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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 50, Number 1, March 1985 

SEQUENT-SYSTEMS FOR MODAL LOGIC 

KOSTA DO?EN 

Abstract. The purpose of this work is to present Gentzen-style formulations of S5 and S4 
based on sequents of higher levels. Sequents of level 1 are like ordinary sequents, sequents of 

level 2 have collections of sequents of level 1 on the left and right of the turnstile, etc. Rules for 
modal constants involve sequents of level 2, whereas rules for customary logical constants of 

first-order logic with identity involve only sequents of level 1. A restriction on Thinning on the 

right of level 2, which when applied to Thinning on the right of level 1 produces intuitionistic 

out of classical logic (without changing anything else), produces S4 out of S5 (without 

changing anything else). 
This characterization of modal constants with sequents of level 2 is unique in the following 

sense. If constants which differ only graphically are given a formally identical characterization, 

they can be shown inter-replaceable (not only uniformly) with the original constants salva 
provability. Customary characterizations of modal constants with sequents of level 1, as well 

as characterizations in Hilbert-style axiomatizations, are not unique in this sense. This 

parallels the case with implication, which is not uniquely characterized in Hilbert-style 

axiomatizations, but can be uniquely characterized with sequents of level 1. 
These results bear upon theories of philosophical logic which attempt to characterize logical 

constants syntactically. They also provide an illustration of how alternative logics differ only 
in their structural rules, whereas their rules for logical constants are identical. 

?0. Introduction. The aim of this work is to present sequent formulations of the 
modal logics S5 and S4 based on sequents of higher levels. Sequents of level 1 have 
collections of formulae of a given formal language on the left and right of the 
turnstile, sequents of level 2 have collections of sequents of level 1 on the left and 
right of the turnstile, etc. Rules for modal constants will involve sequents of level 2, 
whereas rules for other customary logical constants of first-order logic (with 
identity) will involve only sequents of level 1. 

We shall show how a restriction on Thinning of level 2, which when applied to 
Thinning of level 1 produces intuitionistic out of classical logic, produces in this case 
S4 out of S5. Both in passing from classical to intuitionistic logic and in passing from 
S5 to S4, only Thinning is changed-all the other assumptions are unchanged. In 
particular, this means that S5 and S4 will be formulated with identical assumptions 
for the necessity operator. 

We shall also show in what sense our characterization of the necessity operator is 
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150 KOSTA DO?EN 

unique-a sense in which Hilbert-style or customary Gentzen-style character- 
izations of this constant are not unique. 

After presenting in the next section the sequent language we shall work with, we 
shall consider first structural systems in this language ("structural" in the sense in 
which some rules in sequent-systems are called "structural"). Next we shall 
introduce a way to formulate sequent-rules which we shall call "double-line rules". 
All rules for logical constants will be given by double-line rules. 

Then we shall present sequent-systems for classical, Heyting and Kolmogorov- 
Johansson ("minimal") propositional logic, and also a sequent-system for an 
intuitionistic relevant propositional logic, which is essentially logic without 
Thinning. This is followed by a discussion of sequent-systems for propositional S5 
and S4. Next we shall consider the corresponding nonmodal and modal first-order 
logics. 

After a section on uniqueness of characterization, we conclude this work with a 
brief discussion of some views on the notion of a logical constant and on 
alternative logics to which our results might be leading. 

Most of our demonstrations will be given in a rather sketchy form, or will be 
omitted altogether, but we suppose that none of them is so difficult that it could not 
be easily reconstructed. We presuppose for this work a certain acquaintance with the 
proof theory of classical and intuitionistic first-order logic and modal logic, as 
expounded, for example, in Kleene [1952, Chapter XV], Curry [1963] and Zeman 
[1973], and for a minor part of this work a certain acquaintance with Anderson and 
Belnap [1975]. 

?1. The language D. Let 0 be a given formal language. For the moment we 
assume only that 0 has at least some formulae. Later on we shall specify particular 
languages 0. Starting with 0 we shall build a language D as follows ("O" stands for 
"object", but is also associated with "level 0"; we use "D" to name the sequent 
language because of the association between sequents and deductions): 

Vocabulary of D: (1) the vocabulary of 0; (2) {,}, the comma, 0, K', K, ,.2 3. 

Formulae of D: (1) The formulae of 0, which are called "formulae of level 0". 
(2) The constant 0 is a set term of any level n ? 1. Let A'. . . , A', where k > 1, be 

formulae of level n; then {An,... ,An} is a set term of level n + 1, provided no 
formula occurs more than once among A,. . ., Ak, and if B, ... , Bk are the formulae 

n, ... , An taken in any order, the set term {Bn, 5 ... , Bn} shall be indistinguishable 
from the set term {A n,., A. . 

(3) Let F and a be set terms of level n > 1; then F I-n A is a formula of level n, 
called a "sequent". 

(4) Nothing is a formula of D save if it can be obtained by (1)-(3). 
It should be clear from this specification that a set term of level n ? 1 is in a one- 

one correspondence with a finite (possibly empty) set of formulae of D of level 
n - 1, the constant 0 corresponding to the empty set. 

The schemata An, Bn, Cn, An, Bn,. ... will be used for formulae of an unspecified 
level n 2 0. If for n we substitute 0, 1, 2, ... , we obtain schemata for formulae of levels 
0, 1,2,..., but we shall omit the superscript "O". For example, {A', B' } is a schema 
for a set term of level 2. Substitution for "A "' and "B 1 " is subject to the proviso that 
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the resulting expression is an expression of D. This means that, for example, in 
{A', B'} F-2 0 we can substitute only different expressions for "A"' and "B"', 
whereas in {A '} F2 {B'} we can substitute also identical expressions. 

