KMlin are possible by extending the
work of Dyckhoff and Negri [14] but termination proofs and complexity results
for labelled calculi are significantly harder than our proofs.

Garg et al [17] give labelled sequent calculi for intuitionistic modal logics and
general conditions on decidability. Their method relies on a first-order character-
isation of the underlying Kripke relations, but converse well-foundedness is not
first-order definable. Labelled calculi can handle converse well-founded frames by
allowing formulae to “cross” sides as in our calculus, but it is not clear whether
the method of Garg et al [17] then applies.

Our complexity results follow directly from our calculi; a possible alternative
may be to adapt the polynomial encoding of LC into classical satisfiability [8].
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6 Conclusion

We have seen that the internal propositional logic of the topos of trees is KMlin.
Indeed it may be tempting to think that KMlin is just LC, as both are sound
and complete with respect to the class of finite sequences of reflexive points, but
note that we cannot express the modality � in terms of the connectives of LC.

Linear frames seem concordant with the step-indexing applications of later,
based as they are on induction on the natural numbers rather than any branching
structure, but seem less natural from a types point of view, which tend to build
on intuitionistic logic. For a possible type-theoretic intepretation of linearity
see Hirai’s λ-calculus for LC with applications to ‘waitfree’ computation [18].
More broadly our work provides a proof-theoretical basis for future research
into computational aspects of intuitionistic Gödel-Löb provability logic.

The topos of trees, which generalises some previous models, has itself been
generalised as a model of guarded recursion in several ways [4,3,25]. These cate-
gories do not all correspond to KMlin; some clearly fail to be linear. The logical
content of these general settings may also be worthy of study.

The most immediate application of our proof search algorithm may be to
provide automation for program logics that use later [19,2,9]. Support for a
richer class of connectives, such as first and higher order quantifiers, would be
desirable. We in particular note the ‘backwards looking box’ used by Bizjak and
Birkedal [6] in sheaves over the first uncountable ordinal ω1, and subsequently
in the topos of trees by Clouston et al [9] to reason about coinductive types.
Acknowledgments. We gratefully acknowledge helpful discussions with Lars
Birkedal, Stephané Demri, Tadeusz Litak, and Jimmy Thomson, and the com-
ments of the reviewers of this and a previous unsuccessful submission.

References

1. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122 (2007)

2. Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying object-
oriented programs with higher-order separation logic in Coq. In: van Eekelen, M.,
Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38.
Springer, Heidelberg (2011)

3. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS, pp. 213–222 (2013)

4. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: Step-indexing in the topos of trees. LMCS 8(4)
(2012)

5. Birkedal, L., Schwinghammer, J., Støvring, K.: A metric model of lambda calculus
with guarded recursion. In: FICS, pp. 19–25 (2010)

6. Bizjak, A., Birkedal, L., Miculan, M.: A model of countable nondeterminism in
guarded type theory. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560,
pp. 108–123. Springer, Heidelberg (2014)

7. Boolos, G.: The logic of provability. CUP (1995)
8. Chagrov, A., Zakharyaschev, M.: Modal Logic. OUP (1997)



Sequent Calculus in the Topos of Trees 147

9. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reason-
ing with guarded recursion for coinductive types. In: Pitts, A. (ed.) FoSSaCS 2015.
LNCS, vol. 9034, pp. 407–421. Springer, Heidelberg (2015)
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18. Hirai, Y.: A lambda calculus for Gödel–Dummett logic capturing waitfreedom. In:
Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 151–165.
Springer, Heidelberg (2012)

19. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008)

20. Ishigaki, R., Kikuchi, K.: Tree-sequent methods for subintuitionistic predicate log-
ics. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 149–164.
Springer, Heidelberg (2007)

21. Krishnaswami, N.R., Benton, N.: A semantic model for graphical user interfaces.
In: ICFP, pp. 45–57 (2011)

22. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:
LICS, pp. 257–266 (2011)

23. Litak, T.: A typing system for the modalized Heyting calculus. In: COS (2013)
24. Litak, T.: Constructive modalities with provability smack, author’s cut v. 2.03

(2014) (retrieved from author’s website)
25. Milius, S., Litak, T.: Guard your daggers and traces: On the equational properties

of guarded (co-) recursion. arXiv:1309.0895 (2013)
26. Muravitsky, A.: Logic KM: A biography. Outstanding Contributions to Logic 4,

155–185 (2014)
27. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266 (2000)
28. Pottier, F.: A typed store-passing translation for general references. In: POPL, pp.

147–158 (2011)
29. Restall, G.: Subintuitionistic logics. NDJFL 34(1), 116–129 (1994)
30. Rowe, R.N.: Semantic Types for Class-based Objects. Ph.D. thesis, Imperial Col-

lege London (2012)
31. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics.

J. Tsuda College 7, 7–14 (1975)
32. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. CUP (1996)
33. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics. In: Logic and Founda-

tions of Mathematics, pp. 227–238 (1999)


	Sequent Calculus in the Topos of Trees
	1 Introduction
	2 From the Topos of Trees to Kripke Frames
	3 The Sequent Calculus SKMlin for KMlin
	4 Terminating Proof Search for KM
	5 Related Work
	6 Conclusion
	References


