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Abstract— The present paper is dedicated to the presentation 

and implementation of an optimized technique allowing an on-
line estimation of a robot manipulator parameters to use them in 

a computed torque control. Indeed the proposed control law 

needs the exact robot model to give good performances. The 

complexity of the robot manipulator and its strong non-linearity 

makes it hard to know its parameters. Therefore, we propose in 
this paper to use neuro-fuzzy networks Sequential Adaptive 

Fuzzy Inference System (SAFIS) to estimate the parameters of 

the controlled robot manipulator. 

 

Index Terms— Artificial Intelligence; SAFIS (Sequential 
Adaptive Fuzzy Inference System); Neuro-Fuzzy Networks; 

Nonlinear System; Control; Robot Manipulator 

 

I. INTRODUCTION 

Recent years have seen rapid growth in the use of 

fuzzy controllers to control complex and poorly defined 

processes. We note that most nonlinear systems are 

characterized  by uncertain parameters, which complicates 

their control to improve their performance. Especially  the 

model of the robot manipulator is not always available  

and its parameters are subject to uncertainties caused by 

friction. These uncertainties  often lead to errors and 

differences of control laws. In this situation is necessary 

to use the techniques of artificial intelligence. 

The Computed Torque Control is an effective motion  

control strategy for robotic manipulator systems, which 

can ensure globally asymptotic stability. In this paper, a 

new approach combin ing Computed torque control and 

neuro-Fuzzy (SAFIS) is developed for trajectory tracking 

problems of robotic manipulator with presence of 

uncertainty. One solution to this problem is to introduce 

Neuro-Fuzzy control to ensure the robustness of the 

controller where the adaptability of fuzzy log ic, power 

learning ability and generalization of neural networks are 

combined [1] 

The neuro-fuzzy networks by their approximation  

property and adaptation are a major asset to be used in the 

control law [2],[3]. Several researchers have tried to 

exploit the advantages of neuro-fuzzy network to control 

a dynamic system and specifically in the field of robotics 

[4] .In this paper we use a neuro-fuzzy network 

Sequential Adaptive Fuzzy Inference System (SAFIS ) to 

develop an adaptive control law of a nonlinear dynamic-

system. It should be noted that SAFIS is a truly sequential 

on-line learning algorithm for the different parameters of 

model after we inject into a computed torque control law. 

This paper is divided into f ive sections. Brief 

description of computed torque control for manipulators 

is presented in the second section. The Sequential 

Adaptive Fuzzy In ference Systems (SAFIS) is described 

in the third section. The proposed SAFIS based control 

architecture is detailed in section four .The final section is 

dedicated to simulations. Matlab Simulations are 

achieved to validate the adaptive approach SAFIS control 

applied to three degrees of freedom SCARA robot 

manipulator in a t rajectory tracking control, in particu lar 

for estimating model parameters of the robot 

manipulators. The estimated parameters  are then injected 

into control structures. 

 

II. COMPUTED TORQUE CONTROL FOR ROBOT 

MANIPULATOR 

A. Dynamic model of robot manipulator 

A robot manipu lator consists of a mechanical structure, 

usually a set of rigid bodies connected in series by joints, 

with an  end on the ground, which is the base of the robot, 

and the end body or effecter’s.[5][16] 

The dynamic equation of a manipulator of N degrees of 

freedom [1] is given by: 

( ) ( , ) ( ) ( ) dM q q C q q q G q F q     
               

(1) 

Where Γ is the n×1 vector of actuator joint torque, M(q) 

is the n×n symmetric positive-defin ite inertia matrix,  
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( , )C q q is the n×1 vector of Corio lis and centrifugal, G(q) 

is the n×1 vector of gravitational,
 
 , ,q q q are the joint 

position, velocity, and acceleration vectors, ( )F q is the  

n×1 vector of actuator joint friction forces, and n 

corresponds to the number of degrees of freedom of the 

robot. 

