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Abstract. An aggregate signature scheme (recently proposed by Boneh,
Gentry, Lynn, and Shacham) is a method for combining n signatures
from n different signers on n different messages into one signature of
unit length. We propose sequential aggregate signatures, in which the set
of signers is ordered. The aggregate signature is computed by having each
signer, in turn, add his signature to it. We show how to realize this in such
a way that the size of the aggregate signature is independent of n. This
makes sequential aggregate signatures a natural primitive for certificate
chains, whose length can be reduced by aggregating all signatures in
a chain. We give a construction in the random oracle model based on
families of certified trapdoor permutations, and show how to instantiate
our scheme based on RSA.

1 Introduction

Authentication constitutes one of the core problems in cryptography. Much mod-
ern research focuses on constructing authentication schemes that are: (1) as se-
cure as possible, i.e., provably secure under the most general assumptions; and
(2) as efficient as possible, i.e., communication- and computation-efficient. For
cryptographic schemes to be adopted in practice, efficiency is crucial. Moreover,
communication and storage efficiency – namely, the size of the authentication
data, for example the size of a signature – plays an even greater role than compu-
tation: While computational power of modern computers has experienced rapid
growth over the last several decades, the growth in bandwidth of communication
networks seems to have more constraints.

As much as we wish to reduce the size of a stand-alone signature, its length
is lower-bounded by the security parameter. The problem becomes more inter-
esting, however, once we have n different signers with public keys PK1, . . . ,PKn,
and each of them wants to sign her own message, M1, . . . , Mn, respectively. Sup-
pose that the public keys and the messages are known to the signature recipient
ahead of time, or clear from context. We want, in some way, to combine the
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authenticating information associated with this set of signers and messages into
one short signature, whose length is independent of n.

This problem actually arises in practice. For example, in a Public Key Infras-
tructure (PKI) of depth n, a certificate on a user’s public key consists of a chain
of certificates issued by a hierarchy of certification authorities (CAs): the CA at
depth i certifies the CA at depth i+1. Which CAs were responsible for certifying
a given user is usually clear from the context, and the public keys of these CAs
may be available to the recipient off-line. The user’s certificate, however, needs
to be included in all of his communications, and therefore it is highly desirable
to make its length independent of the length of the certification chain. Even if
the entire certificate chain must be transmitted, significant space savings can be
realized. In a typical X.509 certificate, 15% of the length is due to the signature.

Recently, Boneh et al. [5] introduced and realized aggregate signatures. An
aggregate signature scheme is a signature scheme which, in addition to the usual
setup, signing, and verification algorithms, admits an efficient algorithm for ag-
gregating n signatures under n different public keys into one signature of unit
length. Namely, suppose each of n users has a public-private key pair (PKi,SKi);
each wishes to attest to a message Mi. Each user first signs her message Mi, ob-
taining a signature σi; the n signatures can then be combined by an unrelated
party into an aggregate σ. An aggregate signature scheme also includes an extra
verification algorithm that verifies such an aggregate signature. An aggregate
signature provides non-repudiation simultaneously on message M1 for User 1,
message M2 for User 2, and so forth. Crucially, such repudiation holds for each
user regardless of whether other users are malicious. Boneh et al. construct an
aggregate signature scheme in the random oracle model under the bilinear Diffie-
Hellman assumption (see, for example, Boneh and Franklin [4] and references
therein).

For applications such as certificate chains, the ability to combine preexisting
individual signatures into an aggregate is unnecessary. Each user, when pro-
ducing a signature, is aware of the signatures above his in the chain. Thus
aggregation for certificate chains should be performed incrementally and se-
quentially, so that User i, given an aggregate on messages M1, . . . , Mi−1 under
keys PK1, . . . ,PKi−1, outputs an aggregate on messages M1, . . . , Mi−1, Mi un-
der keys PK1, . . . ,PKi−1,PKi. We call such a procedure sequential aggregation,
and a signature scheme supporting it, a sequential aggregate signature scheme.

In this paper, we begin by giving a formal definition of sequential aggre-
gate signatures. We then show how to realize such signatures from a family of
certified5 trapdoor permutations (TDPs) over the same domain, as long as the
domain is a group under some operation. We prove security (with exact security
analysis) of our construction in the random oracle model; we give tighter secu-
rity guarantees for the special cases of homomorphic and claw-free TDPs. As
compared to the scheme of Boneh et al. [5], our scheme place more restrictions

5 A TDP is certified [2] if one can verify from the public key that it is actually a
permutation.
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on the signers because of the sequentiality requirement, but relies on a more
accepted, more general assumption.

Finally, we show how to instantiate our construction with the RSA trapdoor
permutation. This instantiation turns out to be more difficult than may be ex-
pected, because of the possibility of maliciously generated RSA keys: We need to
provide security for User i regardless of whether other users are honest. There are
essentially four problems. The first is that our scheme assumes multiple trapdoor
permutations over the same domain, which RSA does not provide. The second
is that RSA is not a certified trapdoor permutation: for a maliciously generated
public-key, it can indeed be very far from a permutation. The third is that the
domain of RSA is not the convenient ZN , but rather Z

∗
N , which can be much

smaller for maliciously generated N . Finally, the natural group operation on Z
∗
N

(multiplication) is not a group operation on ZN . We overcome these problems
with techniques that may be of independent interest. In particular, we turn RSA
into a certified trapdoor permutation over all of ZN .

