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Abstract: Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential
‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from
normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids
harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene
KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of
studies implicates the role of various hydrogen sulfide (H2S)-producing enzymes in the pathogenesis
of colon cancer. The current study was designed to determine if the sequential mutations in the above
pathway affect the expression of various H2S producing enzymes. Western blotting was used to detect
the expression of the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase
(CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in
H2S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy
1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H2S levels
were detected by live-cell imaging using a fluorescent H2S probe. Bioenergetic parameters were
assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were
assessed by Western blotting. The results show that the consecutive mutations produced gradual
upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and
3-MST expression. In more advanced organoids, when the upregulation of H2S-producing enzymes
coincided with the downregulation of the H2S-degrading enzyme SQR, increased H2S generation
was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial
respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector
of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence
are associated with a gradual upregulation of multiple H2S generating pathways, which, in turn,
translates into functional changes in cellular bioenergetics and dedifferentiation, producing more
aggressive and more invasive colon cancer phenotypes.

Keywords: Vogelstein sequence; colon cancer; hydrogen sulfide; cystathionine beta-synthase;
3-mercaptopyruvate sulfurtransferase

1. Introduction

In 2013, the concept that cancer cells overexpress the transsulfuration enzyme cys-
tathionine β-synthase (CBS) and use its enzymatic product, hydrogen sulfide (H2S), was
formulated, first in colon cancer [1] and subsequently in ovarian cancer [2]. In the following
decade, the field of H2S and cancer has expanded significantly. The overexpression of
H2S-producing enzymes (CBS, but also 3-mercaptopyruvate sulfurtransferase, 3-MST and
cystathionine γ-lyase, CSE) has been detected in many different types of cancer; known
cancer-supporting roles of H2S include the stimulation of cellular bioenergetics, the induc-
tion of proliferative and cytoprotective pathways, the stimulation of tumor angiogenesis,
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the promotion of epithelial to mesenchymal transition (EMT), protection against immune-
cell-mediated elimination, maintenance of cancer cell stemness and others (reviewed in [3]).

Colon carcinogenesis, according to the universally accepted concept, is a result of
consecutive mutations that accumulate in the colonic epithelial cells and transform the
normal epithelial cells to epithelial polyps (through a mutation in the APC gene), and
subsequent mutations (the most significant ones being designated as ‘driver’ mutations)
transform the cells into carcinoma in situ, followed by local and, eventually, invasive
cancer [4–7].

The relationship of these mutations to the changes in the expression of various enzymes
involved in the regulation of H2S biogenesis and degradation in cancer cells has not yet
been directly investigated. Here we have utilized a series of isogenic human organoids with
the introduction of sequential accumulating driver mutations [8] to address this question.

2. Materials and Methods
2.1. Cell Culture

The organoids containing various driver mutations described in Table 1 (NL, A, AT,
AKST, AdeCIN TS and AdeCIN TSK) were generated as previously described [8] using
Corning® Matrigel® Basement Membrane Matrix (Corning Inc., Corning, NY, USA) and
IntestiCult™ Organoid Growth Medium (Human) (StemCELL Technologies, Vancouver,
BC, Canada) supplemented with 100 ng/mL of human IGF-I (Peprotech, Rocky Hill, NJ,
USA) and 100 ng/mL of human FGF-basic (Peprotech).

Table 1. Clones, associated mutations, and resultant changes in the expression (protein levels,
determined by Western blotting) of H2S-producing enzymes.

Clones Mutation(s) &
Chromosomal Instability Cancer Stage CBS

45 kDa 1
CBS

61 kDa 1 3-MST 1 CSE 1

NL Normal control Healthy 100 100 100 100

A Loss of APC gene Early
adenoma 143 ± 11 123 ± 12 131 ± 7 185 ± 13

AT

• Loss of APC gene
• Indel mutation of TP53,

overexpression of a truncated
stabilized form of TP53

Carcinoma 170 ± 16 224 ± 74 165 ± 16 552 ± 53

AKST

• Loss of APC gene
• Knock-in mutation KRASG12V

• Indel mutation and loss of
SMAD4 protein

• Indel mutation of TP53,
overexpression of a truncated
stabilized form of TP53

Carcinoma 217 ± 42 8 ± 3 65 ± 6 102 ± 7

AdeCIN TS

• Indel mutation of TP53,
overexpression of a truncated
stabilized form of TP53

• Indel mutation and loss of
SMAD4 protein

• Chromosomal instability

Carcinoma
(non-metastatic) 553 ± 27 16 ± 4 151 ± 6 331 ± 34

AdeCIN TSK

• Indel mutation of TP53,
overexpression of a truncated
stabilized form of TP53

• Indel mutation and loss of
SMAD4 protein

• Knock-in mutation KRASG12V

• Chromosomal instability

Carcinoma
(metastatic) 506 ± 62 4 ± 2 146 ± 10 367 ± 30

1 protein expression (mean ± SEM), quantified by Western blotting, expressed as % of normal control.
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2.2. Reagents and Antibodies

The CBS/CSE inhibitor AOAA (O-(carboxymethyl)hydroxylamine hemihydrochlo-
ride) [9] was purchased from Sigma-Aldrich (Burlington, MA, United States), the 3-
MST inhibitor HMPSNE (2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-
1-yl)ethan-1-one) [10] was purchased from MolPort (Riga, Latvia). The fluorescent H2S
probe 7-azido-4-methylcoumarin (AzMC) was obtained from Sigma-Aldrich (Burlington,
MA, USA).