B. Computed torque control 

The computed torque control [6] is based on 

compensation for nonlinearities of the robot manipulator. 

Among the classical control laws of robotic manipulators , 

the computed torque control is the best in terms of results . 

Adaptive procedures can be used to compensate the 

system characteristics  not considered in the dynamics 

modeled, such as those caused by modeling errors and 

friction. The controller computed torque is shown in  

Fig.4, is more sophisticated and precise. It uses the 

technique of feedback, which is to compensate for 

nonlinearities so that the dynamic system has a linear 

behavior closed loop. The computed torque control [1] 

given by: 

0( ) ( , ) ( ) ( )M q C q q q G q F q     
                          

(2) 

where dd qq ,  and dq are respectively the vectors of 

desired position, desired velocity and desired accelerat ion. 

Substituting Г in expression (1) and taking into account 

M(q) that is a regular matrix, we have n decoupled linear 

systems : 

0q  
                                                                         

(3) 

where Γ0 is an auxiliary input of the select  controller. 

A proportional derivative control (PD) is a typical choice 

for Γ0 given by the equation: 

)()(0 qqKqqKq dpdvd  
                  

(4) 

 

III. SEQUENTIAL ADAPTIVE FUZZY INFERENCE SYSTEMS 

(SAFIS) 

A. SAFIS description 

In this paper, a SAFIS is developed to realize a 

compact fuzzy system with lesser number of rules. SAFIS 

uses the idea of functional equivalence between a RBF 

neural network and a fuzzy inference system [7]. 

RADIAL BASIS function (RBF) networks  offer an 

efficient mechanis m for approximating complex 

nonlinear mappings from the input–output data. Selection 

of a learn ing algorithm for a particular application is 

dependent on its accuracy and speed [7],[8]. Sequential 

learning algorithms are better than batch learning 

algorithms as they do not require retrain ing whenever a 

new data is received. 

SAFIS uses the Growing And pruning RBF (GAP–

RBF) [8]. The SAFIS algorithm consists of two aspects, 

determination of the fuzzy rules and adjustment of the 

premise and consequent parameters in fuzzy rules [9]. 

SAFIS uses the concept of influence of a fuzzy rule to  

add and remove ru les during learning. SAFIS starts with  

no fuzzy ru les and based on the data builds up a compact 

rule base. The in fluence of a fuzzy  ru le is defined as its 

contribution to the system output in a statistical sense. 

The parameter adjustment is done using a winner rule 

strategy where the winner rule is defined as the one 

Closest to the input data and the parameter update is done 

using an EKF algorithm. 

 

Fig. 1. Radial Basis Function Network Model 

 

It should be noted that SAFIS is a truly  sequential 

learning algorithm. 

B. Radial Basis Function Neural Network  

Radial basis function networks are a variety of 

artificial Neural networks (RBF), it has one hidden layer 

and a linear output Fig.1, ]ˆ,....,ˆ,ˆ[ˆ
21 nyyyyy  which is 

given by (5): 

Axy T )(ˆ                                                                (5) 

The vector A is the weight's vector connecting the 

hidden layer to the output layer. T(X) is the response of 

the hidden layer to the input vector X=[1,x1,x2 ,…,xn x) 

where  is the Gaussian function given by [10][15]: 













 


2

2

exp)(





x
x                                           (6) 

 is the center's vector of the hidden neurons and 

 is the width of the Gaussian functions . 

C. SAFIS architecture 

1) Description of SAFIS architecture 

Generally, a  wide class of MIMO nonlinear dynamic 

systems can be represented by the nonlinear discrete 

model with an input–output description form: 

( ) [ ( 1), ( 2),..., ( 1)

... ( ), ( 1), ( 1)]

1,2,....,

y n f y n y n y n k

u n u n u n p

k N
h

    

  

 ；
                 

(6) 
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Where y is a vector containing Ny system outputs, u is 

a vector for Nu system inputs; f is a nonlinear vector 

function, k, p are the maximum lags of the output and 

input, respectively. 