The schemata F, a, 0, E, EH F, Fza,... will be used for set terms of any level 
> 1. Substitution for these schemata is subject to the same proviso as above. The 
allowable substitutions for a schema like "F" can be inferred from the schema of the 
formula in which it occurs. In particular, they will be restricted to some levels in this 
context. Though in principle we could also note that level by a superscript, no 
ambiguities can arise in schemata of formulae if we do not. 

A schema of the form F1 u ... u Fk, where k> 2, will be used for the set term 
which corresponds to the union of the sets of formulae F1,... ,Fk. These sets need not 
be disjoint, but all the formulae in them must be of the same level. 

A schema of the form F + {A nI... 'A n where n ? 0 and k > 1 will be used for 
the set term of level n + 1 which corresponds to the union of the sets of formulae F 
and {A'i, . . ,An}, provided F and {An, . . ,An} are disjoint, and the formulae in F 
are of level n. 

We shall omit quotation marks in this work wherever confusion is not likely. 
Next we give the following 
DEFINITION of levels of rules. A rule is of level n iff the highest level of formulae 

occurring in it is n. 
DEFINITION of level-preserving rules. The rule 

Am'--1 .A k 

Btm0 

is level-preserving iff for every i, 0 ? i < k. mi = n for a given n ? 0. 
DEFINITION of horizontalizations of rules. The sequent {An ,... , Akn} Hn+ {B }, 

where k ? 1 and n> 02 is a horizontalization of the level-preserving rule 

Bn 

(where P is a set of occurrences of formulae) iff, for every i, 1 < i < k, an occurrence 
of the formula Ai belongs to P and if an occurrence of a formula Cn belongs to A, 
either Cn is identical with A for some, 1 < j < k, or A is a substitution instance of 
cn C . 

NOTE. A formula can occur only once in .A.... ., An}, but more than once in WP. So 
a certain contraction can be involved in producing a horizontalization. Accordingly, 
different rules like 

A A A 
and B 

B B 

can have the same horizontalization. Also a rule can have more than one 
horizontalization: for example, to 

A B 

A 

correspond both {A, B} H' A } and {A } H' {A } if B can be either different or equal 
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to A in the rule. Every level-preserving rule has at least one and at most a finite 
number of horizontalizations. 

?2. Structural systems. First we give the following 
DEFINITION of expressions essentialfor a system. An expression of a language L is 

essential for a system S in L iff it occurs at least once in a rule, axiom or axiom- 
schema by which S is presented, or it occurs, or is referred to, at least once in a 
proviso of a rule, axiom or axiom-schema by which S is presented. 

DEFINITION of structural systems. A system in D is structural iff no constant of 0 is 
essential for it. 

We shall also say that rules, deductions, etc., are structural, whenever they do not 
involve any constant of the object language. 

For the structural systems we shall consider we shall give at least some of the 
following structural rules: 

Ascending (A). 0 A n ?0. 

Descending (D). 0 
,An} n ? 0. 

A n 

Iteration (I). An, n > 0. 

Cut (C). Fh- U h+{A} &n+{1A }u ~~' n>20O 

provided either F # 0) + {An} or A + {An} # 1-~~_n~~i F + nj A 1~_ 

Thinning (T). Fu Q l+lJ A , n> 0 . 

provided either F = F u 0 or A A u 
The provisos for C and T are given to make the rules strictly independent from 

each other and to forestall some trivial considerations. 
Note that a certain form of Contraction is involved in C. 
A rule which is an instance of level n of a rule R will be called "Rn". In proofs we 

shall write the name of the relevant instance of a rule on the left of the horizontal 
line. When a rule R is given only for all levels < n, we shall call it "R'n". 

Adding to T the proviso on the right gives 

TH: Sif a = O, must be a singleton or empty; 
{if a 0S ..must be empty, 

TK: must be empty. 

("H" stands for "Heyting" and "K" for "Kolmogorov-Johansson". Why these 
indices are chosen will become apparent in ?5.) 

Axioms for the structural and other systems in D we shall consider will be 
generated from the rules according to the following principle. 

Horizontalizing of rules (h). All the horizontalizations of the level-preserving rule 
R are axioms or axiom-schemata. 
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If a rule R is mentioned in h we shall say that it is in the scope of h. To designate the 
horizontalizations of a rule R we shall use "h(R)", also superscribing to "h" and "R" 
the level of the instance of R in question. In proofs such a designation will be written 
on the right of the axiom. When h is restricted only to rules of level n, or only to rules 
of levels < n, we shall call it he", or "h < n" respectively. 

Using h is mainly a matter of economy. In principle all the needed axioms and 
axiom-schemata obtained by applying h could be listed, their number being finite. 
But h also helps to make the articulation of our systems more transparent. 

Canonically we shall name a system by listing the names of all of its rules and 
indicating which of them are in the scope of h. This will be done by writing the names 
of the rules in the scope of h to the right of "h". For example, we shall consider the 
structural system named by ADhICT. 

A rule such that all of its premises are provable in a system S only if the conclusion 
is, is called "admissible in S". Analogously to that we have the following 

DEFINITION of admissible sequents. The sequent F ~fl +1 a is admissible in the sys- 
tem S iff [if all the formulae in F are provable in S. a formula in z is provable in S]. 

A rule, axiom or axiom-schema is eliminable from a system S if the subsystem of S 
without this rule, axiom or axiom-schema has the same theorems as S. It can easily 
be shown that a rule R is admissible in a system S iff it is eliminable from the 
extension of S with R. 

Our aim now is to show that D is eliminable from the systems ADhICT, 
ADhICTH, ADhICTK and ADhIC. But before showing that we shall make some 
remarks on the eliminability of other rules from these systems, which are of an 
independent interest. To simplify our exposition we shall concentrate on the first 
system only. 