Other Related Work. Aggregate signatures are related to multisignatures [14,
16, 15, 3]. In particular, our aggregate signature scheme has similarities with the
multisignature scheme of Okamoto [16] (though the latter has no security proof
and, indeed, is missing important details that would make the security proof pos-
sible, as shown by Micali et al. [13]). Also of interest are threshold signatures,
in particular the non-interactive threshold signature scheme due to Shoup [18],
where we have a set of n signers, and a threshold t, such that signature shares
from any t < k ≤ n signers can be combined into one signature. They are dif-
ferent from aggregate signatures in several crucial aspects: threshold signatures
require an expensive (or trusted) setup procedure; pieces of a threshold signa-
ture do not constitute a stand-alone signature; pieces of a threshold signature
can only be combined into one once there are enough of them; and a threshold
signature looks the same no matter which of the signers contributed pieces to it.

2 Preliminaries

We recall the definitions of trapdoor permutations and ordinary digital signa-
tures, and the full-domain hash signatures based on trapdoor permutations.
We also define certified trapdoor permutations, which are needed for building
sequential aggregate signatures. In addition, we define claw-free permutations,
and homomorphic trapdoor permutations, whose properties are used to achieve
a better security reduction.

2.1 Trapdoor One-Way Permutations

Let D be a group over some operation�. For simplicity, we assume that choosing
an element of D at random, computing �, and inverting � each take unit time.

A trapdoor permutation family Π over D is defined as a triple of algorithms:
Generate, Evaluate, and Invert. The randomized generation algorithm Generate
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outputs the description s of a permutation along with the corresponding trap-
door t. The evaluation algorithm Evaluate, given the permutation description s
and a value x ∈ D, outputs a ∈ D, the image of x under the permutation. The
inversion algorithm Invert, given the permutation description s, the trapdoor t,
and a value a ∈ D, outputs the preimage of a under the permutation.

We require that Evaluate(s, ·) be a permutation of D for all (s, t) R← Generate,
and that Invert(s, t,Evaluate(s, x)) = x hold for all (s, t) R← Generate and for
all x ∈ D. The algorithms Generate, Evaluate, and Invert are assumed to take
unit time for simplicity.

Definition 1. The advantage of an algorithm A in inverting a trapdoor permu-
tation family is

Adv InvertA
def= Pr

[
x = A(s,Evaluate(s, x)) : (s, t) R← Generate, x R← D

]
.

The probability is taken over the coin tosses of Generate and of A. An algo-
rithm A (t, ε)-inverts a trapdoor permutation family if A runs in time at most t
and Adv InvertA is at least ε. A trapdoor permutation family is (t, ε)-one-way if
no algorithm (t, ε)-inverts the trapdoor permutation family.

Note that this definition of a trapdoor permutation family requires that there
exist multiple trapdoor permutations over the same domain D. We avoid the use
of an infinite sequence of domains D, one for each security parameter, by simply
fixing the security parameter and considering concrete security.

When it engenders no ambiguity, we consider the output of the generation
algorithm Generate as a probability distribution Π on permutations, and write
(π, π−1) R← Π ; here π is the permutation Evaluate(s, ·), and π−1 is the inverse
permutation Invert(s, t, ·).

2.2 Certified Trapdoor Permutations

The trapdoor permutation families used in sequential aggregation must be certi-
fied trapdoor permutation families [2]. A certified trapdoor permutation family
is one such that, for any string s, it is easy to determine whether s can have
been output by Generate, and thereby ensure that Evaluate(s, ·) is a permuta-
tion. This is important when permutation descriptions s can be generated by
malicious parties.

Applying the definitions above to the RSA permutation family requires some
care. RSA gives permutations over domains Z

∗
N , where each user has a distinct

modulus N . Moreover, given just a public key (N, e), certifying that the key
describes a permutation is difficult. We consider this further in Sect. 5.

2.3 Claw-Free Permutations, Homomorphic Trapdoor Permutations

We now describe two variants of trapdoor permutations: claw-free permutations
and homomorphic trapdoor permutations. The features these variants provide



78 Anna Lysyanskaya et al.

are not needed in the description of the sequential aggregate signature scheme,
but allow a more efficient security reduction in Theorem 4.

A claw-free permutation family Π [11] is a trapdoor permutation family with
an additional permutation g : D → D, evaluated by algorithm EvaluateG(s, ·).
More generally, g can map any domain E onto D as long as the uniform dis-
tribution on E induces the uniform distribution on g(E). We assume that al-
gorithm EvaluateG runs in unit time, and choosing an element of E at random
also takes unit time, just as above.

Definition 2. The advantage of an algorithm A in finding a claw in a claw-free
permutation family is

Adv ClawA
def= Pr

[
Evaluate(s, x) = EvaluateG(s, y) :

(s, t) R← Generate, (x, y) R← A(s)

]
.

The probability is taken over the coin tosses of Generate and of A. An algo-
rithm A (t, ε)-breaks a claw-free permutation family if A runs in time at most t
and AdvClawA is at least ε. A permutation family is (t, ε)-claw-free if no algo-
rithm (t, ε)-breaks the claw-free permutation family.

When it engenders no ambiguity, we abbreviate EvaluateG(s, ·) as g(·), and
write (π, π−1, g) R← Π . In this compact notation, a claw is a pair (x, y) such that
π(x) = g(y).