[ ( 1), ( 2),..., ( 1); ( ), ( 1),...

( 1)], ( )

y n y n y n k u n u n

u n p y n

    

    (7)

 

Selecting (5) as the fuzzy system’s input–output xn, yn 

at time n, the above equation can be put as: 

( )n ny f X
                                                              (8)

 

 
Fig. 2. SAFIS Architecture. 

 
The aim of the SAFIS algorithm is to approximate f 

such that: 

ˆˆ ( )n ny f x
                                                              (9)

 

Where 
nŷ
  

is the output of SAFIS. This means that the 

objective is to minimize the error between the system 

output and the output of SAFIS, 
nn yy ˆ Before 

describing the details of the algorithm, the structure of 

SAFIS network is first described below. 

The structure of SAFIS illustrated by Fig. 1 consists of 

five layers to realize the following fuzzy rule model: 

Rule k : 

1 1 1 1
ˆ ˆ( )...( ) ( )...( )k Nx Nxk k Ny Nykif x is A x is A then y is a y is a  

Where ajk (j=1,2….,Ny,k=1,2,..,Nh) is a constant 

consequent parameter in rule k. Aik(i = 1, 2, . . . , Nx  ) is 

the membership value of the i
th

 input variable xi  in  ru le k. 

Nx is the dimension of the input vector x             

(x=[x1, .. ,xNx ]
T
).  Nh is the number of fuzzy rules. Ny is 

the dimension of the output vector 1
ˆ ˆ ˆ[ ... ]TNyy y y  

In SAFIS, the number of fuzzy rules Nh varies. 

Initially, there is no fuzzy ru le and then during learning 

fuzzy rules are added and removed.[9] 

1) Layer 1: In layer 1, each node represents an input 

variable and directly transmits the input signal to layer 

2. 

2) Layer 2: In th is layer, each node represents the 

membership value of each input variable. SAFIS 

utilizes the function equivalence between a RBF 

network and a FIS and thus it’s antecedent part (if part) 

in fuzzy ru les is achieved by Gaussian functions of the 

RBF network [11]. The membership value A ik(xi ) of 

the i
th

 input variab le xi in  the k
th

 Gaussian function is 

given by 

2

2

( )
( ) exp( ), 1,2,....,i ik

ik i h

k

x
A x k N






  

        

(10) 

where Nh is the number of the Gaussian functions, μik is 

the center of the k
th

 Gaussian function for the i
th

 input 

variable, σk is the width of the k
th

 Gaussian function. In 

SAFIS, the width of all the input variables in the k
th

 

Gaussian function is the same. 

3) Layer 3: Each node in  the layer represents the if part of 

if–then rules obtained by the sum–product composition 

and the total number of such rules is Nh. The firing  

strength (if part) of the k
th

 rule is given by: 

1

2

2
1

2

2

( ) ( )

( )
exp( )

exp( )

x

x

N

k ik i
i

N
i ik

i k

k

k

R X A x

x

X













 


 


 

                               

(11)

 

4) Layer 4: The nodes in the layer are named as 

normalized nodes whose number is equal to the 

number of the nodes in third layer. The k
th

 normalized  

node is given by: 

1

( )

( )
h

k
k N

k
k

R X
R

R X





                                                  (12)

 

5) Layer 5: Each node in  this layer corresponds to an 

output variable, which is given by the weighted sum of 

the output of each normalized ru le. The system output 

is calculated by: 

1

1

( )

ˆ

( )

h

h

N

k k
k

N

k
k

R X a

y

R X










                                               (13)

 

where  T

Nyyyyy ]ˆ,...,ˆ,ˆ[ˆ
21 , T

Nykkkk aaaa ],...,,[ 21
 

2) Influence of a fuzzy rule 

As in (13), the contribution of the k
th

 rule to the overall 

output for an input observation xl is given by: 

1

( )
( , )

( )
h

k l
k N

k l
k

R x
E k l a

R x





       

                                 (14)
 

Then the contribution of the k
th

 rule to the overall 

output based on all input data N received so far is 

obtained by: 
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1

1 1

( )

( )

( )
h

N

k l
l

k N N

k l
k l

R x

E k a

R x



 





 
                                       (15)

 

Div iding the numerator and denominator by N  in  (14) 

and using the significance concept of GAP–RBF [4], the 

influence of the k
th

 fuzzy  ru le is defined as its statistical 

contribution to the overall output of SAFIS. 