Rabbit monoclonal anti-CBS (D8F2P), anti-ATP citrate lyase (ACLY) (D1 × 6P), anti-β-
catenin (D10A8), anti-mouse IgG HRP-linked antibody (#7076) and rabbit polyclonal anti-
phospho-ACLY (Ser455) were purchased from Cell Signaling Technology (Danvers, MA,
USA). Mouse monoclonal anti-β-actin (AC-15) and rabbit polyclonal anti-SQR (HPA017079)
were obtained from Sigma-Aldrich (Saint Louis, MO, USA). Anti-rabbit IgG (H+L) cross-
adsorbed secondary antibody-HRP (#31458) was purchased from Invitrogen (Thermo
Fisher Scientific, Waltham, MA, USA). Rabbit polyclonal anti-3-MST (ab224043), anti-
CSE (ab151769), anti-TST (ab231248) and rabbit monoclonal anti-ETHE1 (ab174302) were
purchased from Abcam (Cambridge, UK).

2.3. Western Blotting

The organoids were dissociated from Corning® Matrigel® Basement Membrane Matrix
(Corning) using TrypLE™ Express Enzyme (Gibco, Thermo Fisher Scientific) and lysed
with RIPA lysis buffer (Thermo Fisher Scientific) supplemented with Halt™ Protease and
Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific) and sonicated for 15 s in an
ultrasonic water bath (XUBA3, Grant, Cambridge, UK). Measurement of protein concen-
trations, gel electrophoresis, proteins transfer, antibody incubations, development and
quantification of the blots were performed as described [11]. Intensity values of related
bands were normalized to β-actin housekeeping protein values. Representative blots of at
least four independent experiments are shown.

2.4. Quantification of H2S Production

The organoids NL, A, AT, AdeCIN TS and AdeCIN TSK were seeded in Corning®

Matrigel® Basement Membrane Matrix (Corning) in a 48-well plate. After 7 days of culture
supernatant was replaced by 100 µM of AzMC diluted in HBSS buffer (Gibco, Thermo
Fisher Scientific) and the cells were incubated 1 h at 37 ◦C and 5% CO2. The excitation
(365 nm) and emission (450 nm) wavelength of AzMC were read in an Infinite 200 Pro reader
(Tecan, Männedorf, Switzerland) as described [12]. Fluorescence values were normalized
with total proteins values. The AzMC assays were performed at least 4 times in duplicates.

2.5. Proliferation Assays

The proliferation of the organoids NL, A, AT, AdeCIN TS and AdeCIN TSK after
7 days of culture was measured using the Cell Proliferation Elisa BrDU (colorimetric) kit
purchased from Sigma-Aldrich (Saint Louis, MO, USA) as described [13]. Values were
normalized to total cellular protein concentration. The proliferation rate of AdeCIN TS and
AdeCIN TSK incubated with various concentrations of HMPSNE or AOAA was determined.
Proliferation assays were performed at least 4 times in duplicates.

2.6. Cellular Bioenergetic Measurements

The organoids NL, A, AT, AdeCIN TS and AdeCIN TSK cellular bioenergetics were
measured by extracellular flux analysis method using a Seahorse XFe-24 flux analyzer
(Agilent Technologies, Santa Clara, CA, USA) as previously described [13,14]. The cells
were seeded in Corning® Matrigel® Basement Membrane Matrix (Corning) in a Seahorse
XFe-24 Cell Culture Microplates and incubated at 37 ◦C and 5% CO2. For the mitochondrial
respiration assay, after 7 days of culture cells were washed twice with Seahorse XF DMEM
(Agilent Technologies) supplemented with 20 µM of L-glutamine (Gibco, Thermo Fisher
Scientific), 10 µM of sodium pyruvate (Sigma-Aldrich, Saint Louis, MO, USA) and of 1 mM
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glucose (Sigma-Aldrich, Saint Louis, MO, USA) at pH 7.4. The cells were then incubated
1 h at 37 ◦C in a CO2-free incubator for temperature and pH equilibration. The assay starts
with the measurements of the basal oxygen consumption rate (OCR), the posterior addition
of 1 µM oligomycin, 1.5 µM carbonyl cyanide-4-trifluoromethoxy phenylhydrazone (FCCP)
and 0.5 µM rotenone/0.5 µM antimycin A were used to estimate the ATP production
rate, the maximal mitochondrial respiratory capacity and the non-mitochondrial OCR,
respectively. For the glycolytic assay, after 7 days of culture, the cells were washed twice
with Seahorse XF DMEM phenol red-free (Agilent Technologies) containing 20 µM of
L-glutamine (Gibco, Thermo Fisher Scientific), 10 µM of sodium pyruvate (Sigma-Aldrich,
Saint Louis, MO, USA), 1 mM glucose (Sigma-Aldrich, Saint Louis, MO, USA) and 25 µM
of HEPES (Gibco, Thermo Fisher Scientific). The cells were then incubated 1 h at 37 ◦C
in a CO2-free incubator for temperature and pH equilibration. The assay started with the
measurement of the basal glycolytic Proton Efflux Rate (glycoPER), followed by addition
of 0.5 µM rotenone/0.5 µM antimycin A enabling calculation of mitochondrial-associated
acidification and compensatory glycolysis. Eventually, the addition of 50 mM 2-deoxy-D-
glucose was used to estimate the non-glycolytic PER. The first measurement of this assay is
the basal glycolysis. Data were analyzed with Wave (v. 2.6; Agilent Technologies, Santa
Clara, CA, USA) and the values were normalized with total protein values, measured by
the Bradford method as described [11]. The cellular bioenergetics assays were performed
at least 4 times in duplicates.