It can easily be shown that A is not eliminable from ADhICT, and that the rule I 
(not h(I)) is eliminable from any system. The rule T will be eliminable from ADhICT 
(where we retain h(T) as an axiom-schema), for we have 

An+2 Fnj 
0 

Fn+2 or n+lj a}nij orF }n+2 0o U e n+ ij 
} n+ (n+1 

cn2 FIFIFuh 1'(T~) C 
Dn?2{0 Fn+2 u on+la u 

Fu eh~n+l a U 

The rule C of any particular level n + 1, n ? 0, could be shown to be eliminable in 
the same way, using hn + '(cn + 1) An + 2 Cn + 2 and Dn + 2. But in general, with C of all 
levels, we have 

LEMMA 1. The rule C is not eliminable from ADhICT. 
DEMONSTRATION. We have a proof of the following form in ADhICT: 

0j: {A n} _n + 1A {n} hn(In), 

A zn + +2 ? 

A +0 Fn+2 jj) 1n2. S 

{Z H-{0 {(jI)}, {0D} H-F 0} H-F {0 H-F Z} hn 2(C ~) 
{ { _n } H- 0} Hn n3 {z n2+2 z} 
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But we can show that a formula proved in such a way is not provable in AD/lT 
extended with h(C). First we show that D is eliminable from this system by showing 
that it is admissible in AhIT extended with h(C). Then we proceed by cases 
inspecting the axioms and rules of this last system. Q.E.D. 

More precisely, this demonstration shows that it is impossible to eliminate C of all 
levels from any system A <n+ l<n+ l<ni<nc<n+ 1 T <n+ 1 where n ? 2. But we 
can also show that in an extension of A 2D 2h`P1C'2T'2with a formula 

of level 0, C2 is not eliminable: we simply start the proof of the demonstration 
above with this formula as (). We have also that C2 is not eliminable from 
A ?2D ?2h' 11?'lC'2 T ?2 if there are at least two different formulae of level 0. In 
this system the following is provable only with C2 and not without 

{0 H {A}, {A} H {B}, {B} ' 0} - {0 ' 0}. 

"Cut-elimination" usually consists in showing that a rule corresponding to C1 is 

eliminable from a system corresponding to AlDlh0I0C' T1 or an extension of it. 

That a rule is eliminable does not mean that its horizontalizations are eliminable. 

For example, h(I), h(C) and h(T) are, of course, not eliminable from ADhICT. 

To show that D is eliminable from ADhICT, we first state 
LEMMA 2. If F _n+la is provable in AhICT, F _n+lj is admissible in every 

extension of AhICT (including AhICT). 
This lemma can be demonstrated by an induction on the length of proof of 

F Fn+ 1 a. (It is also possible to demonstrate the converse.) As a corollary we get 

LEMMA 3. The rule D is eliminable from ADhICT. 

For suppose 0 fn+ 1 {An} is provable in AhICT. It follows by Lemma 2 that An is 
provable. Hence, D is admissible in this system. 

We could show analogously that D is eliminable from ADhICTH, ADhICTK and 

ADhIC. 
The elimination of D corresponds somehow to the elimination of a certain form 

of Cut, for it shows that there need not be detours in proofs which consist in 

ascending to a higher level and then descending to a lower one, and it also makes 

practicable inductions on the length of proofs. Eliminating D of all levels ? n shows 

that the system at all levels ? n is irrelevant for proving theorems of levels < n - 1. 

?3. Double-line rules. Let B71, ..Bk . An, where k ? 1, mi 0 O. 1 < i < k, and 

n > 0 be formulae of a language D; then all the rules 

Bl . Bkk An An 

will be given by the following expression: 

Bm' . .. B~k 

An 5 

called a "double-line rule". 
If "R" is the name of this double-line rule, "RI'" will be the name of the first rule 

given by it in the list above, and "RI" will be a designation for any of the other rules 

in this list. 
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Double-line rules are only an abbreviatory device. For example, a system with 
exactly the same theorems as ADhICT could have been given only with double-line 
rules-viz. the following rules and the horizontalizations of the level-preserving 
rules given by them: 

A n An Fn +I j+{An} F + {An} -n +j 

o i-n+ 1 {A n} Ann F _n + 1 a 

The first of these double-line rules is a conflation of A and D, and the last a 
conflation of C and T. 

We shall now consider the eliminability of D of at least some levels from 
extensions of structural systems with double-line rules. 

LEMMA 4. Let S be ADhICT, ADhICTH, ADhICTK or AD/IC, and let S1 be an 
extension of S with double-line rules such that all the rules given by these double-line 
rules are level-preserving, eventually in the scope of h, and of at most level k, for some 
k ? 0. Then D of all levels ? k + 1 is eliminable from S1. 

In the demonstration of this lemma the essential step is to show a corresponding 
form of Lemma 2 for the subsystem of S1 without D of all levels ? k + 1, where n in 
Lemma 2 is ? k. This is done by an induction on the length of proof of F en 1. 

Lemma 4 will be used for demonstrations of some of the results in the sequel. 

?4. Classical propositional logic. Let 0 be the language of the propositional 
calculus based on -A, A, v, 1 and T. We define "i A" as "A -1 I" and "A ?-+ B" as 
"(A -+ B) A (B A)". We give the following double-line rules for propositional 
constants: 

+ J{A}Fl + {B} 

F-'1za + {A - B}I 

( FF-'za+ J{A} F-'l + {B} 
( ) 5FF'+{AAB} 

(v) F+{A}Il F+{B}'l 
(V) ~r JA v ABI 1-' 

F +{AvBI-'z 

(T) 0F-'z1 

We note that substitution for "A" and "B" in these double-line rules is free, so that 
A and B can be the same formula. Hence, there will be two horizontalizations of 

(A)j and of (v)], viz. 