One obtains from every claw-free permutation family a trapdoor permutation
family, simply by ignoring EvaluateG [11]. The proof is straightforward. Suppose
there exists an algorithm A that inverts π with nonnegligible probability. One
selects y

R← E, and providesA with z = g(y), which is uniformly distributed in D.
If A outputs x such that x = π−1(z), then it has uncovered a claw π(x) = g(y).

A trapdoor permutation family is homomorphic if D is a group with some
operation ∗ and if, for all (s, t) generated by Generate, the permutation π :
D → D induced by Evaluate(s, ·) is an automorphism on D with ∗. That is, if
a = π(x) and b = π(y), then a∗b = π(x∗y). The group action ∗ is assumed to be
computable in unit time. The operation ∗ can be different from the operation �
given above; we do not require any particular relationship (e.g., distributivity)
between � and ∗.

One obtains from every homomorphic trapdoor permutation family a claw-
free permutation family [10]. Pick some z �= 1 ∈ D, and define g(x) = z∗π(x). In
this case, E = D. Then a claw π(x) = g(y) = z ∗ π(y) reveals π−1(z) = x ∗ (1/y)
(where the inverse is with respect to ∗).

2.4 Digital Signatures

We review the well-known definition of security for ordinary digital signatures.
Existential unforgeability under a chosen message attack [11] in the random

oracle model [1] for a signature scheme (KeyGen, Sign, and Verify) with a ran-
dom oracle H is defined using the following game between a challenger and an
adversary A:
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Setup. The challenger runs algorithm KeyGen to obtain a public key PK
and private key SK. The adversary A is given PK.

Queries. Proceeding adaptively, A requests signatures with PK on at most
qS messages of his choice M1, . . . , Mqs ∈ {0, 1}∗. The challenger responds
to each query with a signature σi = Sign(SK, Mi). Algorithm A also
adaptively asks for at most qH queries of the random oracle H .

Output. Eventually, A outputs a pair (M, σ) and wins the game if (1) M
is not any of M1, . . . , Mqs , and (2) Verify(PK, M, σ) = valid.

We define Adv SigA to be the probability that A wins in the above game, taken
over the coin tosses of KeyGen and of A.

Definition 3. A forger A (t, qH , qS, ε)-breaks a signature scheme if A runs in
time at most t; A makes at most qS signature queries and at most qH queries to
the random oracle; and Adv SigA is at least ε. A signature scheme is (t, qH , qS, ε)-
existentially unforgeable under an adaptive chosen-message attack if no forger
(t, qH , qS, ε)-breaks it.

2.5 Full-Domain Signatures

We review the full-domain hash signature scheme. The scheme, introduced by
Bellare and Rogaway [1], works in any trapdoor one-way permutation family. The
more efficient security reduction given by Coron [8] additionally requires that
the permutation family be homomorphic. Dodis and Reyzin show that Coron’s
analysis can be applied for any claw-free permutation family [10]. The scheme
makes use of a hash function H : {0, 1}∗ → D, which is modeled as a random
oracle. The signature scheme comprises three algorithms: KeyGen, Sign, and
Verify.

Key Generation. For a particular user, pick random (s, t) R← Generate. The
user’s public key PK is s. The user’s private key SK is (s, t).

Signing. For a particular user, given the private key (s, t) and a message M ∈
{0, 1}∗, compute h ← H(M), where h ∈ D, and σ ← Invert(s, t, h). The
signature is σ ∈ D.

Verification. Given a user’s public key s, a message M , and a signature σ,
compute h← H(M); accept if h = Evaluate(s, σ) holds.

The following theorem, due to Coron, shows the security of full-domain sig-
natures under the adaptive chosen message attack in the random oracle model.
The terms given in the exact analysis of ε and t have been adapted to agree with
the accounting employed by Boneh et al. [6].

Theorem 1. Let Π be a (t′, ε′)-one-way homomorphic trapdoor permutation
family. Then the full-domain hash signature scheme on Π is (t, qH , qS, ε)-secure
against existential forgery under an adaptive chosen-message attack (in the ran-
dom oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − 2(qH + 2qS) .

Here e is the base of the natural logarithm.
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3 Sequential Aggregate Signatures

We introduce sequential aggregate signatures and present a security model for
them.

3.1 Aggregate and Sequential Aggregate Signatures

Boneh et al. [5] present a new signature primitive, aggregate signatures. Aggre-
gate signatures are a generalization of multisignatures [14, 16, 15, 3] wherein
signatures by several users on several distinct messages may be combined into
an aggregate whose length is the same as that of a single signature. Using an
aggregate signature in place of several individual signatures in a protocol yields
useful space savings. In an aggregate signature, signatures are first individually
generated and then combined into an aggregate.

Sequential aggregate signatures are different. Each would-be signer trans-
forms a sequential aggregate into another that includes a signature on a message
of his choice. Signing and aggregation are a single operation; sequential aggre-
gates are built in layers, like an onion; the first signature in the aggregate is
the inmost. As with non-sequential aggregate signatures, the resulting sequen-
tial aggregate is the same length as an ordinary signature. This behavior closely
mirrors the sequential nature of certificate chains in a PKI.

Let us restate the intuition given above more formally. Key generation is a
randomized algorithm that outputs a public-private keypair (PK,SK).