2.7. Statistical Analysis

Data are shown as mean ± SEM. One-way ANOVA with Dunnett’s multiple compar-
isons test or Kruskal–Wallis with Dunn’s multiple comparisons test were used to detect
differences between groups. Statistically significant differences between these two groups
are indicated by * p < 0.05 or ** p < 0.01. Statistical calculations were performed using the
Graphpad Prism analysis software.

3. Results and Discussion
3.1. Upregulation of Hydrogen-Sulfide-Producing Enzymes Occurs during the Accumulation of
‘Driver’ Pathway Mutations

In the current work, we used organoids with various mutations (summarized in
Table 1) to evaluate the effect of these mutations on the expression of various H2S-producing
and H2S-metabolizing enzymes. In prior studies of various colon cancer cell lines and
human colon cancer tissues, the expression of CBS and 3-MST was found [3,15]. In other
cancers—e.g., ovarian cancer, lung cancer, breast cancer and prostate cancer—CBS, CSE
and/or 3-MST upregulation was reported previously (reviewed in [3]).

Figure 1 and Table 1 show the changes in protein expression of the principal H2S-
producing and H2S-metabolizing enzymes in the various organoid clones. Regarding the
H2S-producing enzymes: CBS full-length (61 kDa) tends to show an increase in organoid A
(i.e., after the loss of the APC gene) and is significantly elevated in AT organoids (loss of
APC gene, and mutation of TP53). However, full-length CBS is significantly downregulated
in AKST, AdeCIN TS and AdeCIN TSK organoids. Importantly, in the same organoids, a
significant increase of the truncated form of CBS (45 kDa) can be seen (Figure 1). This
truncated form of CBS represents a proteolytic cleavage product that lacks the C-terminal
regulatory domain [16–18]. The 45 kDa CBS is constitutively (maximally) active, i.e., its
activity is no longer dependent on the allosteric CBS activator S-adenosyl-methionine
(SAM), which binds to the C-terminal region of the enzyme [16–18]. When we quantify the
expression of total CBS (full length plus the truncated form) an upregulation can be seen
in the AT organoids and a downregulation in the AKST organoids. However, even total
CBS is not significantly upregulated in AdeCIN TS and AdeCIN TSK organoids., We should
emphasize the fact that these organoids, for the most part, contain a more catalytically
active form of the protein, which would be expected to yield higher rates of H2S production.
Importantly, the appearance of the truncated form of CBS has previously been observed in
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human colon cancer cell lines (e.g., HCT116) [3,19] as well as in various pathophysiological
conditions associated with CBS upregulation and H2S overproduction, for instance in the
Down syndrome brain [20].

Figure 1. Upregulation of H2S-producing and H2S-metabolizing enzymes occurs during the ac-
cumulation of ‘driver’ pathway mutations in human intestinal epithelial cell organoids. Western
blot analysis (A) and densitometric quantification (B) of H2S-producing (CBS, 3-MST, CSE) and
H2S-metabolizing (TST, ETHE1, SQR) enzymes in NL, A, AT, AKST, AdeCIN TS and AdeCIN TSK
organoids after 7 days in culture. Data represent mean ± SEM of at least 5 independent experiments.
* p < 0.05, ** p < 0.01 compared to control.

3-MST was significantly overexpressed in all cancer-related organoids except AKST;
CSE expression was significantly upregulated in AT, AdeCIN TS and AdeCIN TSK organoids
(Figure 1).

With respect to the expression of H2S-metabolizing enzymes: TST is significantly
upregulated in A, AT, AdeCIN TS and AdeCIN TSK organoids; ETHE1 is markedly overex-
pressed in A, AT and AdeCIN TSK and downregulated in AKST organoids; SQR is signifi-
cantly upregulated in AT and downregulated in AdeCIN TS and AdeCIN TSK organoids
(Figure 1).