{FF-'l + {A},FF-'l + {B}} F2I{F l + {A A B}} 
and 

{FF-'l + {A}}j 2I{F l + {A A115 

and analogously with (v)j. We note also that in spite of our restrictions on 
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disjointness the rules 

F + {A}FlA + {A-B,B} a + {A}Fl + {B,A->B} 

FH-'J+{A --B} and +JAI + BI 

are derivable and their horizontalizations are provable in AhIC(-+) (when the name 

of a double-line rule is on the right of "h", this means that all the rules given by it are 

in the scope of h). We can show something analogous with (A) and (v), and with 

double-line rules for constants we shall consider later. We shall not comment on this 

topic anymore. 
Let Cp/D be the system 

ADhICT(-)( A )( V )(I)(T) 

("C" stands for "classical", "p" for "propositional" and "D" for "the language D"). 
The system Cp/O will be an axiomatization of the classical propositional calculus 

in 0, with modus ponens as primitive rule. 
We can show the following: 
LEMMA 5. A formula of level 0 is provable in Cp/D iff it is provable in Cp/O. 
DEMONSTRATION. From right to left the demonstration is a matter of routine. 

(However, we must pay attention to the restrictions on substitution we have stated: 

proofs based on our sequents with sets of formulae are not always the same as proofs 
based on sequents with sequences of occurrences of formulae, in which the same 
formula can occur more than once.) 

From left to right we proceed as follows. Consider the following translation: 

o1(A) is A, 

o1(F) is {ol(An) A .A ol(An), if F = {A'n,... ,An}, k > 1, 

61(F) is {oo(A ) v .v o1(An), if F = .An,... , An} k > 1, 

ol(F In+ 1-A) is j,(F) -*ol(z), where n ? 0. 

We can show by an induction on the length of proof of An in Cp/D that o1(An) is 
provable in Cp/O if An, where n ? 0, is provable in Cp/D. If n = 0, then o1(An) 

is A . Q.E.D. 
It is also possible to show that Cp/D axiomatizes the classical propositional 

calculus separatively, in the sense that all theorems involving only some particular 
constants are provable only with structural axioms and rules and axioms and rules 
involving only these constants. This separativeness will also characterize all the 

systems in D we shall consider subsequently. 

?5. Intuitionistic propositional logic. Let 0 be as in ?4, and let Hp/D be the system 

ADhICTH(--)( A )( v )(T) 

Kp/D the system 

ADhICTK(--)( A )( v )(T) 
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and RAp/D the system 

ADhIC(-)( A )( V )(I)(T) 

("RA" stands for "R Absolute", a name derived from the name of the relevant logic 
R-see below). 

Each of these systems is a proper subsystem of the preceding one, and they are all 
proper subsystems of Cp/D. It can easily be shown that Hp/D, in contradistinction 
to Cp/D, has the property that if F n -'I A, where n> 02 is provable in it, A is either 
a singleton or empty. Let us call this property "the single-conclusion property". 
Hence, Kp/D and RAp/D also have the single-conclusion property. It is also easily 
shown that Hp/D without (I) and Kp/D without (I) coincide. 

The system Hp/O will be an axiomatization of the Heyting propositional calculus 
in 0, the system Kp/O an axiomatization of the Kolmogorov-Johansson prop- 
ositional calculus in 0 (usually called "minimal propositional calculus"), and the 
system RAp/O will be obtained from the positive fragment of the relevant 
propositional calculus R (see Anderson and Belnap [1975, p. 341]) by rejecting 

(A A (B v C)) - ((A A B) v C) 

and adding the axiom and the axiom-schema -* (A -* A). As for Kp/O, no 
axioms or rules are given for I. (The logic RAp/O, as well as the corresponding 
predicate logic which we shall mention in ?7, is due to Smirnov [1972, Chapter 6]; 
the name "RA" is from a later work of Smirnov.) 

We can show the following: 
LEMMA 6. 6.1. A formula of level 0 is provable in Hp/D iff it is provable in Hp/O. 
6.2. A formula of level 0 is provable in Kp/D iff it is provable in Kp/O. 
6.3. A formula of level 0 is provable in RAp/D if it is provable in RAp/O. 
DEMONSTRATION. For 6.1 and 6.2 we proceed as for Lemma 5. 
6.3. From right to left the demonstration is a matter of routine. From left to right 

we use the following translation of formulae of levels 0 and 1: 

o2(A) is A, 

2({A I,, Ak} {B}) is AI -* (A2 (Ak-B) ), if k 1 
tB, if k =0, 

o2({A ,,Ak}- 0) is {AI+ (A2 -*.-*(Ak l)..)) if k > 1, 

We can show by an induction on the length of proof of A' in RAp/D that o2(A') is 
provable in RAp/0 if A', 0 < n < 1, is provable in RAp/D. Here we use Lemma 4 to 
show that D2 is eliminable. Q.E.D. 

?6. Propositional modal logic. Assume for the moment that 0 is the language of 
the propositional calculus as in ?4 enlarged with the constants 0, 0 and -3 of 
modal logic. We give the following double-line rules for these constants: 

Ili-{0H' {A}}F-2L?{OF-'} 

(?+) 
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H? {{A}FI'0}F 2+ {& F } 

H + { {A} F'1 {B}}- 2Z + {&F-'>} 

( ) nF-2Z+ {e +{A--3B}H Q} 

We can show that if "A -3 B" is defined as "W (A -+ B)", the rules given by (-3) are 
derivable and their horizontalizations are provable in ADhIC ()(3). (In a certain 
sense conversely, we have that if " E A" is defined as " T -3 A", the rules given by (W) 
are derivable and their horizontalizations are provable in ADhIC (T)(-3).) We can 
also show that if " O A" is defined as "mi E m A", the rules given by (K>) are derivable 
and their horizontalizations are provable in ADhICT'(-+)( )(g). (In a certain sense 
conversely, we have that if " O A" is defined as "-i O m A", the rules given by (W) are 
derivable and their horizontalizations are provable in ADhICT'(-+)(I)(0).) 

In virtue of this we can assume that -3 is always defined, and that in contexts with 
T' the operator O is defined too. So we shall concentrate only on (3) below. 