Aggregation and signing is a combined operation. The operation takes as
input a private key SK, a message Mi to sign, and a sequential aggregate σ′

on messages M1, . . . , Mi−1 under respective public keys PK1, . . . ,PKi−1, where
M1 is the inmost message. All of M1, . . . , Mi−1 and PK1, . . . ,PKi−1 must be
provided as inputs. If i is 1, the aggregate σ is taken to be empty. It adds a
signature on Mi under SK to the aggregate, outputting a sequential aggregate σ
on all i messages M1, . . . , Mi.

The aggregate verification algorithm is given a sequential aggregate signa-
ture σ, messages M1, . . . , Mi, and public keys PK1, . . . ,PKi, and verifies that σ
is a valid sequential aggregate (with M1 inmost) on the given messages under
the given keys.

3.2 Sequential Aggregate Signature Security

The security of sequential aggregate signature schemes is defined as the non-
existence of an adversary capable, within the confines of a certain game, of
existentially forging a sequential aggregate signature. Existential forgery here
means that the adversary attempts to forge a sequential aggregate signature, on
messages of his choice, by some set of users not all of whose private keys are
known to the forger.

We formalize this intuition as the sequential aggregate chosen-key security
model. In this model, the adversary A is given a single public key. His goal is
the existential forgery of a sequential aggregate signature. We give the adversary
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power to choose all public keys except the challenge public key. The adversary
is also given access to a sequential aggregate signing oracle on the challenge key.
His advantage, AdvAggSigA, is defined to be his probability of success in the
following game.

Setup. The aggregate forger A is provided with a public key PK, generated
at random.

Queries. Proceeding adaptively, A requests sequential aggregate signatures
with PK on messages of his choice. For each query, he supplies a sequen-
tial aggregate signature σ on some messages M1, . . . , Mi−1 under distinct
keys PK1, . . . ,PKi−1, and an additional message Mi to be signed by the
oracle under key PK (where i is at most n, a game parameter).

Response. Finally, A outputs i distinct public keys PK1, . . . ,PKi. Here i is
at most n, and need not equal the lengths (also denoted i) of A’s requests
in the query phase above. One of these keys must equal PK, the challenge
key. Algorithm A also outputs messages M1, . . . , Mi, and a sequential
aggregate signature σ by the i users, each on his corresponding message,
with PK1 inmost.

The forger wins if the sequential aggregate signature σ is a valid sequential
aggregate signature on messages M1, . . . , Mi under keys PK1, . . . ,PKi, and
σ is nontrivial, i.e., A did not request a sequential aggregate signature on
messages M1, . . . , Mi∗ under keys PK1, . . . ,PKi∗ , where i∗ is the index of the
challenge key PK in the forgery. Note that i∗ need not equal i: the forgery
can be made in the middle of σ. The probability is over the coin tosses of
the key-generation algorithm and of A.

Definition 4. A sequential aggregate forger A (t, qH, qS, n, ε)-breaks an n-user
aggregate signature scheme in the sequential aggregate chosen-key model if: A
runs in time at most t; A makes at most qH queries to the hash function and
at most qS queries to the aggregate signing oracle; Adv AggSigA is at least ε;
and the forged sequential aggregate signature is by at most n users. A sequential
aggregate signature scheme is (t, qH , qS, n, ε)-secure against existential forgery in
the sequential aggregate chosen-key model if no forger (t, qH , qS, n, ε)-breaks it.

4 Sequential Aggregates from Trapdoor Permutations

We describe a sequential aggregate signature scheme arising from any family of
trapdoor permutations, and prove the security of the scheme.

We first introduce some notation for vectors. We write a vector as x, its length
as |x|, and its elements as x1, x2, . . . , x|x|. We denote concatenating vectors
as x‖y and appending an element to a vector as x‖z. For a vector x, x|ba is the
sub-vector containing elements xa, xa+1, . . . , xb. It is necessarily the case that
1 ≤ a ≤ b ≤ |x|.
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4.1 The Scheme

We now describe three algorithms, KeyGen, AggregateSign, and AggregateVerify,
for our sequential aggregate signature scheme. The scheme employs a full-domain
hash function H : {0, 1}∗ → D, viewed as a random oracle, and resembles full-
domain hash described in Sect. 2.5. The trick to aggregation is to incorporate
the sequential aggregate signature of previous users by multiplying it (via the
group operation �) together with the hash of the message. Actually, the hash
now needs to include not only the signer’s message, but also her public key and
the prior messages and keys.6

Key Generation. For a particular user, pick random (s, t) R← Generate. The
user’s public key PK is s. The user’s private key SK is (s, t).

Aggregate Signing. The input is a private key (s, t), a message M ∈ {0, 1}∗
to be signed, and a sequential aggregate σ′ on messages M under public
keys s. Verify that σ′ is a valid signature on M under s using the verification
algorithm below; if not, output �, indicating error. Otherwise, compute h←
H(s‖s, M‖M), where h ∈ D, and σ ← Invert(s, t, h � σ′). The sequential
aggregate signature is σ ∈ D.

Aggregate Verification. The input is a sequential aggregate σ on messages M
under public keys s. If any key appears twice in s, if any element of s does
not describe a valid permutation, or if |M | and |s| differ, reject. Otherwise,
let i equal |M | = |s|. Set σi ← σ. Then, for j = i, . . . , 1, set σj−1 ←
Evaluate(sj , σj)�H(s|j1 , M |j1)−1. Accept if σ0 equals 1, the unit of D with
respect to �.