Taken together, these results reveal the upregulation of various H2S-generating path-
ways (chiefly CBS and 3-MST), which begins at the earliest stage of colon cancer develop-
ment (APC mutation). These findings are in line with prior observations in various colon
cancer cell lines and in human colon cancer clinical specimens, demonstrating a marked
upregulation of CBS, which starts already at the stage of APC mutations and adenoma for-
mation [1,3,11,19,21–26]—as well as the (more modest and more variable) upregulation of
3-MST [11,12,15,23,24,27,28] in various experimental models of colon cancer. With respect
to the regulation of the various H2S-metabolizing enzymes, the published body of data
has been variable [29–31]; based on the findings of the current study, we hypothesize that
the simultaneous upregulation of some of these enzymes in the more advanced organoids
may serve as a potential compensatory mechanism to counter-regulate the increased H2S
generation. With respect to TST/rhodanese, it should also be mentioned that—although it
is generally viewed as one of the H2S-metabolizing enzymes—its biological roles are com-
plex. In the context of the so-called thiosulfate cycle, thiosulfate is metabolized to produce
H2S and sulfite, which, in turn, can be subsequently recycled into thiosulfate. In this cycle,
3-MST produces thiosulfate from sulfite and 3-mercaptopyruvate, and TST/rhodanese
metabolizes thiosulfate into H2S and sulfite [32,33]. Thus, TST/rhodanese, in concert
with 3-MST, may have both H2S-generating and H2S-degrading roles, depending on the
biochemical context.
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Importantly, the current data also reveal that at more advanced stages of the disease
a conversion of CBS from the full length to the truncated form occurs, perhaps as a con-
sequence of upregulation of trypsin and various other proteolytic enzymes [34–37] in the
colon cancer cells.

3.2. H2S Production Is Increased in AdeCIN TS and AdeCIN TSK Organoids and Correlates with
Increased Proliferation

Since several H2S-producing enzymes are upregulated in the organoids, we next
investigated the H2S production in A, AT, AdeCIN TS and AdeCIN TSK organoids by live
cell imaging using the H2S-reactive dye AzMC. Although A, AT, AdeCIN TS and AdeCIN

TSK organoids show an upregulation of various H2S-producing enzymes, this did not result
in a corresponding increase in the H2S/AzMC signal in the A and AT organoids (Figure 2A),
likely due to the fact that several H2S-metabolizing enzymes were also upregulated in the
same organoids. However, significantly elevated H2S levels were detected in the most
advanced organoids studied: AdeCIN TS and AdeCIN TSK (Figure 2A). Interestingly, in
these two organoids, SQR expression is suppressed (as opposed to the increase in SQR
expression seen in the organoids with earlier stage mutations) (Figure 1). Since SQR
significantly contributes to cellular H2S utilization, a causative relationship between SQR
downregulation and increased cellular H2S levels in AdeCIN TS and AdeCIN TSK organoids
is possible but remains to be further investigated.

Figure 2. Increased H2S production and increased cell proliferation in AdeCIN TS and AdeCIN

TSK organoids. (A) AzMC-aided live cell imaging quantification of NL, A, AT, AdeCIN TS and
AdeCIN TSK organoids after 7 days in culture. (B) Cell proliferation rate of NL, A, AT, AdeCIN TS and
AdeCIN TSK organoids after 7 days in culture. Data represent mean ± SEM of at least 4 independent
experiments. ** p < 0.01 compared to control.

The high cellular H2S levels in AdeCIN TS and AdeCIN TSK were associated with
higher proliferation rates (Figure 2B). Overall, a good correlation between H2S generation
and organoid proliferation rate was noted across the organoids investigated—in line with
the theory that increased H2S generation in colon cancer cells is a stimulator of cancer cell
proliferation, via a variety of mechanisms—including cellular signaling and bioenergetics,
as reviewed recently in [3].

3.3. Upregulation of the Wnt/β-Catenin Pathway Occurs during the Accumulation of ‘Driver’
Pathway Mutations

We recently demonstrated that cancer cell-derived H2S, produced by CBS and 3-MST
promotes EMT of human colon cancer cells via the stimulation of the Wnt/β-catenin
pathway [11]. Accordingly, we investigated the expression of some key molecules of
the Wnt/β-catenin pathway; ACLY, p-ACLY and β-catenin in the current organoid sys-
tem. In general, all organoids (except AKST) overexpress one or more of these molecules,
with higher upregulation seen in the more advanced organoids (Figure 3). Concerning A
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organoids, we showed a significant increase in p-ACLY expression and a trend for increased
expression of ACLY and β-catenin. AT organoids exhibited significant overexpression of
β-catenin and a trend for increased ACLY and p-ACLY. ACLY, p-ACLY and β-catenin were
all significantly overexpressed in AdeCIN TS organoids. Finally, AdeCIN TSK organoids had
a significant increase of ACLY and β-catenin. These results confirm previous findings that
Wnt/β-catenin pathway activation occurs during colorectal cancer development [38,39];
based on prior studies in human colon cancer cell lines [11,21], upregulation of H2S gen-
eration may be a potential contributing factor to this process, although the effect of H2S
biosynthesis inhibitors has not been assessed in the current set of experiments. Interestingly,
prior studies have implicated the role of the Wnt/β-catenin pathway in the upregulation of
CSE in several human colon cancer cell lines [40]; whether this mechanism is operative in
the current system remains to be further investigated, but there appears to be a correlation:
both CSE upregulation and the induction of various Wnt/β-catenin pathway components
were found to be most pronounced in the same organoids: AT, AdeCIN TS and AdeCIN TSK
(Figures 1 and 3).

Figure 3. Upregulation of the Wnt/β-catenin pathway occurs during the accumulation of ‘driver’
pathway mutations in human intestinal epithelial cell organoids. (A,B) Western blot analysis of
ACLY, p-ACLY and β-Catenin in NL, A, AT, AKST, AdeCIN TS and AdeCIN TSK organoids after
7 days in culture. Data represent mean ± SEM of at least 4 independent experiments. * p < 0.05,
** p < 0.01 compared to control.