Thus, based on [8] the influence of the k
th

 rule is given 

by: 

inf

1

(1.8 )
( )

(1.8 )
h

Nx
k

k N
Nx

k
k

E k a








                                  

(16) 

3) Apply the criterion for adding rules 

We proceed by adding a rule if the criterion as in (17) 

is verified. 

( 1)infX and E N en nr n gh    
         

(17) 

The parameters of the allocated rule are given by: 

1 1

1

Nh n Nh n

Nh n nr

a e X

k X



 

 



 


 

;

                                         

(18) 

And then the Fuzzy inference system will contain Nh + 

1 rules. 

4) Parameter adjustment (EKF algorithm) 

If the last criterion is not satisfied, the SAFIS will only  

adjust the actual parameters, SAFIS utilizes a winner rule 

strategy similar to the work done by [11]. The key idea of 

the winner ru le strategy is that only the parameters related 

to the selected winner rule are updated by the EKF 

algorithm in every step [13]. The winner ru le is defined 

as the rule that is closest (in the Euclidean distance sense) 

to the current input data as in ([12],[8],[14]) 

The parameters of the allocated rule are given by: 

1

1 1 1

[ ... ... ]

[ , , ,....., , , ,...., , , ]

T
n nr Nh

T
nr nr nr Nh Nh Nha a a

   

     




 

(19) 

Where θnr = [anr , μnr , σnr ] is the parameter vector of 

the nearest fuzzy rule and its gradient  is derived as 

follows: 

1

ˆ
n nr

nr Nh
nr k k

y R
a

a R


 
                                          

(20) 

2
1

ˆ ˆ
2n nr n n nr

nr nrNh
nr k k nr

y a y x
R

R




 

  
 
 

              

(21) 

2

3
1

ˆ ˆ
2

n nrn nr n
nr nrNh

nr k k nr

xy a y
R

R




 

 
 
 

                  

(22) 

After obtaining the grad ient vector of the nearest fuzzy  

rule
T

nrnrnrnr aB ],,[   , EKF is used to update its 

parameters as follows: 

1
1 1[ ]T

n n n n n n nK P B R B P B 
  

                           
(23) 

1n n n nK e   
                                                    

(24) 

* 1 *[ ]T
n z z n n n z zP I K B P qI  

                            
(25) 

where q is a scalar that determines the allowed step in 

the direction of the gradient vector, Z is the dimension of 

parameters to be adjusted. When a new rule is added, the 

dimension of Pn   increases to: 

1

0 1* 1

0

0

n

z z

P

p I

 
 
                                                        

(26) 

Where Z1 is the dimension of the parameters 

introduced by the newly added rule, p0 is an initial value 

of the uncertainty assigned to the newly allocated rule. 

5) Pruning the rules 

We proceed by adding a rule if the criterion as in (27) 

is verified  

inf 1

1

(1.8 )
( )

(1.8 )

x

h
x

N
nr

nr pN
N

k
k

E nr a e







 


                       

(27) 

Remove the nr rule, Reduce the dimensionality of EFK 

as in (26) [4] 

 

Fig. 3. SAFIS flowchart  

Begin 

Initialisation  thresholds  

 

1.  Input variables n 
2.  Calculate by eq (9),  ŷ

  
 

3.  Calculate by eq (29),   
nn yy ˆ  
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D.SAFIS algorithm 

The learn ing algorithm of SAFIS consists of two 

aspects; determination of fuzzy ru les and adjustment of 

the premise and consequent parameters in fuzzy  rules as 

in Fig.3, SAFIS can automat ically add and remove fuzzy  

rules using ideas similar to GAP–RBF [4] for hidden 

neurons. 