Written using π-notation, a sequential aggregate signature is of the form

π−1
i (hi � π−1

i−1(hi−1 � π−1
i−2(· · ·π−1

2 (h2 � π−1
1 (h1)) · · ·))) ,

where hj = H(s|j1 , M |j1). Verification evaluates the permutations in the forward
direction, peeling layers away until the center is reached.

4.2 Security

The following theorem demonstrates that our scheme is secure when instantiated
on any certified trapdoor permutation family.

Theorem 2. Let Π be a certified (t′, ε′)-trapdoor permutation family. Then our
sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against ex-
istential forgery under an adaptive sequential aggregate chosen-message attack
(in the random oracle model) for all t and ε satisfying

ε ≥ (qH + qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n− 1) .

6 This is done not merely because we do not know how to prove the scheme secure
otherwise. Micali et al. [14] pointed out that if the signature does not include the
public key, then an adversary may attack the scheme by deciding on the public key
after the signature is issued. Our approach is the same as that of Boneh et al. [5,
Sect. 3.2].
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Following Coron’s work [8], a better security reduction is obtained if the trap-
door permutations are, additionally, homomorphic under some operation ∗. (The
operation ∗ need not be the same as the operation � used in the description of
the signature scheme in Sect. 4.)

Theorem 3. Let Π be a certified homomorphic (t′, ε′)-trapdoor permutation
family. Then our sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-
secure against existential forgery under an adaptive sequential aggregate chosen-
message attack (in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − ((4n + 1)qH + (4n + 1)qS + 7n + 3) .

Here e is the base of the natural logarithm.

Finally, following the work of Dodis and Reyzin [10], the homomorphic property
is not really necessary, and can be replaced with the more general claw-free
property:

Theorem 4. Let Π be a certified (t′, ε′)-claw-free permutation family. Then the
sequential aggregate signature scheme on Π is (t, qH , qS, n, ε)-secure against ex-
istential forgery under an adaptive sequential aggregate chosen-message attack
(in the random oracle model) for all t and ε satisfying

ε ≥ e(qS + 1) · ε′ and t ≤ t′ − (4nqH + 4nqS + 7n) .

Here e is the base of the natural logarithm.

The proofs of these theorems are very similar (in fact, Theorem 3 is just
a corollary of Theorem 4, because, as we already saw, homomorphic trapdoor
permutations are claw-free). We will prove all three at once.

Proofs. Suppose there exists a forgerA that breaks the security of our sequential
aggregate signature scheme. We describe three algorithms that use A to break
one of the three possible security assumptions (trapdoor one-wayness, homomor-
phic one-wayness, and claw-freeness). In fact, the algorithms are quite similar
regardless of the assumption. Therefore, we present only one of them: B that
uses A to find a claw in a (supposedly) claw-free permutation family Π . We
will point out later the changes needed to make the reduction to ordinary and
homomorphic trapdoor permutations.

Suppose A is a forger algorithm that (t, qH , qS, n, ε)-breaks the sequential
aggregate signature scheme. We construct an algorithm B that finds a claw
in Π .

Crucial in our construction is the following fact about our signature scheme:
once the function H is fixed on i input values (s|j1 , M |j1), 1 ≤ j ≤ i, there exists
only one valid aggregate signature on M using keys s. Thus, by answering hash
queries properly, B can prepare for answering signature queries and for taking
advantage of the eventual forgery.

Algorithm B is given the description s of an element of Π , and must find
values x ∈ D and y ∈ E such that Evaluate(s, x) = EvaluateG(s, y). Algorithm B
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supplies A with the public key s. It then runs A and answers its oracle queries
as follows.

Hash Queries. Algorithm B maintains a list, to which we refer as the H-list, of
tuples

〈
s(j), M (j), w(j), r(j), c(j)

〉
. The list is initially empty. When A queries

the oracle H at a point (s, M ), algorithm B responds as follows.
First we consider the easy cases.
– If some tuple 〈s, M , w, r, c〉 on the H-list already contains the query

(s, M), then algorithm B answers the query as H(s, M) = w ∈ D.
– If |M | and |s| differ, if |s| exceeds n, if some key is repeated in s, or if any

key in s does not describe a valid permutation, then (s, M) can never be
part of a sequential aggregate signature. Algorithm B picks w

R← D, and
sets r ← � and c← �, both placeholder values. It adds 〈s, M , w, r, c〉 to
the H-list and responds to the query as H(s, M) = w ∈ D.

Now for the more complicated cases. Set i = |s| = |M |. If i is greater
than 1, B runs the hashing algorithm on input (s|i−1

1 , M |i−1
1 ), obtaining the

corresponding entry on the H-list,
〈

s|i−1
1 , M |i−1

1 , w′, r′, c′
〉

. If i equals 1,
B sets r′ ← 1. Algorithm B must now choose elements r,w, and c to include,
along with s and M , in a new entry on the H-list. There are three cases to
consider.

– If the challenge key s does not appear at any index of s, B chooses r
R← D

at random, sets c← �, a placeholder value, and computes

w ← Evaluate(si, r) � (r′)−1
.