3.4. Upregulation of Cellular Bioenergetics and Glycolysis in AdeCIN TS and AdeCIN

TSK Organoids

Results presented in the previous section demonstrated that AdeCIN TS and AdeCIN

TSK organoids exhibit increased levels of H2S. Since H2S overproduction in cancer cells
is known to stimulate mitochondrial respiration and cellular bioenergetics [3,41], we next
measured cellular bioenergetics in the current organoid system. We compared control
(normal epithelial cell) organoids with a selected organoid where H2S levels were not yet
increased (AT) and with the two organoids where significantly elevated H2S levels were
detected (AdeCIN TS and AdeCIN TSK). Basal respiration, maximal respiration, spare respi-
ratory capacity and ATP production were all found to be upregulated in the AdeCIN TS and
AdeCIN TSK organoids (Figure 4). Moreover, basal glycolysis and compensatory glycolysis
were both upregulated in AdeCIN TS organoids, contrary to AT and AdeCIN TSK organoids
in which only basal glycolysis or compensatory glycolysis are upregulated, respectively.
We hypothesize that this difference may explain the slightly higher proliferation rate of
AdeCIN TS organoids compared to AdeCIN TSK organoids (Figure 2B).



Antioxidants 2022, 11, 1823 8 of 16

Figure 4. Upregulation of cellular bioenergetics in AdeCIN TS and AdeCIN TSK organoids. Mito-
chondrial respiration and glycolysis of NL, AT, AdeCIN TS and AdeCIN TSK organoids after 7 days
in culture, assessed by Extracellular Flux Analysis. (A) Basal respiration. (B) Maximal respiration.
(C) Spare respiratory capacity. (D) ATP production. (E) Basal glycolysis. (F) Compensatory glycolysis.
Data represent mean ± SEM of at least 4 independent experiments. * p < 0.05, ** p < 0.01 compared
to control.

The ‘classical’ view of the Warburg effect (i.e., that cancer cells tend to switch their
metabolism from oxidative phosphorylation to glycolysis) has been revised over recent
years. According to the current concept, cancer cells have a tendency to upregulate all
available pathways of metabolism, when the pathways are functionally operative, i.e., there
can be an upregulation of oxidative phosphorylation (when the mitochondria are intact and
O2 is available), as well as an upregulation of glycolysis in the same cancer cell [42–45]. The
current findings are in agreement with this concept, but also demonstrate that the relative
upregulation of glycolysis is not a uniform effect and may be linked to specific driver
mutations: the comparison of the AdeCIN TS and AdeCIN TSK organoids (the latter having
an additional mutation, a knock-in mutation KRASG12V) suggests that the upregulation of
glycolysis may be the highest when TP53 mutation and loss of SMAD are present, but when
an additional KRAS mutation is also introduced, then the net upregulation of glycolysis
becomes less pronounced. Prior studies have already linked TP53 and KRAS mutations
to the activation of glycolysis in colon cancer cells [46,47], but the functional interaction
between remains to be explored.

3.5. Pharmacological Inhibition of H2S Biosynthesis in AdeCIN TS and AdeCIN TSK Suppresses
Cell Proliferation

Next, we investigated if the pharmacological inhibition of H2S biosynthesis in AdeCIN

TS and AdeCIN TSK organoids can affect cell proliferation. HMSPNE and AOAA were used
to inhibit 3-MST and CBS/CSE, respectively. Figure 5 shows that both inhibitors produce a
significant, concentration-dependent decrease in the proliferation rate of both organoids.
These results are in line with prior observations in various human colon cancer cell lines
(e.g., HCT116, CaCo2, HT-29) demonstrating inhibitory effects of CBS and/or 3-MST
inhibition and/or silencing on cell proliferation rate—in agreement with the stimulatory
effect of endogenously produced H2S on cancer cell proliferation [1–3,21].
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Figure 5. Pharmacological inhibition of H2S biosynthesis in AdeCIN TS and AdeCIN TSK attenu-
ates cell proliferation. (A) Relative proliferation rate of AdeCIN TS and AdeCIN TSK in the presence
of increasing concentrations of HMPSNE for 48 h. (B) Relative proliferation rate of AdeCIN TS
and AdeCIN TSK in the presence of increasing concentrations of AOAA for 48 h. Data represent
mean ± SEM of at least 4 independent experiments. * p < 0.05, ** p < 0.01 compared to control.

However, as discussed previously [3,41,48–51], the effects of H2S are bell-shaped;
elevation of H2S levels above and beyond a concentration optimum starts to exert adverse
effects and can suppress cell proliferation. This bell-shaped concentration-response is
the likely explanation for why other reports find that (relatively high concentrations of)
pharmacological H2S donors can decrease colon cancer cell proliferation and can also
induce cytotoxic or cytostatic effects.