Now let 0 be the language of the propositional calculus as in ?4 enlarged only 
with 3I. Let S5p/D be the system 

ADhICT (-+)( A )( V )(I)(T )(3) 

(i.e., S5p/D is obtained by extending the rules and axiom-schemata given for Cp/D 
with ([]) and the horizontalizations of the rules given by (W)). The system S4p/D 
will be the proper subsystem of S5p/D where T 2 and h2(T 2) are replaced by T 2 and 
h2(T2) 

Note that in S4p/D the rule T K would have the same effect as T 2. (Later we shall 
see that even rejecting T2 completely from S4p/D would not alter the provable 
formulae of level 0.) 

It can easily be shown that in S4p/D sequents of level 2 always have a singleton on 
the right of 2. Hence, S4p/D has the single-conclusion property for sequents of 
level 2 (but not for sequents of level 1). So, in applying (3), Z will always be empty. 

In virtue of Lemma 4, D of all levels ? 3 is eliminable from S5p/D and S4p/D. 
Consider now the rule 

(nec) WA 

and the axiom-schemata 

(11) 3(A -B)-- (3A 3B), 

(12) 3A->A, 

(13) (ZA -3 WB) -3 W(3A -3 WB), 

(14) 3A -33 A. 

The systems S5p/O and S4p/0 are obtained by extending the rules and axioms 
given for Cp/O with, respectively, (nec), (11), (12) and (13), and (nec), (11), (12) and (14). It 
can easily be shown that (13) can be replaced in S 5p/O with the more common axiom- 
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schema 

W 3A -t 3iWA 

so that the resulting system has the same theorems. 
We shall now demonstrate that S5p/D and S4p/D share all their theorems of level 

0 with S5p/O and S4p/0, respectively. 
LEMMA 7. 7.1. The rule (nec) is derivable, and (11), (12) and (14) are provable in 

ADhIQ--)(1). 
7.2. The axiom-schema (13) is provable in ADhICT'2()(D). 
DEMONSTRATION. To facilitate the demonstration we shall first prove the 

following: 

A2 {DA}I l {DIAl ho(1) 
(W)10 

2 
{{WA} F-' {WA}} 

{0 F-' {A}}I 2 {0 {A}}. 

The schema proved above will be called "(a)". It is the horizontalization of a rule of 
level 1 corresponding to (nec). 

7.1. For (nec) we have: 

A 
A' and. A2 

C20 
2 

{0F- {A}} {0 F-'{A}}F2{0 F-'{A}} (a) 
01-2{0F'{l A}} 

D2 andD' 
3A. 

For (1l) we have: 

(: {0 F- {A}, {A} F-' {B}} F-2 {0 F-' {B}} hl(C'), 

(2): {0 F{B}} 2 {0 '{3B}} (a), 

C2{0 F-' {A -+B}} F-2 {{A} FI- {B}} h'((-+)t) (0D 
c2{0F-'{A~B},0F-'{A}}F-2{0F-'{B}} (O 

{0 F {A -B}, 0 F-' {A}} 2 {0 { B}} 
2 applications of (O])l 

D2 0 F-2 {{3(A -* B), 3A} F1 {WB}} 
{3(A -+ B), 3A} F' {3 B} 
2 applications of (), and D' 

El(A->B)-*(ElA LJB). 

For (12) we have: 

-{0 F-' {A}} 2 {0 '{A}} h'(I') 
( 0 F2 {{DA} F-' {A}} 

D2, (--)I andD' 
WA -*A. 
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For (14) we have: 

C2{0 -{A}} -2 {0 - { A}}(a) {0 F-'{ A}} -2 {0 - {3W3A}} (a) 

{0- {A}} F-2 {0 F-' {WWA}} 
0 F-2 {{ 3A} F-'{W3A}} 

D2, (-+). and D' 

3 A - 3W 3A. 

7.2. We have: 

{{W3A}F -'F{B}} -2 {0 - {IEA-+ 3WB}} hl((-+).) 

C2 {0 1 {W A -+ W B}} -2 {0 F-' {W3(3WA W B)}} (a), 

(r: {{WA} F1-' {]B}} F-2 {0 -' {W(W A - 3 B)* 

(Z :{0 F-1{(W A - W B)}} F-2 {0 -' {W A, W(W A - W B)}} hh(T1), 

1:{0'{ FW A}} -2 {0 - {3A,W3(3WA-*W3 B)}} hl(T'), 

T2 {0F-'{A}} -2{0F- {3A}} (a) 

(3) to F-' {A}} F-2 {0 F-' { A}, 0 1{W B}} 

C2 0 2 {0 - {3 A},{3 A}F-1{W B}} I T 
c2 0 -2 {0- 

1 
{A},0 F-{ 13(A - * B)}}, (2 

C2 0F-2{0 ' 1 {3 A},0 F-' {WA, W(WA -3 WB)}} ( 

D2 0 -2{0 F-{WA,ZVWA -+ WB)}} ( I ),t{A -+ WB}F-1{WA -+ 3B}h0(1?) 

F 0 - {A, W(WA -3 WB)} {WA, A -+ WB} H' {Li]B} 

(4): {WA -3,B} F -' {W(WA -) WB), WB}, 

T2 {0 F- {B}} -2 {0 - {B}} (a) 

(D) {0 F-' {B}, 0 -' {A}} F-2 {0 F-' {WB}} 

C2 {0-'1{B}} -2 {{A}F-'1 {B}} I 

M)i {0 F-' {B}} F-2 {0 F-' {W(WA -3 WB)}} 

D2 0 -2 
{{ B}F -'{W(WA 

- 

B)}} C1 j[:{3B}F -'{EI(A 
-+ 

[L2B)} 
{W A -3 WB} F1 {W(WA -3 WB)} 

(-+)4 and D' 

(WIA - ElB) * W(WA -3 WB). Q.E.D. 