– If the challenge key s appears in s at index i∗ = i, Algorithm B generates
a random coin c ∈ {0, 1} such that Pr[c = 0] = 1/(qS + 1). If c = 1, B
chooses r

R← D at random and sets

w ← Evaluate(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries be-
cause r has been chosen uniformly and independently at random from D,
and Evaluate and combining with (r′)−1 are both permutations.) If c = 0,
B chooses r

R← E at random and sets

w← EvaluateG(s, r)� (r′)−1
.

(In this case, w is uniform in D and independent of all other queries be-
cause r has been chosen uniformly and independently at random from E,
EvaluateG maps uniformly onto D, and combining with (r′)−1 is a per-
mutation.)

– If the challenge key s appears in s at index i∗ � i, algorithm B picks
w

R← D at random, and sets r ← � and c← �, both placeholder values.
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Finally, B adds 〈s, M , w, r, c〉 to the H-list, and responds to the query as
H(s, M ) = w.
In all cases, B’s response, w, is uniform in D and independent of A’s current
view, as required.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate
signature, under key s, on messages M under keys s.
If |s| and |M | differ, if |s| exceeds n, if any key appears more than once in s,
or if any key in s does not describe a valid permutation, (s, M ) is not a valid
aggregate, and B responds to A with �, indicating error. Let i = |s| = |M |.
If si differs from s, (s, M) is not a valid query to the aggregate signing
oracle, and B again responds with �.
Algorithm A also supplies a purported sequential aggregate signature σ′ on
messages M |i−1

1 under keys s|i−1
1 . If i equals 1, B verifies that σ′ equals 1.

Otherwise, B uses AggregateVerify to ensure that σ′ is the correct sequential
aggregate signature on (s|i−1

1 , M |i−1
1 ). If σ′ is incorrect, B again responds

with �.
Otherwise, B runs the hash algorithm on (s, M), obtaining the correspond-
ing entry on the H-list, 〈s, M , w, r, c〉. Since si equals s, c must be 0 or 1. If
c = 0 holds, B reports failure and terminates. Otherwise, B responds to the
query with σ ← r.

Output. Eventually algorithm A halts, outputting a message vector M , a
public-key vector s, and a corresponding sequential aggregate signature
forgery σ. The forgery must be valid: No key may occur more than once
in s, each key in s must describe a valid permutation, the two vectors s and
M must have the same length i, which is at most n. The forgery must also be
nontrivial: The challenge key s must occur in s, at some location i∗, and A
must not have asked for a sequential aggregate signature on messages M |i∗1
under keys s|i∗1 . If A fails to output a valid and nontrivial forgery, B reports
failure and terminates.
Algorithm B begins by checking the hashes included in σ. For each j, 1 ≤
j ≤ i, B runs its hash algorithm on (s|j1 , M |j1), obtaining a series of tuples〈

s|j1 , M |j1 , w(j), r(j), c(j)
〉

. Note that B always returns w as the answer to

a hash query, so, for each j, H(s|j1 , M |j1) = w(j).
Algorithm B then examines c(i∗). Since s(i∗) equals s, c(i∗) must be 0 or
1. If c(i∗) = 1 holds, B reports failure and terminates. Then B applies the
aggregate signature verification algorithm to σ. It sets σ(i) ← σ. For j =
i, . . . , 1, it sets σ(j−1) ← Evaluate(s(j), σ(j))� (w(j))−1.
If σ(0) does not equal 0, σ is not a valid aggregate signature, and B reports
failure and terminates. Otherwise, σ is valid and, moreover, each σ(j) com-
puted by B is the (unique) valid aggregate signature on messages M |j1 under
keys s|j1.
Finally, B sets x← σ(i∗) and y ← r(i∗).

This completes the description of algorithm B.
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It is easy to modify this algorithm for homomorphic trapdoor permutations.
Now the algorithm’s goal is not to find a claw, but to invert the permutation given
by s on a given input z. Simply replace, when answering hash queries for c = 0,
invocation of EvaluateG(s, r) with z ∗ Evaluate(s, r). The a claw (x, y) allows B
to recover the inverse of z under the permutation by computing z = x ∗ (1/y),
where 1/y is the inverse of y under ∗.

Finally, it is also easy to modify this algorithm for ordinary trapdoor permu-
tations:

– In answering hash queries where the challenge key s is outmost in s, instead
of letting c = 0 with probability 1/(qS + 1), set c = 0 for exactly one query,
chosen at random. There can be at most qH + qS + 1 such queries.

– For the c = 0 query, set w← z � (r′)−1. Then w is random given A’s view.
– If Algorithm A’s forgery is such that c(i∗) = 0, B′′ outputs x← σ(i∗).

In the full version of this paper [12], we show that B correctly simulates A’s
environment, and analyze its running time and success probability. �

5 Aggregating with RSA

Here we consider the details of instantiating the sequential aggregate signature
scheme presented in Sect. 4 using the RSA permutation family.

The RSA function was introduced by Rivest, Shamir, and Adleman [17].
If N = pq is the product of two large primes and ed = 1 mod φ(N), then
π(x) = xe mod N is a permutation on Z

∗
N , and π−1(x) = xd mod N is its

inverse. Setting s = (N, e) and t = (d) gives a one-way trapdoor permutation
that is multiplicatively homomorphic.

A few difficulties arise when we try to instantiate the above scheme with
RSA. We tackle them individually.