3.6. Effect of 3-MST Inhibition on the Expression of Various H2S-Producing and H2S-Metabolizing
Enzymes and on the Wnt/β-Catenin Pathway in AdeCIN TS and AdeCIN TSK Organoids

In the next set of experiments, we tested the effect of the 3-MST inhibitor HMPSNE
on the expression of various H2S-producing and -metabolizing enzymes and of some key
regulators of the Wnt/β-catenin pathway in AdeCIN TS and AdeCIN TSK organoids. In
AdeCIN TS organoids, 3-MST inhibition increased the expression of 3-MST itself (possibly
suggesting a self-amplifying positive feedforward cycle between H2S generation and 3-
MST expression), but also induced a significant overexpression of CSE, TST and ETHE1
(Figure 6A,B). The increase in the expression of 3-MST and CSE, induced by lower concen-
trations of HMPSNE, may explain the slight tendency for increased AdeCIN TS proliferation
observed in the presence of lower concentrations (100 and 300 µM) of HMPSNE (Figure 5A).
A downregulation of TST was observed at 600 µM HMPSNE. No significant effects of the
3-MST inhibitor were detected on CBS expression.

Figure 6. Effect of pharmacological inhibition of 3-MST on the expression of various H2S-
producing and H2S-metabolizing enzymes in AdeCIN TS and AdeCIN TSK organoids. (A,B) West-
ern blot analysis of H2S-producing and H2S-metabolizing enzymes in AdeCIN TS organoids in
presence of increasing concentrations of HMPSNE. (C,D) Western blot analysis of H2S-producing
and H2S-metabolizing enzymes in AdeCIN TSK organoids in presence of increasing concentrations
of HMPSNE. Analysis was performed at 48 h. CBS refers to the 45 kDa, truncated form, which was
the CBS isoform predominantly present in these organoids. Data represent mean ± SEM of at least
4 independent experiments. * p < 0.05, ** p < 0.01 compared to control.
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In AdeCIN TSK organoids, we observed a CSE upregulation in the presence of 300 and
600 µM of HMPSNE, a significant decrease in TST and ETHE1 expression with the higher
concentrations of HMPSNE, and there was no significant effect on CBS or 3-MST expression
(Figure 6C,D). CSE overexpression and the TST and ETHE1 downregulation in presence of
600 µM HMPSNE in AdeCIN TSK organoids may explain the relatively less pronounced
inhibitory effect of HMPSNE on the proliferation rate of AdeCIN TSK organoids compared
to AdeCIN TS (Figure 5A).

In both AdeCIN TS and AdeCIN TSK organoids, we found a significant suppression of
β-catenin expression after treatment with 600 µM HMSPNE; however, a significant increase
of p-ACLY was also noted at the same concentration of this inhibitor (Figure 7). These
data confirm prior findings [11], suggesting that 3-MST upregulates the activation of the
Wnt/β-catenin pathway, but indicate that pathways other than ACLY may be involved in
this process in the current organoid system.

Figure 7. Effect of pharmacological inhibition of 3-MST on the induction of the Wnt/β-catenin
pathway in AdeCIN TS and AdeCIN TSK organoids. (A,B) Western blot analysis of β-catenin, ACLY
and p-ACLY in AdeCIN TS organoids in the presence of increasing concentrations of HMPSNE for
48 h. (C,D) Western blot analysis of β-catenin, ACLY and p-ACLY in AdeCIN TSK organoids in the
presence of increasing concentrations of HMPSNE for 48 h. Data represent mean ± SEM of at least
4 independent experiments. * p < 0.05, ** p < 0.01 compared to control.

3.7. Effect of CBS Inhibition on the Expression of Various H2S-Producing and H2S-Metabolizing
Enzymes and on the Wnt/β-catenin Pathway in AdeCIN TS and AdeCIN TSK Organoids

In the last set of experiments, AdeCIN TS and AdeCIN TSK organoids were incubated
with increasing concentrations of the CBS/CSE inhibitor [9] AOAA and the expression of
various H2S-producing and H2S-metabolizing enzymes, and some key regulators of the
Wnt/β-catenin pathway were measured (Figure 8).

In AdeCIN TS organoids, the expression of CBS and TST was significantly suppressed
and ETHE1 expression was significantly increased in response to the highest concentrations
of AOAA used. 3-MST expression was increased in the presence of 100, 300 and 600 µM of
AOAA, while no significant effect of AOAA was observed on CSE expression (Figure 8A,B).

In AdeCIN TSK organoids, a significant reduction on CBS expression and an upregula-
tion of ETHE1 was noted at the highest AOAA concentrations. Additionally, an overex-
pression of CSE was observed at the highest concentration of the inhibitor used, while no
significant impact of AOAA on 3-MST or on TST expression was detected (Figure 8C,D).
These data suggest that CBS-derived H2S plays a variable effect on the expression of
various enzymes involved in H2S generation and metabolism; compared to the role of
3-MST-derived H2S, the effects were less pronounced and less consistent.
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Figure 8. Effect of pharmacological inhibition of CBS/CSE on the expression of various H2S-
producing and -metabolizing enzymes in AdeCIN TS and AdeCIN TSK organoids. (A,B) Western
blot analysis of H2S-producing and H2S-metabolizing enzymes in AdeCIN TS in the presence of
increasing concentrations of AOAA for 48 h. (C,D) Western blot analysis of H2S-producing and
-metabolizing enzymes in AdeCIN TSK in the presence of increasing concentrations of AOAA for
48 h. Data represent mean ± SEM of at least 4 independent experiments. CBS refers to the 45 kDa,
truncated form, which was the CBS isoform predominantly present in these organoids. * p < 0.05,
** p < 0.01 compared to control.