Note that no T rule is assumed for the system of Lemma 7.1. 
LEMMA 8. 8.1. If a formula of level 0 is provable in S5p/D, it is provable in S5p/O. 
8.2. If a formula of level 0 is provable in S4p/D, it is provable in S4p/0. 
DEMONSTRATION. Consider the following translation: 
o3(A) is A, 
&3(F) and 63(F) are obtained by substituting everywhere "03" for "o," in the 

clauses for -1(F) and 61(F) (see ?4), 
03(rF 'la) is D(-3(F) -63* A 
03(F Fn-+2 A) is 53(F) -+ 63(J), where n ? 0. 

8.1. We can show by an induction on the length of proof of An in S5p/D that 

o3(An) is provable in S5p/O if An, where n > 0, is provable in S5p/D. 

8.2. We can show by an induction on the length of proof of An in S4p/D that 
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o3(A') is provable in S4p/0 if A', 0 < n < 2, is provable in S4p/D. Here we use 
Lemma 4 to show that D3 is eliminable. Q.E.D. 

From Lemmata 5, 7 and 8, and the eliminability of D2 from Cp/D, we obtain 
THEOREM 1. 1. 1. A formula of level 0 is provable in S5p/D if it is provable in S5p/O. 
1.2. A formula of level 0 is provable in S4p/D if it is provable in S4p/0. 
The system 

ADhICTH(-)( A )( V)( I)(T)(3-) 

would be a Heyting propositional modal logic of the S4 type. Extending this system 
with (0) (provided we have O in the language 0) would destroy the single- 
conclusion property of sequents of level 1. 

?7. First-order logic. Let 0 be the language of the first-order predicate calculus 
with identity, i.e., 0 will have a denumerable list of individual constants, a 
denumerable list of individual variables (without using different letters for free and 
bound variables), a denumerable list of n-place predicate constants, for every n ? 1, 
and the constants -A, A, v, I, T, V, 3 and =. Formulae are defined as usual, but we 
assume that VxA and 3xA are well-formed only if x occurs free at least once in A. 
(The results we want to present do not depend essentially on the decision to present 
predicate logic with this assumption. This decision is motivated by independent 
reasons concerning the natural understanding of quantifiers.) 

In addition to the schemata specified in ?1, we shall use a and b as schemata for 
both individual constants and individual variables of 0. The schemata x and y will be 
used only for individual variables. Schemata of the form An(x) will be used for 
formulae of D in which x occurs free at least once. Schemata of the form S'An(x) I will 
be used for formulae resulting from the substitution of a at the place of every free 
occurrence of x in An(x). 

Then we give the following structural rule 

Substitution (S). SxA(x)I' n > 0. 

provided the following proviso for substitution is satisfied: 

if a is an individual variable y, x does not occur free in 
a subformula of An(x) of the form VyBm(y) or 3yBm(y). 

We shall use the notation "S'An(x)I"' only if the proviso for substitution is satisfied. 
Note that no empty applications of S are possible (a substitution would be empty 

if x did not occur free in An(x)). 
Though S is level-preserving, it will not be in the scope of h: otherwise we would 

have the following: 

S' {A(x)} F-' {SSA(x)I} ho(S0) 
{SxA(x)jI} ' {SxA(x)l }. 

We now give double-line rules for quantifiers: 

Mi) rF[ -a1 + {A(x)} 
( F-'LIA + {VxA(x)} 
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provided x does not occur free in F or a, and 

(3) 
F + A(x)j }' 

F + {3xA(x)} -' A' 

provided x does not occur free in F or A. 
Note that the proviso holds not only for (V)4. and (3)4, but also for (V)T and (3)T. 

However, in (V)(3)ADhIC the rules (V)t and (3)T without the proviso are derivable 

and their horizontalizations are provable. For derivability we have 

V)t {VxA(x)} F-' {VxA(x)} hV(l1) 
FI-'A + {VxA(x)} {VxA(x)} -'{A(x)} 

C 
F A + {A(x)}, 

and analogously with (3)t. For provability of the horizontalizations we have, 

setting (X: {VxA(x)} F-' {A(x)} (provable as above), 

A 42 (X) 

C20H0{()} {FF-'A + {VxA(x)},j)I}H2{FH'A + {A(x)}} h'(C') 

{FI -'A + {VxA(x)}} _2 {F -'A + {A(x)}}, 

and analogously with (3)T. (Of course, provability of the horizontalizations entails 

derivability with A2, D2 and C2.) 
Analogously to what we had with S, the rules (V)4 and (3)1 cannot be in the scope 

of h. 
Next we give the double-line rule for identity: 

S(F F-' Al 

r + {x = (X}I -' a 

provided x occurs free at least once in F F-' A. 
Analogously to what we had with S, (V)4 and (3)1, the rule (=)t cannot be in the 

scope of h. 
Let C/D be the system 

S(V)(3)(=)ADhICT(-+)( A )( V )(T), 

H/D the system 

S(V)(3)(=)ADhICTH(-+)( A )( V )(T), 

K/D the system 

S(V)(3)(=)ADhICTK(-+)( A )( v)(l)(T), 

and RA/D the system 

S(V)(3)(=)ADhIQ+)( A )( V )(T). 

Each of these systems is a proper subsystem of the preceding one, and they differ 

only with respect to T 
The systems C/O, H/O and K/O will be axiomatizations in 0 of, respectively, the 

classical, the Heyting and the Kolmogorov-Johansson ("minimal"), first-order 
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predicate calculi with identity. The system RA/O is obtained by extending the rules 
and axioms given for RAp/O with 

A (x) 
VxA(x)' 

VxA(x) S'A(x)j, 

S'A(x)l -xA(x), 

Vx(B -- A(x)) (B -- VxA(x)), provided x does not 

Vx(A(x) -+ B) -+(]xA(x) -+ B) occur free in B, 
a = a, 

a = b -+ (S'A(x)- S'A(x)I) 

This rule and these axiom-schemata can be used to extend the rules and axioms of 
the corresponding propositional calculi in order to get C/O, H/O and K/O. 