Given the growing and pruning thresholds eg, ep, for 

each observation (xn, yn), where ,Nx Ny
n R n R x y  and 

n = 1, 2,.. do: 

Compute the overall system output given by (13) with 

2

2

1
( ) exp( )k n n k

k

R X X 


  

                           

(28) 

Where Nh is the number of fuzzy rules Calculate  the 

parameters required in the growth criterion: 

 max minmax , , (0 1)

ˆ

n
n

n n ne y y

      

 
                     

(29) 

If the criterion for adding is verified as in  (17) a new 

rule is added with new parameters as in (18). 

Check the criterion for pruning the rule as in (27), if is 

verified then remove the nr ru le and  reduce the 

dimensionality of EKF. [8][16]. 

 

IV. SAFIS BASED COMPUTED TORQUE CONTROL OF 

ROBOT MANIPULATEUR 

In this work, SAFIS based control architecture is 

proposed to overcome the computed torque control lack 

which is the difficulty to estimate online the model 

parameters of the robot manipulator, so to compensate 

uncertainties and noise. 

The idea is to estimate the model matrices by a SAFIS 

networks. 

The control law in (2) becomes: 

0
ˆ ˆˆ ˆ( ) ( , ) ( ) ( )M q C q q q G q F q     

                          
(30) 

Where  FCM ˆ,ˆ,ˆ  is SAFIS estimation of M, C, G and 

F respectively. The: 

ˆ ( )

ˆ ([ , ])

( )

( )

M q

C q q

F q

G q

















 

Where         are SAFIS network with the outputs

,q q . 

The global SAFIS intelligent control scheme is 

presented in Fig.4 

 

V. SIMULATION RESULTS 

To validate the proposed intelligent control approach, 

we have carried out simulations for adaptive control of 3 

degrees of freedom SCARA robot manipulator whose 

dynamic model is given by (32, 33, 34,35, 36,) 

Due to the complexity of the robot manipulator and its 

strong non-linearity make using a single network very  

difficult to achieve. The model matrices (Inertia matrix, 

Coriolis matrix and friction vector) are estimated using 

three SAFIS networks. 

Before proceeding with the proposed approach, the 

algorithm parameters needed for the accomplishment of 

learning are initialized in Table 1. 

 
Table 1. SAFIS initialization parameter 

Eg  (pruning thresholds) 0.001 

ep pruning thresholds 0.001 

factor of overlap [1.0,2.0] 

.. . . .

1( ) ( ) ( , ) ( ) ( ) ( )u t M q q C q q q G q f q t t    
       

(31) 

Where 

11 2

12 2

13

21 2

22 23

31 32 33

= 2.1240 1.44 ( )

= 0.4907 0.72 ( )

= 0

( ) = = 0.4907 0.72 ( )

= 0.4907, = 0

= = = 0

M cos q

M cos q

M

M q M cos q

M M

M M M




 




 
 



                 

(32)
 

1

2

3

= 0

= 0
( ) =

= 4.9

G

G
G q

G







            

                                    (34)
 

1 1 1

2 2 2

3 3 3

= 12 0.02 ( )

3 (3 )

= 12 0.02 ( )

( ) = 3 (3 )

= 12 0.02 ( )

3 (3 )

F q sign q

sin t

F q sign q

F q sin t

F q sign q

sin t

 


  


  





                     (35)
 

1

5 (2 )

( ) = 5 (2 )

5 (2 )

sin t

T t sin t

sin t

 
 
 
  

                                                 (36)
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Fig. 4. Bloc diagram of computed torque control with estimation 
parameters by SAFIS system 

 

After having initialized the thresholds of the learning 

algorithm using table.1 for the three networks SAFIS, we  

have injected into a computed torque control law of a 

SCARA robot manipulator with path tracking purpose 

(qd1=1.2 Rad,  qd2=1.5 Rad, qd3=0.1m). 