In AdeCIN TS organoids, we observed a significant decrease on ACLY and p-ACLY
expression in the presence of the highest concentrations of AOAA, while no significant effect
was observed on β-catenin expression (Figure 9). Similarly, a downregulation of ACLY was
also identified in AdeCIN TSK organoids in the presence of the highest concentration of
AOAA and a significant decrease on p-ACLY expression was observed at 100 µM AOAA.
However, in AdeCIN TSK organoids an upregulation of β-catenin expression was seen with
600 µM AOAA. Taken together, the effect of CBS/CSE inhibition in AdeCIN TS and AdeCIN

TSK is inconsistent on the Wnt/β-catenin pathway.

Figure 9. Effect of pharmacological inhibition of CBS/CSE on the induction of the Wnt/β-catenin
pathway in AdeCIN TS and AdeCIN TSK organoids. (A,B) Western blot analysis of β-catenin,
ACLY and p-ACLY in AdeCIN TS in the presence of increasing concentrations of AOAA for 48 h.
(C,D) Western blot analysis of β-Catenin, ACLY, and p-ACLY in AdeCIN TSK in the presence of
increasing concentrations of AOAA for 48 h. Data represent mean ± SEM of at least 4 independent
experiments. * p < 0.05, ** p < 0.01 compared to control.
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It should be pointed out that CBS and CSE are major sources of ‘free H2S’, while
3-MST predominantly generates reactive polysulfides rather than H2S (although in a cel-
lular environment both species are likely to be present) [51]. Moreover, the subcellular
localization of these enzymes is different, with CSE mainly cytosolic, CBS cytosolic, but
also mitochondrially translocated in cancer cells, and 3-MST equally distributed to mi-
tochondria and cytosol [51]. Thus, the biological role of CBS, CSE and 3-MST may well
be different, depending on their localization and the mixture of reactive sulfur species
produced by them. In addition, in the current experimental system, all three H2S-producing
enzymes contribute to the overproduction of H2S (as well as other reactive sulfur species,
which were not measured here), and we have not assessed the simultaneous inhibition of
CBS/CSE/3-MST on various functional parameters or signaling pathways—but it is likely
that such an approach would produce a more pronounced suppression of proliferation and
perhaps a combined inhibitory effect on ACLY activation as well as the activation of the
Wnt/β-catenin signaling pathway. This combined approach remains to be tested, either
using pharmacological or genetic tools. As with all pharmacological inhibitors, with the
inhibitors used in the current study (AOAA and HMPSNE), potential issues of non-specific
pharmacological effects should also be considered. For instance, AOAA is known to inhibit
certain transaminases, some of which play a role in colon cancer pathobiology. Nevertheless,
the approach used here can be considered the most feasible one according to the current
state-of-the-art, given the well-known limitations [3,15,18,25,28,48–52] on the availability
of potent, selective and cell-permeable inhibitors of the various H2S-producing enzymes.

Several questions remain to be addressed with respect to the mechanism of the upreg-
ulation of the various H2S-pathway enzymes during intestinal carcinogenesis. One of these
questions is the following: Is the induction of these enzymes a cause or a consequence of the
increased cell proliferation rate during the sequential accumulation of the various driver
mutations? It has been known for two decades that cell proliferation and CBS expression
are coordinately regulated; Jan Kraus and colleagues observed that proliferating cells have
higher CBS expression than non-proliferating ones and proposed a redox-based mechanism
for the upregulation of CBS, perhaps via Sp1 [53,54]. However, the exact mechanisms of
this process have not been defined. The upregulation of the H2S pathway enzymes in the
current experimental model, in response to the introduction of the various driver mutations,
may occur either directly (via the regulation of various signaling pathways that regulate the
cellular levels of these enzymes) or indirectly (via increasing cell proliferation rate, which,
in turn, may upregulate the cellular levels of these enzymes). Scenarios involving positive
feedforward cycles are also possible. For instance, driver mutations and/or proliferation
itself may upregulate H2S-generating enzymes, and the H2S produced by them may, in
turn, further stimulate cellular bioenergetics and proliferation. Indeed, it is well known
that administration of low concentrations of pharmacological H2S donors to colon cancer
cells can increase cellular bioenergetics and stimulate cell proliferation, even in the absence
of any additional mutations or stimulation of signaling pathways [3,23,41,52].

A second, related question relates to the mode of regulation of the various H2S
pathway enzymes (i.e., the relative importance of transcriptional vs. post-transcriptional
mechanisms). A previous study [8] conducted RNAseq analysis of colorectal adenoma and
primary colorectal cancer tissues, as well as two of the organoids (‘A’ and ‘AKST’) used
in the current project. The mRNA expression data are shown in Table 2. These data do
not demonstrate marked differences in the mRNA levels, indicating that the changes in
protein levels of the H2S-producing enzymes detected in the current model system must
be primarily due to post-transcriptional (rather than transcriptional) mechanisms. Indeed,
CBS is known to be a subject of a significant post-transcriptional regulation at the level of
protein stability via ubiquitination and proteasomal degradation [55,56].
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Table 2. Changes in the expression of H2S-producing and H2S-metabolizing enzymes during colorec-
tal carcinogenesis (mRNA expression data) 1.