The first problem is that RSA is not a certified trapdoor permutation. Rais-
ing to the power e may not be a permutation over Z

∗
N if e is not relatively

prime with φ(N). Moreover, even if it is a permutation of Z
∗
N , it may not be

a permutation of all of ZN if N is maliciously generated (in particular, if N is
not square-free). Note that, for maliciously generated N , the difference between
Z
∗
N and ZN may be considerable. The traditional argument used to dismiss this

issue (that if one finds x outside Z
∗
N , one factors N) has no relevance here: N

may be generated by the adversary, and our ability to factor it has no impact on
the security of the scheme for the honest signer who is using a different modulus.
Our security proof substantially relied on the fact that even the adversarial pub-
lic keys define permutations, for uniqueness of signatures and proper distribution
of hash query answers. Indeed, this is not just a “proof problem,” but a demon-
strable security concern: If the adversary is able to precede the honest user’s
key (Ni, ei) with multiple keys (N1, e1), . . . , (Ni−1, ei−1), each of which defines a
collision-prone function rather than a permutation, then it is quite possible that
no matter value one takes for σi, it will be likely to verify correctly: for example,
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there will be two valid σ1 values, four valid σ2 values, eight valid σ3 values, . . . ,
2i valid σi values.

One way to resolve this problem is to make sure that every key participating
in an aggregate signature has been verified to be of correct form. This could
be accomplished by having a trusted certification authority check that N is a
product of two large primes and e is relatively prime to φ(N) before issuing a
certificate. This check, however, requires one to place more trust in the authority
than usual: the authority must be trusted not just to verify the identity of a key’s
purported owner, but also to perform verification of some complicated properties
of the key. Moreover, the security of an honest signer can be compromised without
the signer’s knowledge or participation by dishonest signers whose keys are of
incorrect form, when the dishonest signers form an aggregate signature that
verifies with the honest signer’s public key. The only way to prevent this is to
trust that the verifier of the aggregate signature only accepts certificates from
certification authorities who verify the correctness of the key.

In the case when it is best to avoid assuming such complex trust relationships,
we propose to tackle this problem in the same way as Micali et al. [13], though
at the expense of longer verification time. First, we require e to be a prime larger
than N (this idea also appeared in Cachin et al. [7]). Then it is guaranteed to
be relatively prime with φ(N), and therefore provide a permutation over Z

∗
N .

To extend to a permutation over ZN , we define Evaluate((N, e), x) as follows: if
gcd(x, N) = 1, output xe mod N ; else output x.

The second problem is that the natural choice for the group operation �,
multiplication, is not actually a group operation over ZN . Thus, signature ver-
ification, which requires computation of an inverse under �, may be unable to
proceed. Moreover, our security proof, which relies on the fact that � is a group
operation for uniqueness of signatures and proper distribution of hash query
answers, will no longer hold. This difficulty is simple to overcome: Use addition
modulo N as the group operation �. Recall that no properties were required
of � beyond being a group operation on the domain.

The third problem is that two users cannot share the same modulus N . Thus
the domains of the one-way permutations belonging to the aggregating users
differ, making it difficult to treat RSA as a family of trapdoor permutations.
We give two approaches that allow us to create sequential aggregates from RSA
nonetheless.

The first approach is to require the users’ moduli to be arranged in increasing
order: N1 < N2 . . . < Nn. At verification, it is important to check that the i-th
signature σi is actually less than Ni, to ensure that correct signatures are unique
if H is fixed. As long as log N1 − log Nn is constant, and the range of H is a
subset of ZN1 whose size is a constant fraction of N1, the scheme will be secure.
The same security proof still goes through, with the following minor modification
for answering hash queries. Whenever a hash query answer w is computed by
first choosing a random r in ZNi , there is a chance that w will be outside of the
range of H . In this case, simply repeat with a fresh random r until w falls in the
right range (the expected number of repetitions is constant). Note that because
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we insisted on Evaluate being a permutation and � being a group operation,
the resulting distribution of w is uniform on the range of H . Therefore, the
distribution of answers to hash queries is uniform. Since signatures are uniquely
determined by answers to hash queries, the adversary’s whole view is correct,
and the proof works without other modifications. (This technique is related to
Coron’s partial-domain hash analysis [9], though Coron deals with the more
complicated case when the partial domain is exponentially smaller than the full
domain.)

Our second approach allows for more general moduli: We do not require them
to be in increasing order. However, we do require them to be of the same length l
(constant differences in the lengths will also work, but we do not address them
here for simplicity of exposition). The signature will expand by n bits b1 . . . bn,
where n is the total number of users. Namely, during signing, if σi ≥ Ni+1, let
bi = 1; else, let bi = 0. During verification, if bi = 1, add Ni+1 to σi before
proceeding with the verification of σi. Always check that σi is in the correct
range 0 ≤ σi < Ni (to ensure, again, uniqueness of signatures). The security
proof requires no major modifications.7

To summarize, the resulting RSA aggregate signature schemes for n users
with moduli of length l are as follows. Let H : {0, 1}∗ → {0, 1}l−1 be a hash
function.

Restricted Moduli. We first present the scheme where the moduli must be or-
dered.

Key Generation. Each user i generates an RSA public key (Ni, ei) and secret
key (Ni, di), ensuring that 2l−1(1+(i−1)/n) ≤ Ni < 2l−1(1+ i/n) and that
ei > Ni is a prime.