To evaluate the performances of the proposed approach, 

we will start by using it in an ideal environment (without 

noise and uncertainties. In the next  subsection, we 

injected some noise in  the control loop and have altered 

the joint masses in the Inertia matrix (∆m1=0.002Kg, 

∆m2=0.001Kg, ∆m3=0.001Kg,), 

Adaptive control based SAFIS was used to control the 

robot manipulator with a target of prosecution. 

A. SAFIS Control without uncertainties 

In the first step, the SAFIS neuro-fuzzy networks is 

used to estimate the parameters  of the robot manipulator 

(Matrices M, C and F) without uncertainties parametric. 

 
Fig. 5. desired positions 

 

 
Fig. 6. Tracking error position for articulation 1,2(rad) 

 

 
Fig. 7. Tracking error  position for articulation 3(m) 

 

Fig.6 present the position tracking erro rs for 

articulations 1 and 2, the third in fig.7 

The velocity error fo r articulat ion 1and 2 is presented 

in fig.8, so in  fig.9 presented error velocity  for the third  

articulation. 

We see that the robot joints converge quickly to  the 

target (0.9 seconds for joints 1 and 2 and 0.01 second for 

joint 3). These results are obtained thanks to the good 

estimation of the SAFIS networks and its online learning. 

 
Fig. 8. Velocity error  for articulation 1,2(rad/s) 

 

 
Fig. 9. Velocity error for articulation 3(m/s) 

B. Simulation with uncertainties and noise 

We note that most nonlinear systems are characterized  

by uncertain parameters, which complicates their control 

to improve their performance. Especially the model of the 

robot manipu lator is not always available  and its 

parameters are subject to uncertainties caused by friction 

for example. These uncertainties  often lead to errors and 

differences of control laws. 

In this subsection and to test the robustness of the 

proposed control, we have introduced uncertainties in the 

parameters of the robot manipulator, where we have 

altered the components of the inertia matrix (qd1=1.2 Rad,  

qd2=1.5 Rad, qd3=0.1m). 
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Fig. 10. Tracking error position for articulation 1,2(rad) 
 

 

Fig. 11. Tracking error position for articulation 3(m) 

 

In addition to the uncertainties, A white noise is 

introduced in the control loop. 

The position errors are shown in Fig 10, and Fig 11. 

The velocity errors is illustrate in Fig 12 and Fig 13. 

 
Fig. 12. Velocity error for articulation 1,2(rad/s) 

 

 
Fig. 13. Velocity error for articulation 3(m/s) 

 

We see that errors are acceptable even a white noise is 

present and some uncertainties in inertia matrix. 

The presence of uncertainties did not affect the control 

structure performances where they are compensated by 

the learning power of the SAFIS networks  

 

 

 

VI. CONCLUSION 

The robot manipulators  are  often subject to terms of 

friction and model variation, so it is very hard to get a 

prior knowledge of their parameters needed by the 

computed torque control. We presented an online SAFIS 

based estimation technique of robot model in order to 

inject it in the correspondent control law. The proposed 

approach consists of a self adaptive fuzzy inference 

system of five layers. 

In this paper, a sequential fuzzy inference system 

called SAFIS is developed based on the functional 

equivalence between a RBF (in this case, GAP–RBF 

network) and a FIS. In SAFIS, the fuzzy rules are added 

or removed based on the concept of ―influence‖ of the 

rule. When there are no additions, only the parameters of 

the ―closest‖ rule are updated using an EKF scheme. 

SAFIS is truly a sequential learning algorithm and 

produces a compact fuzzy inference system. 

The performance of SAFIS has been proved with 

existing of no ise and uncertainties on nonlinear systems. 

The simulations over three degrees of freedom SCARA 

robot manipu lators had given  good results in terms of  

tracking errors even in presence of noise due to the good 

estimation power of the SAFIS system. 
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