Adenoma
(n = 5)

Primary Colorectal Cancer
(n = 7)

Metastatic Colorectal Cancer
(n = 2)

Organoid ‘A’
(n = 1)

Organoid ‘AKST’
(n = 2)

CBS 88 ± 24 118 ± 27 90 ± 10 112 69 ± 8

3-MST 99 ± 7 95 ± 5 108 ± 8 144 100 ± 1

CSE 101 ± 21 96 ± 11 112 ± 25 95 80 ± 14

ETHE1 113 ± 30 88 ± 18 59 ± 31 171 85 ± 2

TST 105 ± 7 81 ± 9 102 ± 27 142 89 ± 15
1 mRNA levels (mean ± SEM), quantified by the Affymetrix Human Gene Expression Array, expressed as % of
normal control. Data reported previously by Matano and colleagues [8] and retrieved from the Gene Expression
Omnibus Database (Accession # GSE57965).

It should be also emphasized that the expression of H2S-producing enzymes may
not always directly correlate with cellular H2S generation. For instance, the intracellular
(re)distribution of these enzymes (e.g., mitochondrial translocation of CBS and/or CBS
oligomerization/polymerization [18,51]) may also affect their cellular regulatory roles.
Potential post-translational modifications of these enzymes (e.g., the glutathionylation of
CBS) may also affect its function. Changes in the cellular levels of the allosteric activator of
CBS, S-adenosyl-methionine (SAM) during intestinal carcinogenesis may also be important.
In fact, in a prior study, intracellular SAM levels were found to be elevated in the polyps
of the ApcMin/+ mice [57]. Moreover, in the intestinal polyps of patients an increase in
methionine adenosyltransferase 2A mRNA levels was reported [57]. Elevation in SAM
levels may increase the catalytic activity of full-length CBS in the adenomas or early stages
of colorectal cancer. However, in later stages of colorectal cancer, our data show that the
predominant form of CBS is the truncated form. This form no longer has the C-terminal
regulatory domain, and therefore it is in a maximally activated stage and is no longer
dependent on the activating effect of SAM. In a previous study utilizing HCT116 cells (a
human colon cancer cell line, which contains a mixture of the full-length and cleaved CBS)
we tested the effect of exogenous SAM addition, and SAM induced an increase in H2S
generation in these cells and exerted functional effects (stimulation of cellular bioenergetics
and proliferation) that are consistent with the elevation of H2S [19]. The intracellular levels
of SAM in the current organoid system remain to be investigated. Likewise, enzymes and
processes that regulate substate availability—e.g., the expression and activity of membrane
transporters for cyst(e)ine [58,59], or cysteine aminotransferase (CAT), the enzyme that
produces 3-MP, the substrate of 3-MST [60]—remain to be investigated in future studies.

4. Conclusions

Taken together, the current study demonstrates that consecutive ‘driver’ mutations
produce gradual upregulations in CBS expression, in particular its truncated (45 kDa) form
and in 3-MST as well as CSE expression. In organoids harboring early mutations of the
Vogelstein sequence, the upregulation of these H2S-generating enzymes occurs together
with the upregulation of various H2S-metabolizing enzymes, and live cell imaging does
not detect significant elevations in cellular H2S levels. However, in organoids harboring
later-stage mutations, expression of the H2S-producing enzymes further increases, while
the expression of certain H2S-metabolizing enzymes (e.g., SQR) decreases, and a detectable
increase in cellular H2S levels can be demonstrated. These late-stage organoids also
exhibit significantly increased proliferation rate and upregulation of cellular bioenergetics
(oxidative phosphorylation, and in some cases glycolysis as well). Previous studies have
demonstrated that these later-stage organoids assume aggressive phenotypes, in line with
the classic adenoma-carcinoma sequence model. AdeCIN TS-organoids display highly
polarized morphology, but fail to macro-metastasize to the liver after injection into the
spleen [8]. However, after the KRASG12V mutation is additionally introduced (AdeCIN
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TSK organoids) the organoids assume cribriform-like dysplastic structures in vitro and are
capable of forming large metastatic tumors displaying histologic malignancy in vivo [8].

Although the molecular mechanism of the metastatic progression remains unknown,
these results suggest that accumulating driver pathway mutations are essential for colon
carcinogenesis and upregulation of the H2S pathway, and the increase in cellular H2S
generation in the two most aggressive organoids studied may contribute to the high degree
of aggressiveness and invasiveness of these colon cancer cells. Moreover, upregulation of
ACLY and the Wnt/β-catenin pathway indicates that at the advanced stage of cancer, cells
in the organoids undergo EMT, an essential element of invasiveness and metastasis. Phar-
macological inhibition of CBS/CSE or 3-MST attenuates the proliferation of the organoids
and modulates the expression of various H2S-producing and H2S-metabolizing enzymes
and also modulates some (but not all) elements and regulators of EMT.

Taken together, the current data further strengthen the view that increased H2S gen-
eration, by promoting cancer cell bioenergetics, signaling and cellular dedifferentiation,
plays a significant role in the pathogenesis of colon cancer and supports the view that
pharmacological inhibition of this process may be of potential future therapeutic value.
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