We can show the following: 
LEMMA 9. A formula of level 0 is provable in C/D if it is provable in C/O. 
LEMMA 10. 10.1. A formula of level 0 is provable in H/D if it is provable in H/O. 
10.2. A formula of level 0 is provable in K/D iff it is provable in K/O. 
10.3. A formula of level 0 is provable in RA/D if it is provable in RA/O. 
Demonstrations of these lemmata are obtained by enlarging the demonstrations 

of Lemmata 5 and 6. 
To conclude this section we note that (=) should be compared with 

S'A(x)j -Vx(x = a- A(x)), 

which can serve as a single axiom-schema for identity, replacing in C/O, H/0, K/O 
and RA/O the two axiom-schemata for identity given at the end of the list above. 

?8. First-order modal logic. Let 0 be the language of the first-order predicate 
calculus with identity as in ?7 enlarged with FI, and let S5/D be the system 

S(V)(])(=)ADhICT(-)( A )( V )(1)(T)(D) 

and S4/D the proper subsystem of S5/D where T2 and h2(T2) are replaced by TA 
andh 2(TH). 

The systems S5/0 and S4/0 are obtained by extending the rules and axioms given 
for, respectively, S5p/0 and S4p/0, with the rule and axiom-schemata for the 
quantifiers and identity listed in ?7. 

We can show 
THEOREM 2. 2.1. A formula of level 0 is provable in S5/D iff it is provable in S5/0. 
2.2. A formula of level 0 is provable in S4/D iff it is provable in S4/0. 
A demonstration of this theorem is obtained by enlarging the demonstration of 

Theorem 1. 
We note that in S5/D the Barcan formula is provable, whereas in S4/D it is not. 

?9. Uniqueness of characterization. Let S be a system for which a constant x is 
essential, and S* a system which differs from S only by having in its language a 
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constant o*,just graphically different from a, where S had o: rules, axioms or axiom- 
schemata involving a* in S* are obtained from those involving a in S by rewriting a 
as oa*. Let now SS* be the system in the language which is the union of the languages 
of S and S*, for which we assume the rules and axioms of both S and S*. It seems 
natural to say that 

(A) a is characterized uniquely in S iff a and a* are synonymous in SS*. 
If we want (A) to serve as a definition of uniqueness of characterization, we must 

stipulate what we understand by "synonymous" in (A). In this work we shall assume 
the following 

DEFINITION of synonymity. The constants a and /5 are synonymous in a system S iff, 
for every formula A<,, which results from a formula A by substituting a everywhere at 
the place of a schema 4, and for every formula A, which results from A by 
substituting fi everywhere at the place of X, A<,, is provable in S iff A, is (i.e., the rules 
given by 

A<,, 

A# 
are admissible in S). 

Note that this definition permits both uniform and nonuniform replacements of a 
and /3 when we pass from AL, to A0, and vice versa. 

It is possible to show that all logical constants are uniquely characterized in the 
sense of (A) in the systems C/D, H/D, K/D, RA/D, S5/D and S4/D. To get an idea 
how this uniqueness can be demonstrated we shall take the case of D in S5/D and 
S4/D. Let S be S5/D or S4/D, and let a be D; then in the system SS* we have 

2 {DFA}H '{IA} ho(10) A 0 H2 {{2A} -' {LA}} 

(0*){ H ' {A}} H2 {10 H {LEA}} 

D2 0 2 {{1*A}H l {LA}} 
{LI*A}H l {IA}, 

and we proceed analogously to prove 

{IFA} H' {F*A}. 

It can be shown that this is enough to guarantee the synonymity of E and El* in 
SS*. 

That the uniqueness of characterization so achieved is not a trivial property is 
shown by the following: 

LEMMA 11. The constant -+ is not uniquely characterized in the implicational 
fragments of Cp/O, Hp/O and RAp/O (the implicational fragments of Hp/O and 
Kp/O are identical). 

DEMONSTRATION. If -+ were uniquely characterized in S, where S is one of the 
systems of the lemma, then (A -+ B) -+ (A - * B) would be provable in SS*. But we 
can show that this formula is not provable in SS*. It is enough to show this when S is 
the implicational fragment of Cp/O; a fortiori, (A -+ B) -* (A * B) cannot then be 
provable in any weaker system. 
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Take the matrices 

-+ 1 2 3 4 )* 1 2 3 4 
1 1 2 3 4 1 1 2 3 4 
2 1 1 1 1 2 1 1 3 3 
3 1 1 1 1 3 1 2 1 2 
4 1 1 1 1 4 1 1 1 1 

which always give the value 1 to the theorems of SS*. But we have 

(A -+ B) -+ (A -+ * B). 
3 1 2 2 3 2 2 

Hence, this formula is not provable in SS*. Q.E.D. 
Connected with this lemma is the fact that the deduction theorem fails for the 

systems SS*, where S is one of the systems of the lemma and a is -A. 
By giving the value 4 to I and using the standard definitions of the other 

constants in terms of -+ and I, the demonstration above can easily be extended to 
show that -+ is not uniquely characterized in Cp/O. Let now S be C/O. It is known 
that S is a conservative extension of its implicational fragment Si. Assuming that 
SS* is a conservative extension of SiSi*, where a is -A, it would be possible to show 
that -+ is not uniquely characterized in C/O, and analogously with H/O, K/O and 
RA/O. 

We can also show 
LEMMA 12. The constant W is not uniquely characterized in S5p/0 and S4p/0. 
DEMONSTRATION. If W were uniquely characterized in S, where S is one of the 

systems of the lemma, then W *A -+ WA would be provable in SS*. But we can show 
that this formula is not provable in SS*. It is enough to show this when S is S5p/O. 