Signing. User i is given an aggregate signature σ′, the messages M1, . . . , Mi−1,
and the corresponding keys (N1, e1), . . . , (Ni−1, ei−1). User i first verifies σ′,
using the verification procedure below. If the verification succeeds, user i
computes hi = H((M1, . . . , Mi), ((N1, e1), . . . , (Ni, ei))), y = hi + σ′ and
outputs σ = ydi mod Ni. The user may first check that gcd(y, N) = 1 and,
if not, output y; however, the chances that the check will fail are negligible,
because the user is honest.

Verifying. The verifier is given as input an aggregate signature σ, the mes-
sages M1, . . . , Mi, and the corresponding keys (N1, e1), . . . , (Ni, ei), and pro-
ceeds as follows. Check that no key appears twice, that ei > Ni is a prime
and that Ni is of length l (this needs to be checked only once per key,
and need not be done with every signature verification). and that 0 ≤
σ < Ni. If gcd(σ, Ni) = 1, let y ← σei mod Ni. Else let y ← σ (this

7 We need to argue that correct signatures are unique given the hash answers. At first
glance it may seem that the adversary may have choice on whether to use bi = 0
or bi = 1. However, this will result in two values σi−1 that are guaranteed to be
different: one will be less than Ni and the other at least Ni. Hence uniqueness of
σi−1 implies uniqueness of bi and, therefore, σi. Thus, by induction, signatures are
still unique. In particular, there is no need to include bi in the hash function input.
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check is crucial, because we do not know if user i is honest). Compute
hi ← H((M1, . . . , Mi), ((N1, e1), . . . , (Ni, ei))) and σ′ ← y−hi mod Ni. Ver-
ify σ′ recursively. The base case for recursion is i = 0, in which case simply
check that σ = 0.

Unrestricted Moduli. We present the scheme for unordered moduli by simply
demonstrating the required modifications. First, the range of Ni is now 2l−1 <
Ni < 2l. Second, to sign, upon verifying σ′, check if σ′ ≥ Ni. If so, replace σ′

with σ′ − Ni and set bi = 1; else, set bi = 0. Finally, to verify, replace σ′ with
σ′ + biNi before proceeding with the recursive step.

Security. Because RSA over Z
∗
N is homomorphic with respect to multiplication,

it is claw-free (not just over Z
∗
N , but over entire ZN , because finding a claw out-

side of Z
∗
N implies factoring N and hence being able to invert RSA). Therefore,

the conclusions of Theorem 4 apply to this scheme.

Acknowledgments

The authors thank Dan Boneh, Stanis�law Jarecki, and Craig Gentry for helpful
discussions about this work, Eu-Jin Goh for his detailed and helpful comments
on the manuscript, and the anonymous referees for valuable feedback.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and
V. Ashby, editors, Proceedings of CCS 1993, pages 62–73. ACM Press, 1993.

[2] M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge
based on any trapdoor permutation. J. Cryptology, 9(1):149–66, 1996.

[3] A. Boldyreva. Efficient threshold signature, multisignature and blind signature
schemes based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt,
editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 31–46. Springer-
Verlag, 2003.

[4] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Computing, 32(3):586–615, 2003. Extended abstract in Proceedings of
Crypto 2001.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, Proceedings of Euro-
crypt 2003, volume 2656 of LNCS, pages 416–32. Springer-Verlag, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514–32. Springer-
Verlag, 2001. Full paper: http://crypto.stanford.edu/˜dabo/pubs.html.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information re-
trieval with polylogarithmic communication. In J. Stern, editor, Proceedings of
Eurocrypt 1999, volume 1592 of LNCS, pages 402–414. Springer-Verlag, 1999.

http://crypto.stanford.edu/~dabo/pubs.html


90 Anna Lysyanskaya et al.

[8] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor,
Proceedings of Crypto 2000, volume 1880 of LNCS, pages 229–35. Springer-Verlag,
2000.

[9] J.-S. Coron. Security proof for partial-domain hash signature schemes. In
M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 613–26.
Springer-Verlag, 2002.

[10] Y. Dodis and L. Reyzin. On the power of claw-free permutations. In S. Cimato,
C. Galdi, and G. Persiano, editors, Proceedings of SCN 2002, volume 2576 of
LNCS, pages 55–73. Springer-Verlag, 2002.

[11] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

[12] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signa-
tures from trapdoor permutations. Cryptology ePrint Archive, Report 2003/091,
2003. http://eprint.iacr.org/.

[13] S. Micali, K. Ohta, and L. Reyzin. Provable-subgroup signatures. Unpublished
manuscript, 1999.

[14] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (ex-
tended abstract). In Proceedings of CCS 2001, pages 245–54. ACM Press, 2001.

[15] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider
attacks. IEICE Trans. Fundamentals, E82-A(1):21–31, 1999.

[16] T. Okamoto. A digital multisignature scheme using bijective public-key cryp-
tosystems. ACM Trans. Computer Systems, 6(4):432–41, November 1988.

[17] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Commun. ACM, 21:120–126, 1978.

[18] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Proceedings of
Eurocrypt 2000, volume 1807 of LNCS, pages 207–20. Springer Verlag, 2000.

http://eprint.iacr.org/

	Introduction
	Preliminaries
	Sequential Aggregate Signatures
	Sequential Aggregates from Trapdoor Permutations
	Aggregating with RSA