Take the matrices 

-+ 1 2 3 4 E ___ 

1 1 2 3 4 1 1 1 1 
2 1 1 3 3 2 4 2 2 
3 1 2 1 2 3 4 3 3 
4 1 1 1 1 4 4 4 4 

and assign to I the value 4. The matrices for the other constants are obtained by 
defining these constants in terms of -+ and I. These matrices always give the value 1 
to the theorems of SS*. But we have 

L *A -+ WA. 
2 2 3 4 2 

Hence, this formula is not provable in SS*. Q.E.D. 
Let now S be S5/O or S4/0, and let Sp be S5p/O or S4p/0. Assuming that SS* is a 

conservative extension of SpSp*, where a is W, it would be possible to show that W 
is not uniquely characterized in S5/O and S4/0. 

All logical constants except -A, W and I are uniquely characterized in the systems 
C/O, H/O, K/O, RA/O, S5/O and S4/0. The constant I is uniquely characterized in 
all of these systems except K/O and RA/O, where it is not characterized at all. By, so 
to speak, "climbing" one level, and giving rules of level 1 for -+ in the systems in D, 
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we have uniquely characterized also this constant. But the case with E is different. It 
is possible to show that rules of level 1 like those given by 

FFz +? {A} 
(DS5) rF F A ? {DA}' 

provided that if A, & F, A1 is DRB for some B, and if A2 E A, A2 is DC for some C, 
and by 

FF~-' IF]A) (DS4) FF-l{DA} 

provided that if A, e F, A1 is RB for some B, which when added to C/D deliver all 
the theorems of S5/0 and S4/0, cannot characterize D uniquely. To obtain 
uniqueness of characterization we need something like (IS5) with the proviso 

if A, & F, A1 is R Bor D*B for some B, 
and if A2 E A, A2 is DC or D *C for some C, 

and a corresponding form of (0,v5) where "WI*A" replaces "FIA". We could 
proceed analogously with (DS4). 

Thus we had to "climb" a further level, and assume the rules of level 2 given by 

(Z1), in order to characterize D uniquely. Using the same metaphor, we could say 
that the nonuniqueness of D at level 0 is "deeper" than the nonuniqueness of -+. 

?10. Conclusion. We shall now try to present briefly, and not very precisely, some 

views to which the results of this work might be leading. 
Let us interpret the sequent F F- "' A as saying that there is a deduction in which 

the formulae in F are premises and the formulae in A conclusions. When A has 
more than one member, we can understand the deduction in question as a multiple- 
conclusion deduction in the style of Shoesmith and Smiley [1978], where the 

conclusions are taken alternatively. When F is empty, the deduction in question 
would not depend on any premise; if then moreover A A"', this would mean that 

A" is a theorem. When A is empty, the deduction in question could be understood as 

a refutation of one of the premises in F. 
Then the double-line rules for logical constants could show that logical constants 

serve, so to speak, as punctuation marks for some structural features of deductions. 
If we understand by "logic" the science of formal deductions, and if we take it that 

basic formal deductions are structural deductions, all other formal deductions 
introducing only constants as punctuation marks for some structural features of 

deductions, we can formulate the thesis that this punctuation function is a criterion 
for being a logical constant. 

We shall briefly survey what punctuation function belongs to the logical 
constants we have considered. 

Implication is up to a point a substitute for the turnstile at level 0: it can reduce a 

deduction of level 1 to a formula of level 0. Conjunction and disjunction serve to 

economize: they reduce to one deduction two deductions which differ only at one 

place in the conclusions or in the premises. The constant I is a substitute for the 

empty collection of conclusions, and a substitute for the empty collection of 

premises. 
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First-order quantifiers serve to represent some features of deductions involving 
the presence of arbitrary singular terms. The proviso for the double-line rule (V) and 
(3) serves to guarantee that the expression in question is arbitrary. Roughly 
speaking, all quantifiers express something about "any": if "any" is prefixed to a 
consequent, or an asserted proposition, it becomes "every", and if it is prefixed to an 
antecedent, it becomes "some". Identity serves to indicate substitution possibilities: 
what holds for a holds also for whatever is assumed to be identical with a. 

The necessity operator differs from the constants mentioned above by having a 
punctuation function of level 2: it can reduce a deduction of level 2, in which all the 
premises assert that a formula of 0 is a theorem, to a deduction of level 1. 

We have seen that the alternative logics we have mentioned differ only in their 
assumptions on structural deductions more specifically, only in their assumptions 
concerning Thinning. Logical constants were always given with the same rules. If 
indeed a logic is completely determined by its assumptions on structural deductions, 
logical constants performing always a determined punctuation function for these 
deductions, to obtain an alternative logic with the same constants we can only 
change assumptions on structural deductions. This situation, which obtains 
between classical logic and various intuitionistic logics we have mentioned, and 
between S5 and S4, could serve to corroborate the thesis that a criterion for two 
logics being alternative is that they differ only in their assumptions on structural 
deductions. (Modal logic is not an alternative to classical logic, but a supplement.) 

We have seen that an intuitionistic restriction on Thinning applied to Thinning of 
level 2 produces S4 out of S5. It is plausible to suppose that this fact is not foreign to 
the existence of the well-known translations from classical and Heyting logic into S5 
and S4, respectively. Let us take it that formulae of level 1 of D constitute an object 
language 01, and then let us introduce logical constants into 01. With the rule T 2 

unrestricted, the logic of 01 will be classical; with T restricted to TH , it will be 
intuitionistic. We know that at level 0 with these forms of T 2 we should obtain S5 
and S4, respectively (where T 1 is unrestricted, making the logic of level 0 classical). 
We could then say that S5 represents at level 0 a classical logic of level 1, and S4 
represents at level 0 an intuitionistic logic of level 1. That is, with S5 we represent in 
classical logic the principles of a classical deductive metalogic, and with S4 we 
represent in classical logic the principles of an intuitionistic deductive metalogic. 
With the translations we would connect the formulae of S5 and S4 with what they 
represent. 
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